
How to Quickly Find a Witness

Daniel Kifer, Johannes Gehrke,
Cristian Bucila

∗
Cornell University

{dkifer,johannes,cristi}@cs.cornell.edu

Walker White
University of Dallas

wmwhite@udallas.edu

ABSTRACT
The subfield of itemset mining is essentially a collection of algo-
rithms. Whenever a new type of constraint is discovered, a special-
ized algorithm is proposed to handle it. All of these algorithms are
highly tuned to take advantage of the unique properties of their as-
sociated constraints, and so they are not very compatible with other
constraints. In this paper we present a more unified view of mining
constrained itemsets such that most existing algorithms can be eas-
ily extended to handle constraints for which they were not designed
a-priori. We apply this technique to mining itemsets with restric-
tions on their variance — a problem that has been open for several
years in the data mining community.

1. INTRODUCTION
Constrained Itemset Mining is a very important data mining prob-

lem [13]. It can be stated as follows. Let I be a set of distinct
“items” (where an item is an undefined primitive). A transaction
t is a set of items (a nonempty subset of I) and a database D
is a multiset of transactions. In constrained itemset mining, we
would like to find all subsets of I that satisfy a constraint, a user-
defined property designed to tailor the output of the data mining
algorithm to the user’s preferences. Such constraints can be the
traditional “minimum support constraint”, where we are only in-
terested in sets X ⊆ I such that there exist at least s transactions
t ∈ D with X ⊆ t, or more complex constraints such as “the av-
erage price of the items has to be larger than c”, or “the variance of
the prices of the items has to be smaller than c”. Three important
classes of constraints have been studied: monotone, antimonotone,
and convertible constraints [13, 16], and each class has its own set
of efficient mining algorithms [12, 16, 14, 4, 5, 6]. Some of these
algorithms have a certain degree of flexibility – they can efficiently
mine constraints from several of these classes simultaneously.

For example, several algorithms can simultaneously mine mono-
tone and antimonotone constraints [14, 4, 5, 6], or mine convertible

∗This work was supported by NSF Grants IIS-0084762 and IIS-
0121175, and by gifts from Microsoft and Intel. Walker White was
also supported by the Cornell Intelligent Systems Institute, and Dan
Kifer was also supported by an NSF Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00.

combined with either monotone or antimonotone constraints [16].
Unfortunately, as we will show later in the paper, the flexibility of
these algorithms is very limited, especially when convertible con-
straints are involved.

In this paper, we present a unified framework for constrained
itemset mining that applies to any type of constraint. Our frame-
work is based on the concept of efficiently finding a witness, which
is a single itemset X on which we can test whether the constraint
holds. This test will provide information about properties of other
itemsets. This information can then be used for pruning the search
space. The notion of a witness has conceptual implications. For
example, we now can efficiently mine all three types of constraints
simultaneously (by finding witnesses for each constraint), and we
can also mine complicated constraints that are neither monotone,
antimonotone, nor convertible. As a demonstration, we will in-
troduce an efficient algorithm for finding a witness for constraints
involving the variance of a set of items.

Our paper makes the following contributions:

• We introduce the concept of a witness, which decouples the
strategy for traversing the search space from the efficiency
of pruning it (using constraints). This transforms the traver-
sal strategy from a necessary restriction on an algorithm into
an optimization heuristic. To illustrate the concept of a wit-
ness, we show a very efficient algorithm for finding a witness
for a large class of functions which we call stable functions.
(Section 2)

• We show how to efficiently find a witness for the constraints
var(S) ≤ c and var(S) ≥ c, and therefore show how to
prune using those constraints - a problem that has been open
in the literature for several years. (Section 3)

• We outline several heuristics that further improve the effi-
ciency of finding witnesses. (Section 4)

In the remainder of this section, we take the reader on a short tour
of this paper. We introduce some terminology and helpful notation
in Section 1.1 and then give an overview of our results in Section
1.2. The technical part of the paper continues in Section 2.

1.1 Preliminaries
Let I be a set of distinct “items” (where an item is an undefined

primitive). A transaction t is a set of items (a nonempty subset of
I) and a database D is a multiset of transactions. Given a func-
tion whose domain is I, such as price : I → R, we extend it
to sets of items in the natural way, e.g., price(S) is the multiset
{price(x) : x ∈ S}. We are also given a real-valued function
whose domain is 2I , the powerset of I. An example of such a
function is support(S), which is the number of transactions in D

that are supersets of S. We will use such functions to define con-
straints. For example, if we want to find all sets of items that have
support greater than some constant c, we say we are mining with
the constraint support(S) > c.

Let us now examine some classes of constraints

Definition 1 (Antimonotone). A constraint P is antimonotone if
whenever A ⊆ B ⊆ I then P (B) ⇒ P (A), or equivalently,
¬P (A)⇒ ¬P (B).

