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Disclaimer

All opinions, statements, conclusions, etc., in this talk are my own (as a
researcher on differential privacy), and are not the official position of the
U.S. Census Bureau.
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Introduction

Goal

DAS: disclosure avoidance system
Publish a histogram with billions of cells using formal privacy.

Location (hierarchical) - National, State, County, Tract, Block Group,
Block. ≈ 6 million blocks
Ethnicity: 2 values
Race: 63 values
Voting age: 2 values
Residence type (“household” or group quarters code) - 8 values

Hierarchical workload
Counting queries about demographics in each geographic region
E.g., 2010 PL94-171 Redistricting and Advanced Group Quarters
Summary Files

The data are sparse
≈ 12 billion cells
≈ 309 million people
Workload: 641 non-identity queries per geo-unit ≈ 3.6 billion queries
+12 billion identity queries
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Introduction

Formal Privacy

Differential Privacy

Definition (Differential Privacy (DMNS06))

Let ε > 0. An algorithm M satisfies ε-differential privacy if for all
ω ∈ range(M) and all pairs of databases D1,D2 that differ on the value of
one page of Census questionnaire (information about 1 person),

P(M(D1) = ω) ≤ eεP(M(D2) = ω)

Note: multiple tables
Person demographics: 1 person affects 1 row.
Households/Housing units: 1 person can modify 1 row in a bounded
way (different from Uber’s model)
Group Quarters: similar to households
Geographic boundaries: no protection
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Introduction

Requirements

Create microdata
Ensures that published “universe person” tabulations are mutually
consistent.
Also system requirement: output of DAS goes into tabulation system.
Equivalent to histogram with nonnegative integer entries.

Run within X days
Implemented in Spark
Uses GovCloud
Use commercial-grade optimizers (e.g., Gurobi, CPLEX)

Run before all data are available
1 PL94-171 first
2 Summary File 1
3 Urban/Rural update
4 etc.

Consistent with external pieces of knowledge
Consistent with prior releases
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Introduction

Consistency with External Knowledge

Some datasets are treated as effectively public.
Local Update of Census Addresses Operation (LUCA) dataset contains
# of housing units and GQ units of each type in each block.
Number of occupied GQ facilities of each type in each block assumed
to be known.

Some information might be declared public as policy decision.
In 2010: population of each block.
In 2010: number of occupied housing units in each block
# occupied housing units = # of householders

Invariants:
Queries in true data that must have same answers in “privatized” data.
Differentially private algorithms are still differentially private.
Privacy semantics, however, are awkward.
Easily make simple problems NP hard.

Structural zeros:
Data-independent restrictions
0 householders aged 14 and under
# householders ≥ # spouses + # unmarried partners of householders.
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Introduction

Invariants and Utility

Invariants may be forced by policy decisions.
Invariants based on external knowledge can increase trust in the
microdata.
Utility:

Making published data consistent with the invariants could increase
accuracy of microdata.
In experiments, feasible datasets (satisfying invariants) can be very
different from unrestricted datasets (given the same noisy
measurements).
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Introduction

The Spherical Cows

Incremental Schema Extension - Incrementally add columns to DP
microdata
e.g., start with Race (R), Ethnicity (E), Voting Age status (VA)
R E VA → R E VA State

→ R E VA State County → etc.
Necessary because not all data are available at once.
Also useful for scalability.

Microdata generation: measure then postprocess
Cannot fit postprocessing optimization problem in memory

Consistency with External Knowledge
Linear constraints on histogram constructed from full schema.
Ensure there exists an extension of R E VA that will satisfy
those constraints.
Decision problem (microdata are consistent?) is NP complete.
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Schema Extension: TopDown without invariants

TopDown Framework (without invariants)

Histogram is too big to fit in memory, must be created in pieces.
First generate nonnegative integer histogram H at the national level.
Create child histograms Hi for each state Si , with

∑
i Hi = H.

