Consistency with External Knowledge: The TopDown Algorithm

Daniel Kifer

Simons Privacy Workshop

(revised slides)

TopDown algorithm developers: Robert Ashmead, Simson Garfinkel, Philip Leclerc, Brett Moran, William Sexton, Pavel Zhuravlev

Academic collaborators: Michael Hay, Ashwin Machanavajjhala, Gerome Miklau

Disclaimer

All opinions, statements, conclusions, etc., in this talk are my own (as a researcher on differential privacy), and are not the official position of the U.S. Census Bureau.

Outline

- Introduction
- 2 Schema Extension: TopDown without invariants
- Invariants
- 4 The TopDown Algorithm with invariants
- 5 zCDP/RDP vs. Pure DP

Goal

- DAS: disclosure avoidance system
- Publish a histogram with billions of cells using formal privacy.
 - \bullet Location (hierarchical) National, State, County, Tract, Block Group, Block. ≈ 6 million blocks
 - Ethnicity: 2 values
 - Race: 63 values
 - Voting age: 2 values
 - Residence type ("household" or group quarters code) 8 values
- Hierarchical workload
 - Counting queries about demographics in each geographic region
 - E.g., 2010 PL94-171 Redistricting and Advanced Group Quarters Summary Files
- The data are sparse
 - \approx 12 billion cells
 - \approx 309 million people
 - Workload: 641 non-identity queries per geo-unit \approx 3.6 billion queries
 - +12 billion identity queries

Formal Privacy

Differential Privacy

Definition (Differential Privacy (DMNS06))

Let $\epsilon > 0$. An algorithm M satisfies ϵ -differential privacy if for all $\omega \in \operatorname{range}(M)$ and all pairs of databases D_1, D_2 that differ on the value of one page of Census questionnaire (information about 1 person),

$$P(M(D_1) = \omega) \le e^{\epsilon} P(M(D_2) = \omega)$$

- Note: multiple tables
- Person demographics: 1 person affects 1 row.
- Households/Housing units: 1 person can modify 1 row in a bounded way (different from Uber's model)
- Group Quarters: similar to households
- Geographic boundaries: no protection

Requirements

- Create microdata
 - Ensures that published "universe person" tabulations are mutually consistent.
 - Also system requirement: output of DAS goes into tabulation system.
 - Equivalent to histogram with nonnegative integer entries.
- Run within X days
 - Implemented in Spark
 - Uses GovCloud
 - Use commercial-grade optimizers (e.g., Gurobi, CPLEX)
- Run before all data are available
 - PL94-171 first
 - 2 Summary File 1
 - Urban/Rural update
 - etc.
- Consistent with external pieces of knowledge
- Consistent with prior releases

Consistency with External Knowledge

- Some datasets are treated as effectively public.
 - Local Update of Census Addresses Operation (LUCA) dataset contains # of housing units and GQ units of each type in each block.
 - Number of occupied GQ facilities of each type in each block assumed to be known.
- Some information might be declared public as policy decision.
 - In 2010: population of each block.
 - In 2010: number of occupied housing units in each block
 - # occupied housing units = # of householders
- Invariants:
 - Queries in true data that must have same answers in "privatized" data.
 - Differentially private algorithms are still differentially private.
 - Privacy semantics, however, are awkward.
 - Easily make simple problems NP hard.
- Structural zeros:
 - Data-independent restrictions
 - 0 householders aged 14 and under
 - # householders \geq # spouses + # unmarried partners of householders.

Invariants and Utility

- Invariants may be forced by policy decisions.
- Invariants based on external knowledge can increase trust in the microdata.
- Utility:
 - Making published data consistent with the invariants could increase accuracy of microdata.
 - In experiments, feasible datasets (satisfying invariants) can be very different from unrestricted datasets (given the same noisy measurements).

The Spherical Cows

- Incremental Schema Extension Incrementally add columns to DP microdata
- e.g., start with Race (R), Ethnicity (E), Voting Age status (VA) $R \mid E \mid VA \mid \rightarrow R \mid E \mid VA \mid State$

- Necessary because not all data are available at once.
- Also useful for scalability.
 - Microdata generation: measure then postprocess
 - Cannot fit postprocessing optimization problem in memory
- Consistency with External Knowledge
 - Linear constraints on histogram constructed from full schema.
 - Ensure there exists an extension of R E VA that will satisfy those constraints.
 - Decision problem (microdata are consistent?) is NP complete.