Recursively create county, tract, block group, block level histograms.
Number of optimization problems increases down the hierarchy
Size of optimization problems decreases

Algorithm estimates which counts are nonzero
Splits these counts among children
Variables that are 0 at the parent are dropped from future
optimizations.
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Schema Extension: TopDown without invariants

National Level Histogram H

Total U.S. population is not protected.
Given linear query workload W , use High-dimensional matrix
mechanism to obtain [MMHM2018] linear queries Q to ask.
Obtain noisy measurements M = Q(H)+Noise
Solve H∗ = argminH∗ ||Q(H∗)−M||22 s.t. sum(H∗) = n and H∗ � 0

Now we have a nonegative fractional histogram of population
demographics.
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Schema Extension: TopDown without invariants

National Histogram Linear solve

Nonnegative fractional histogram H∗.
Round using LP

argmin
H̃
||H̃ − H∗||1

s.t. H̃ � 0 (nonnegativity)

|H̃[x ]− H∗[x ]| ≤ 1 for all cells x∑
x

H̃[x ] =
∑
x

H∗[x ] (total sum constraint)

Constraint matrix is Totally Unimodular (TUM).
Many LP algorithms (barrier+crossover, simplex) give integer
solutions.
To be safe, implementation asks Gurobi to solve IP instead of LP (fast
because of TUM)
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Schema Extension: TopDown without invariants

State Level Histograms

Now we have a nonnegative integer histogram H̃

National level demographics
Equivalent to microdata with no geography

Next we add States + DC.
Hi : demographics histogram for state i

Ignore cells that are 0 at national level DP histogram H̃
Reduces size of the optimization problem.

Given workload at each state + DC, use HDMM to obtain linear
queries Q to ask.
Noisy measurement for state i : Mi = Q(Hi )+Noise
Then we solve an L2 followed by L1 optimization problem.
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Schema Extension: TopDown without invariants

State Level Histograms: L2 solve

H̃ is national level DP histogram
Noisy state level measurements M1, . . . ,M51

Obtain DP state-level nonnegative fractional histograms that add up
to H̃

arg min
H∗

1 ,...,H
∗
m

m∑
j=1

||Q(H∗
j )−Mj ||22

s.t. H∗
j � 0 for all j

m∑
j=1

H∗
j = H̃
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Schema Extension: TopDown without invariants

State Level Histograms: Linear solve

Now round using IP that is equivalent to LP when using e.g.,
barrier+crossover or simplex algorithms.
H∗
j are nonnegative fractional state level histograms

arg min
H̃1,...,H̃m

m∑
j=1

||H̃j − H∗
j ||1

s.t. H̃j � 0 for all j

|H̃j [x ]− H∗
j [x ]| ≤ 1 for all j and cells x∑

j

H̃j = H̃
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Schema Extension: TopDown without invariants

Then Recurse

(In parallel) For each state, we generate its county level histograms.
For each county, generate its tract histograms.
For each tract, generate its block level histograms.
Convert back to microdata.
≈ 20k lines of code
≈ 60k more lines of supporting code
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Schema Extension: TopDown without invariants

TopDown Algorithm
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Invariants

Invariants

Final data (with all fields) must satisfy (mostly) linear constraints.
Consumed most time & effort.

Semantics:
What is impact on privacy if some exact statistics about data are
published?
How do privacy semantics change?
Needed for policy decisions.
Short answer: it’s complicated.

Algorithm:
How do we enforce them in DP microdata?
Short answer: it’s complicated.
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Invariants

An Example (1)

Small college town, 2 regions
Every student lives in dorms

Male-only (M)
Female-only (F)
Co-ed (C)

Knowledge:
100 students in each region:
F1 + C1 +M1 = F2 + C2 +M2 = 100
All dorms are occupied.
R1 : 0 Male, 1 Female, 1 Co-ed dorms:
M1 = 0;F1 ≥ 1;C1 ≥ 1.
R2 : 1 Male, 0 Female, 1 Co-ed dorms:
M2 ≥ 1;F2 = 0;C2 ≥ 1

We already generated town-wide DP
statistics: F̃ , C̃ , M̃.
Consistent with background knowledge?

M1F1 C1 M2F2 C2

F C M

F C M
~ ~ ~

Region 2Region 1
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Invariants

An Example (2)

Knowledge:
100 students in each region:
F1 + C1 +M1 = F2 + C2 +M2 = 100
All dorms are occupied.
R1 : 0 Male, 1 Female, 1 Co-ed dorms:
M1 = 0;F1 ≥ 1;C1 ≥ 1.
R2 : 1 Male, 0 Female, 1 Co-ed dorms:
M2 ≥ 1;F2 = 0;C2 ≥ 1

Consistency: implications for F̃ , C̃ , M̃?

M1F1 C1 M2F2 C2

F C M

F C M
~ ~ ~

Region 2Region 1

(Simons Privacy Workshop) TopDown Algorithm 22 / 43



Invariants

An Example (3)

Knowledge:
100 students in each region:
F1 + C1 +M1 = F2 + C2 +M2 = 100
All dorms are occupied.
R1 : 0 Male, 1 Female, 1 Co-ed dorms:
M1 = 0;F1 ≥ 1;C1 ≥ 1.
R2 : 1 Male, 0 Female, 1 Co-ed dorms:
M2 ≥ 1;F2 = 0;C2 ≥ 1

Consistency: implications for F̃ , C̃ , M̃?
M̃ ≥ 1
F̃ ≥ 1
C̃ ≥ 2
F̃ + C̃ + M̃ = 200
Are we done?

M1F1 C1 M2F2 C2

F C M

F C M
~ ~ ~

Region 2Region 1
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Invariants

An Example (4)

Knowledge:
100 students in each region:
F1 + C1 +M1 = F2 + C2 +M2 = 100
All dorms are occupied.
R1 : 0 Male, 1 Female, 1 Co-ed dorms:
M1 = 0;F1 ≥ 1;C1 ≥ 1.
R2 : 1 Male, 0 Female, 1 Co-ed dorms:
M2 ≥ 1;F2 = 0;C2 ≥ 1

Consistency: implications for F̃ , C̃ , M̃?
M̃ ≥ 1, F̃ ≥ 1, C̃ ≥ 2,
F̃ + C̃ + M̃ = 200, ??

Suppose F̃ = 49, C̃ = 50, M̃ = 101
Satisfies these constraints
But, only 1 male-only dorm.
It is in region with 100 students.
∴ M̃ = 101 is not valid

M1F1 C1 M2F2 C2

F C M

F C M
~ ~ ~

Region 2Region 1
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Invariants

An Example (5)

Knowledge:
100 students in each region:
F1 + C1 +M1 = F2 + C2 +M2 = 100
All dorms are occupied.
R1 : 0 Male, 1 Female, 1 Co-ed dorms:
M1 = 0;F1 ≥ 1;C1 ≥ 1.
R2 : 1 Male, 0 Female, 1 Co-ed dorms:
M2 ≥ 1;F2 = 0;C2 ≥ 1

Consistency: implications for F̃ , C̃ , M̃?
The necessary and sufficient constraints
(auto-proved via FME):

F̃ ≥ 1 C̃ ≥ 2 M̃ ≥ 1

F̃ ≤ 99 C̃ + F̃ ≥ 101 C̃ + F̃ + M̃ = 200

M1F1 C1 M2F2 C2

F C M

F C M
~ ~ ~

Region 2Region 1
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Invariants

via Network Flows

Reduction to Network Flow (change ≥ c constraints to ≥ 0)
Use max-flow/min-cut theorem