Outline

- Introduction
- 2 Schema Extension: TopDown without invariants
- Invariants
- 4 The TopDown Algorithm with invariants
- 5 zCDP/RDP vs. Pure DP

TopDown Framework (without invariants)

- Histogram is too big to fit in memory, must be created in pieces.
- First generate nonnegative integer histogram H at the national level.
- Create child histograms H_i for each state S_i , with $\sum_i H_i = H$.
- Recursively create county, tract, block group, block level histograms.
- Number of optimization problems increases down the hierarchy
- Size of optimization problems decreases
 - Algorithm estimates which counts are nonzero
 - Splits these counts among children
 - Variables that are 0 at the parent are dropped from future optimizations.

National Level Histogram H

- Total U.S. population is not protected.
- Given linear query workload W, use High-dimensional matrix mechanism to obtain [MMHM2018] linear queries Q to ask.
- Obtain noisy measurements M = Q(H) + Noise
- Solve $H^* = \arg\min_{H^*} ||Q(H^*) M||_2^2$ s.t. $sum(H^*) = n$ and $H^* \succeq 0$
 - Now we have a nonegative fractional histogram of population demographics.

National Histogram Linear solve

- Nonnegative fractional histogram H^* .
- Round using LP

$$\begin{split} \arg\min_{\widetilde{H}} &||\widetilde{H} - H^*||_1\\ \text{s.t. } \widetilde{H} \succeq 0 \text{ (nonnegativity)}\\ &|\widetilde{H}[x] - H^*[x]| \leq 1 \text{ for all cells } x\\ &\sum_x \widetilde{H}[x] = \sum_x H^*[x] \text{ (total sum constraint)} \end{split}$$

- Constraint matrix is Totally Unimodular (TUM).
- Many LP algorithms (barrier+crossover, simplex) give integer solutions.
- To be safe, implementation asks Gurobi to solve IP instead of LP (fast because of TUM)

State Level Histograms

- ullet Now we have a nonnegative integer histogram \widetilde{H}
 - National level demographics
 - Equivalent to microdata with no geography
- Next we add States + DC.
 - H_i: demographics histogram for state i
 - ullet Ignore cells that are 0 at national level DP histogram \widetilde{H}
 - Reduces size of the optimization problem.
 - Given workload at each state + DC, use HDMM to obtain linear queries Q to ask.
 - Noisy measurement for state i: $M_i = Q(H_i) + \text{Noise}$
 - Then we solve an L_2 followed by L_1 optimization problem.

State Level Histograms: L_2 solve

- \bullet H is national level DP histogram
- Noisy state level measurements M_1, \dots, M_{51}
- \bullet Obtain DP state-level nonnegative fractional histograms that add up to \widetilde{H}

$$\arg\min_{H_1^*,\dots,H_m^*} \sum_{j=1}^m ||Q(H_j^*) - M_j||_2^2$$
s.t. $H_j^* \succeq 0$ for all j

$$\sum_{i=1}^m H_j^* = \widetilde{H}$$

State Level Histograms: Linear solve

- Now round using IP that is equivalent to LP when using e.g., barrier+crossover or simplex algorithms.
- \bullet H_i^* are nonnegative fractional state level histograms

$$\arg\min_{\widetilde{H}_1,...,\widetilde{H}_m} \sum_{j=1}^m ||\widetilde{H}_j - H_j^*||_1$$
s.t. $\widetilde{H}_j \succeq 0$ for all j

$$|\widetilde{H}_j[x] - H_j^*[x]| \leq 1 \text{ for all } j \text{ and cells } x$$

$$\sum_j \widetilde{H}_j = \widetilde{H}$$

Then Recurse

- (In parallel) For each state, we generate its county level histograms.
- For each county, generate its tract histograms.
- For each tract, generate its block level histograms.
- Convert back to microdata.
- $\approx 20k$ lines of code
- $\approx 60k$ more lines of supporting code

TopDown Algorithm

Outline

- Introduction
- 2 Schema Extension: TopDown without invariants
- Invariants
- 4 The TopDown Algorithm with invariants
- 5 zCDP/RDP vs. Pure DP

Invariants

- Final data (with all fields) must satisfy (mostly) linear constraints.
- Consumed most time & effort.
 - Semantics:
 - What is impact on privacy if some exact statistics about data are published?
 - How do privacy semantics change?
 - Needed for policy decisions.
 - Short answer: it's complicated.
 - Algorithm:
 - How do we enforce them in DP microdata?
 - Short answer: it's complicated.

An Example (1)

- Small college town, 2 regions
- Every student lives in dorms
 - Male-only (M)
 - Female-only (F)
 - Co-ed (C)
- Knowledge:
 - 100 students in each region: $F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100$
 - All dorms are occupied.
 - R_1 : 0 Male, 1 Female, 1 Co-ed dorms: $M_1 = 0$; $F_1 \ge 1$; $C_1 \ge 1$.
 - R_2 : 1 Male, 0 Female, 1 Co-ed dorms: $M_2 \ge 1$; $F_2 = 0$; $C_2 \ge 1$
- We already generated town-wide DP statistics: \widetilde{F} , \widetilde{C} , \widetilde{M} .
- Consistent with background knowledge?

An Example (2)

- Knowledge:
 - 100 students in each region: $F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100$
 - All dorms are occupied.
 - R_1 : 0 Male, 1 Female, 1 Co-ed dorms: $M_1 = 0$; $F_1 \ge 1$; $C_1 \ge 1$.
 - R_2 : 1 Male, 0 Female, 1 Co-ed dorms: $M_2 > 1$; $F_2 = 0$; $C_2 > 1$
- Consistency: implications for $\widetilde{F}, \widetilde{C}, \widetilde{M}$?

An Example (3)

- Knowledge:
 - 100 students in each region: $F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100$
 - All dorms are occupied.
 - R₁: 0 Male, 1 Female, 1 Co-ed dorms: $M_1 = 0$: $F_1 > 1$: $C_1 > 1$.
 - R₂: 1 Male, 0 Female, 1 Co-ed dorms: $M_2 > 1$: $F_2 = 0$: $C_2 > 1$

- M > 1

- $\widetilde{\widetilde{F}} \geq 1$ $\widetilde{C} \geq 2$ $\widetilde{F} + \widetilde{C} + \widetilde{M} = 200$
- Are we done?

An Example (4)

- Knowledge:
 - 100 students in each region: $F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100$
 - All dorms are occupied.
 - R_1 : 0 Male, 1 Female, 1 Co-ed dorms: $M_1 = 0$; $F_1 \ge 1$; $C_1 \ge 1$.
 - R_2 : 1 Male, 0 Female, 1 Co-ed dorms: $M_2 \ge 1$; $F_2 = 0$; $C_2 \ge 1$

•
$$\widetilde{M} \ge 1$$
, $\widetilde{F} \ge 1$, $\widetilde{C} \ge 2$, $\widetilde{F} + \widetilde{C} + \widetilde{M} = 200$, ??

- Suppose $\widetilde{F}=49$, $\widetilde{C}=50$, $\widetilde{M}=101$
 - Satisfies these constraints
 - But, only 1 male-only dorm.
 - It is in region with 100 students.
 - $\widetilde{M} = 101$ is not valid

An Example (5)

- Knowledge:
 - 100 students in each region: $F_1 + C_1 + M_1 = F_2 + C_2 + M_2 = 100$
 - All dorms are occupied.
 - R_1 : 0 Male, 1 Female, 1 Co-ed dorms: $M_1 = 0$; $F_1 \ge 1$; $C_1 \ge 1$.
 - R_2 : 1 Male, 0 Female, 1 Co-ed dorms: $M_2 > 1$; $F_2 = 0$; $C_2 > 1$
- Consistency: implications for \widetilde{F} , \widetilde{C} , \widetilde{M} ?
- The necessary and sufficient constraints (auto-proved via FME):

via Network Flows

- Reduction to Network Flow (change $\geq c$ constraints to ≥ 0)
- Use max-flow/min-cut theorem

Sphering The Cow

- Starting schema: S_0 (set of table columns)
 - e.g, { Dorm Type }
- Extended schema $S \supset S_0$
 - e.g., {Dorm Type, Region}
- T_0 : microdata table with schema S_0
- T: microdata table with schema S
- C: set of constraints on T
 - Total population in each region
 - Presence/absence of occupied dorms
- C_0 : set of constraints on T_0
 - What we want
 - Constraints on population in each dorm in T_0