Source Sink

Dorm

Region

1

2

F

C

M

∞

∞

∞

∞

98

98
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Invariants

Sphering The Cow

Starting schema: S0 (set of table
columns)

e.g, { Dorm Type }
Extended schema S ⊃ S0

e.g., {Dorm Type, Region}
T0: microdata table with schema S0

T : microdata table with schema S

C : set of constraints on T

Total population in each region
Presence/absence of occupied dorms

C0: set of constraints on T0

What we want
Constraints on population in each
dorm in T0

M1F1 C1 M2F2 C2

F C M

F C M
~ ~ ~

Region 2Region 1

(Simons Privacy Workshop) TopDown Algorithm 27 / 43



Invariants

Implied constraints

Definition (Necessary Constraints)

C0 is necessary if C (T ) =true ⇒ C0(T0) =true, where T0 is projection of
T onto the attributes in schema S0

Definition (Sufficient Constraints)

C0 is sufficient if C0(T0) =true ⇒ there exists an extension T of T0 with
C (T ) =true

We want C0 to be necessary and sufficient:
T̃0: DP microdata
Sufficient: If C0(T̃0) = true, we can always add columns to get a DP
version T̃ that satisfies C
Necessary: Constraints are not too restrictive (do not add unnecessary
bias)
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Invariants

Implied Constraints

How do we find them?
NP-complete in universe size when |S0| = 2 and |S | = 3. Easily
encodes 3-SAT
NP-complete if each region only has equality constraints for 2 one-way
marginals

NP-complete in # of regions and size of one of the marginals (if 2nd
marginal has size 3)

Region A
RV = 0 RV = 1

RH = 0 ? ? 6
RH = 1 ? ? 16

17 5

Region B
RV = 0 RV = 1

? ? 15
? ? 5
5 15

But exists an inefficient algorithm if constraints are linear:
Fourier-Motzkin elimination (FME).
Double-exponential complexity (Can be accelerated but not for our
scale)
Works for fractional histograms (often provable for integer histograms).
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The TopDown Algorithm with invariants
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The TopDown Algorithm with invariants

State Level Histograms: L2 solve with invariants

H̃ is national level DP histogram
Compute implied constraints Ci for each state i

Noisy state level measurements M1, . . . ,M51

Obtain DP state-level nonnegative fractional histograms that add up
to H̃

arg min
H∗

1 ,...,H
∗
m

m∑
j=1

||Q(H∗
j )−Mj ||22

s.t. H∗
j � 0 for all j

Ci (H
∗
j ) = true for all j

m∑
j=1

H∗
j = H̃
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The TopDown Algorithm with invariants

State Level Histograms: Linear solve with invariants

This rounding using IP that is equivalent to LP when using
barrier+crossover or simplex algorithms.

Under conditions like TUM constraint matrix or nice obj + rhs

H∗
j are nonnegative fractional state level histograms

arg min
H̃1,...,H̃m

m∑
j=1

||H̃j − H∗
j ||1

s.t. H̃j � 0 for all j

|H̃j [x ]− H∗
j [x ]| ≤ 1 for all j and cells x

Ci (H̃j) = true for all j∑
j

H̃j = H̃
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The TopDown Algorithm with invariants

TopDown with Invariants

Implied constraints deduced by hand + FME
L2 solve: creates nonnegative fractional histogram

Implied constraints C0 are added to the problem.
Implies fractional feasible extension exists.

L1 solve: rounds to nonnegative integer counts.
Generally, linear implied constraints do not always guarantee feasible
integer solution
They do if the problem constraint matrix is TUM (then linear solve is
also usually fast)
Some of our implied invariant constraints are not TUM

But integer optimal solution exists
Solve is slow
Possibly equivalent to TUM constraints (network flow and a few others)
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The TopDown Algorithm with invariants

Example

3 digit GQ code of occupied group quarters might be invariant
Similar to college dorm example
But 28 types of GQ
In general, ≈ 228 implied constraints, one for each combination of GQ.
Can be much smaller, depending on data.
For each combination S of GQ:

Total population living in GQ of types in S is ≤ c
c depends on total population in blocks that have GQ types from S