Implied constraints

Definition (Necessary Constraints)

 C_0 is necessary if C(T) =true $\Rightarrow C_0(T_0)$ =true, where T_0 is projection of T onto the attributes in schema S_0

Definition (Sufficient Constraints)

 C_0 is sufficient if $C_0(T_0)$ =true \Rightarrow there exists an extension T of T_0 with C(T) =true

We want C_0 to be necessary and sufficient:

- T₀: DP microdata
- Sufficient: If $C_0(\widetilde{T}_0) = \text{true}$, we can always add columns to get a DP version \widetilde{T} that satisfies C
- Necessary: Constraints are not too restrictive (do not add unnecessary bias)

Implied Constraints

- How do we find them?
- NP-complete in universe size when $|S_0|=2$ and |S|=3. Easily encodes 3-SAT
- NP-complete if each region only has equality constraints for 2 one-way marginals
 - NP-complete in # of regions and size of one of the marginals (if 2nd marginal has size 3)

Region A				Region B		
	$R_{V} = 0$	$R_{V} = 1$		$R_{V} = 0$	$R_{V} = 1$	
$R_{H}=0$?	?	6	?	?	
$R_{H}=1$?	?	16	?	?	
	17	5		5	15	

- But exists an inefficient algorithm if constraints are linear:
 - Fourier-Motzkin elimination (FME).
 - Double-exponential complexity (Can be accelerated but not for our scale)
 - Works for fractional histograms (often provable for integer histograms).

Outline

- Introduction
- 2 Schema Extension: TopDown without invariants
- Invariants
- 4 The TopDown Algorithm with invariants
- 5 zCDP/RDP vs. Pure DP

State Level Histograms: L_2 solve with invariants

- $oldsymbol{ ilde{H}}$ is national level DP histogram
- Compute implied constraints C_i for each state i
- Noisy state level measurements M_1, \ldots, M_{51}
- \bullet Obtain DP state-level nonnegative fractional histograms that add up to \widetilde{H}

$$\arg\min_{H_1^*,\dots,H_m^*} \sum_{j=1}^m ||Q(H_j^*) - M_j||_2^2$$
s.t. $H_j^* \succeq 0$ for all j

$$C_i(H_j^*) = \text{true} \quad \text{for all } j$$

$$\sum_{j=1}^m H_j^* = \widetilde{H}$$

State Level Histograms: Linear solve with invariants

- This rounding using IP that is equivalent to LP when using barrier+crossover or simplex algorithms.
 - Under conditions like TUM constraint matrix or nice obj + rhs
- H_i^* are nonnegative fractional state level histograms

$$\arg\min_{\widetilde{H}_1,...,\widetilde{H}_m} \sum_{j=1}^m ||\widetilde{H}_j - H_j^*||_1$$
s.t. $\widetilde{H}_j \succeq 0$ for all j

$$|\widetilde{H}_j[x] - H_j^*[x]| \leq 1 \text{ for all } j \text{ and cells } x$$

$$C_i(\widetilde{H}_j) = \text{true} \quad \text{ for all } j$$

$$\sum_i \widetilde{H}_j = \widetilde{H}$$

TopDown with Invariants

- Implied constraints deduced by hand + FME
- L₂ solve: creates nonnegative fractional histogram
 - Implied constraints C_0 are added to the problem.
 - Implies fractional feasible extension exists.
- L₁ solve: rounds to nonnegative integer counts.
 - Generally, linear implied constraints do not always guarantee feasible integer solution
 - They do if the problem constraint matrix is TUM (then linear solve is also usually fast)
 - Some of our implied invariant constraints are not TUM
 - But integer optimal solution exists
 - Solve is slow
 - Possibly equivalent to TUM constraints (network flow and a few others)

Example

- 3 digit GQ code of occupied group quarters might be invariant
 - Similar to college dorm example
 - But 28 types of GQ
 - In general, $\approx 2^{28}$ implied constraints, one for each combination of GQ.
 - Can be much smaller, depending on data.
 - For each combination S of GQ:
 - Total population living in GQ of types in S is $\leq c$
 - ullet c depends on total population in blocks that have GQ types from S
 - Constraint matrix is not TUM
 - Might be equivalent to TUM (via network flows)
 - Network flow integrality theorem says an integer solution exists