Constraint matrix is not TUM
Might be equivalent to TUM (via network flows)
Network flow integrality theorem says an integer solution exists
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The TopDown Algorithm with invariants

Workarounds

“The Failsafe”
In the worst case, breaks out of the framework.
If a solve fails (or is slow) in, e.g., county level histogram Hc

Cannot find feasible tract histograms H1, . . . ,Hk with
∑

i Hi [x ] = Hc [x ]
for all x
Drop this requirement
Use weaker requirements (e.g., total population matches:∑

i

∑
x Hi [x ] =

∑
x Hc [x ]) and other tricks

Generate tracts
The county is changed to the sum of the tracts
Worse accuracy but invariants maintained

"Minimal Schema"
S0: smallest set of attributes that cover the invariants + all geography.
Generate nonnegative integer histogram in 2 solves L2 followed by L1.

Simultaneously for all levels of geography, estimate group quarters
population by GQ type (nothing else)

Then extend to the other attributes.
Works if these problems fit in memory

Cutting plane: find the instance-level necessary constraints
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The TopDown Algorithm with invariants

Current Invariants

Have explored many invariants.
Choice of invariants is policy decision.

Policy can be affected by privacy semantics
Policy can be affected by computational difficulty

Current set of invariants being explored:
State population totals are invariant.
# occupied GQ facilities of each type in each block are invariant.
Total # of housing units in each block are invariant.
Auxiliary information about GQ (age restrictions, female-only,
male-only, co-ed).
Also structural zeros.

Historical invariants deducible from
https://www.census.gov/content/dam/Census/library/
working-papers/2018/adrm/Disclosure%20Avoidance%20for%
20the%201970-2010%20Censuses.pdf
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zCDP/RDP vs. Pure DP

RDP/zCDP

Currently using pure DP with Laplace noise and geometric mechanism
Planning experiments with Gaussian noise and RDP/zCDP.
Choice of Gaussian variance via reductions from RDP/zCDP to
(ε, δ)-differential privacy.
How to choose failure probability?
Conservative: δ = 10−14/4

≈ 4 ∗ 108 people
≈ 10−6 chance of failure
Based on (ε, δ)-DP algorithm that returns a random record with
probability 10−6

Moderate: δ = 10−6

Rough interpretation: each bit of a person’s record has probability
10−6 of getting less privacy than ε-differential privacy
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zCDP/RDP vs. Pure DP

RDP/zCDP

For δ = 10−14 (conservative value)
Moment accountant privacy budget split across 6 levels of geographic
hierarchy.
For identity queries, noise variance
ε Laplace Variance Gaussian Variance
1 288.0 785.6
2 72.0 199.4
3 32.0 89.9
4 18.0 51.3
5 11.5 33.3
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zCDP/RDP vs. Pure DP

RDP/zCDP

For δ = 10−9 (intermediate conservative value)
Moment accountant privacy budget split across 6 levels of geographic
hierarchy.
For identity queries, noise variance:
ε Laplace Variance Gaussian Variance
1 288.0 509.3
2 72.0 130.3
3 32.0 59.2
4 18.0 34.0
5 11.5 22.2
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zCDP/RDP vs. Pure DP

RDP/zCDP

For δ = 10−6 (moderate value)
Moment accountant privacy budget split across 6 levels of geographic
hierarchy.
For identity queries, noise variance:
ε Laplace Variance Gaussian Variance
1 288.0 343.5
2 72.0 88.8
3 32.0 40.7
4 18.0 23.6
5 11.5 15.6
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zCDP/RDP vs. Pure DP

RDP/zCDP

Gaussian variance is larger than Laplace
But tails are lighter (fewer outliers)
May affect postprocessing steps
Might have better tuned query workload
So experiments are planned (but many other problems need solving)
Most likely scenario:

Use pure differential privacy
Report corresponding RDP/zCDP parameters using reductions from
ε-differential privacy to RDP/zCDP
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zCDP/RDP vs. Pure DP

Thank You
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