Workarounds

- "The Failsafe"
 - In the worst case, breaks out of the framework.
 - If a solve fails (or is slow) in, e.g., county level histogram H_c
 - Cannot find feasible tract histograms H_1, \ldots, H_k with $\sum_i H_i[x] = H_c[x]$ for all x
 - Drop this requirement
 - Use weaker requirements (e.g., total population matches: $\sum_i \sum_x H_i[x] = \sum_x H_c[x]$) and other tricks
 - Generate tracts
 - The county is changed to the sum of the tracts
 - Worse accuracy but invariants maintained
- "Minimal Schema"
 - S_0 : smallest set of attributes that cover the invariants + all geography.
 - Generate nonnegative integer histogram in 2 solves L_2 followed by L_1 .
 - Simultaneously for all levels of geography, estimate group quarters population by GQ type (nothing else)
 - Then extend to the other attributes.
 - Works if these problems fit in memory
- Cutting plane: find the instance-level necessary constraints

Current Invariants

- Have explored many invariants.
- Choice of invariants is policy decision.
 - Policy can be affected by privacy semantics
 - Policy can be affected by computational difficulty
- Current set of invariants being explored:
 - State population totals are invariant.
 - # occupied GQ facilities of each type in each block are invariant.
 - Total # of housing units in each block are invariant.
 - Auxiliary information about GQ (age restrictions, female-only, male-only, co-ed).
 - Also structural zeros.
- Historical invariants deducible from https://www.census.gov/content/dam/Census/library/ working-papers/2018/adrm/Disclosure%20Avoidance%20for% 20the%201970-2010%20Censuses.pdf

Outline

- Introduction
- 2 Schema Extension: TopDown without invariants
- Invariants
- 4 The TopDown Algorithm with invariants
- 5 zCDP/RDP vs. Pure DP

- Currently using pure DP with Laplace noise and geometric mechanism
- Planning experiments with Gaussian noise and RDP/zCDP.
- Choice of Gaussian variance via reductions from RDP/zCDP to (ϵ, δ) -differential privacy.
- How to choose failure probability?
- Conservative: $\delta = 10^{-14}/4$
 - $\approx 4 * 10^8$ people
 - $\bullet \approx 10^{-6}$ chance of failure
 - Based on (ϵ, δ) -DP algorithm that returns a random record with probability 10^{-6}
- Moderate: $\delta = 10^{-6}$
 - Rough interpretation: each bit of a person's record has probability 10^{-6} of getting less privacy than ϵ -differential privacy

- For $\delta = 10^{-14}$ (conservative value)
- Moment accountant privacy budget split across 6 levels of geographic hierarchy.
- For identity queries, noise variance

ϵ	Laplace Variance	Gaussian Variance			
1	288.0	785.6			
2	72.0	199.4			
3	32.0	89.9			
4	18.0	51.3			
5	11.5	33.3			

- For $\delta = 10^{-9}$ (intermediate conservative value)
- Moment accountant privacy budget split across 6 levels of geographic hierarchy.
- For identity queries, noise variance:

3 1 ,					
ϵ	Laplace Variance	Gaussian Variance			
1	288.0	509.3			
2	72.0	130.3			
3	32.0	59.2			
4	18.0	34.0			
5	11.5	22.2			

- For $\delta = 10^{-6}$ (moderate value)
- Moment accountant privacy budget split across 6 levels of geographic hierarchy.
- For identity queries, noise variance:

<i>y</i> ,					
ϵ	Laplace Variance	Gaussian Variance			
1	288.0	343.5			
2	72.0	88.8			
3	32.0	40.7			
4	18.0	23.6			
5	11.5	15.6			

- Gaussian variance is larger than Laplace
- But tails are lighter (fewer outliers)
- May affect postprocessing steps
- Might have better tuned query workload
- So experiments are planned (but many other problems need solving)
- Most likely scenario:
 - Use pure differential privacy
 - Report corresponding RDP/zCDP parameters using reductions from ϵ -differential privacy to RDP/zCDP

Thank You