Definition 2 (Monotone). A constraint Q is monotone if whenever
A ⊆ B ⊆ I then Q(A) ⇒ Q(B), or equivalently, ¬Q(B) ⇒
¬Q(A).

Note that both antimonotonicity and monotonicity are useful prop-
erties. Once we know that itemset A does not satisfy an antimono-
tone constraint P we don’t need to look at supersets of A, and if
itemset B satisfies P then we know that all subsets of B satisfy P .
Similarly, once we know that B does not satisfy a monotone con-
straint Q we don’t need to look at B’s subsets, and if A satisfies Q
then so do all supersets of A.

These two classes of constraints have another useful feature:
they are both closed under logical conjunction (AND). If P1 and P2

are antimonotone (resp., monotone) constraints then so is P1 ∧ P2

and we can use existing algorithms to prune with this compound
constraint.

To define convertible constraints, we need to discuss the notion
of a prefix. Fix an ordering on the elements of I. We can therefore
treat S1 ⊆ I and S2 ⊆ I as two sequences. Let �1 be the length of
S1, and �2 be the length of S2. Then S1 is a prefix of S2 if �1 ≤ �2
and the first �1 elements of S2 are exactly S1.

Definition 3 (Convertible). A constraint R is convertible mono-
tone if there is an ordering ω1 such that whenever S1 is a prefix
of S2 then R(S1) ⇒ R(S2) (i.e., ¬R(S2) ⇒ ¬R(S1)) and R is
convertible antimonotone if there is an ordering ω2 such that if T1

is a prefix of T2 then R(T2) ⇒ R(T1) (i.e. ¬R(T1) ⇒ ¬R(T2)).
R is convertible if it is both convertible monotone and convertible
antimonotone.

In order to prune with convertible constraints efficiently, an algo-
rithm must examine itemsets in a restricted order. An example of a
convertible constraint is R ≡ avg(price(S)) > c. If the items are
sorted by price in ascending order then R is convertible monotone;
if the items are sorted in descending order then R is convertible
antimonotone. Similarly, the constraint avg(price(S)) < c is also
convertible.1 But suppose we want to mine with the following con-
straint that involves the functions price and weight:(

avg(price(S)) ≤ c
)
∧
(

avg(weight(S)) ≤ d
)

If we assume that price and weight are not correlated, then this con-
junction of convertible constraints is not convertible. Thus existing
algorithms for convertible constraints will not prune efficiently -
they will use only one of these constraints and then post-process
the output. This is an unfortunate situation, since many interesting
predicates are conjunctions of convertible monotone or convertible
antimonotone constraints.

1.2 Catching a Witness: An Overview
As an elementary example, suppose that I = {a, b, c, d} and

that database D consists of the following sets: {a, b, c}, {b, c, d},
{b, c},{b, d}. Assume we are interested in all subsets of I that
1Note that we can replace < by ≤ and > by ≥ without changing
any of the properties stated so far.

Figure 1: An enumeration of a, b, c, d
{}

{b}

{b,c}

{b,c,d}

{a}

{a,c}

{a,c,d}

{a,b}

{a,b,c}

{a,b,c,d}

{c}

{a,d}

{d}

{b,d} {c,d}

{a,b,d}

have support ≥ 2. To find these sets, we must enumerate all possi-
ble subsets of I and then test this property for each of them. At one
point we will consider the set {a}. It is included in only one set in
D and therefore it is not interesting to us. We could add more ele-
ments to {a}, in fact we could add any subset of {b, c, d} (call this
set F({a})) to get another set in our enumeration. However, sup-
port is an antimonotone constraint and so any set containing {a}
will have support less than 2. Thus we can prune from consider-
ation all sets X such that {a} ⊆ X ⊆ F({a}) ∪ {a} — 8 sets
in all. Let us call this collection of sets A({a}). We say that {a}
is a negative witness for A({a}) because once we know that our
constraint does not hold for {a}, we know it does not hold for any
set in A({a}). If {a} had been included in more than one trans-
action in D, then we could not conclude anything about all sets in
A({a}) and we would have to examine them further. Thus having
{a} as a witness for A({a}) allows us to prune a large part of the
search space. In general, if P holds for {a} implies P holds for
all sets in A({a}) then we call {a} a positive witness for A({a})
with respect to P and a negative witness with respect to ¬P .

A property P can have both positive and negative witnesses. If
X is a positive witness then P (X) = true implies that P (Y) =
true for all Y ∈ A(X) and so we save time by not evaluating
P (Y). If X is a negative witness (then it is a positive witness for
¬P) then P (X) = false implies that P (Y) = false for all
Y ∈ A(X) and so we save time by pruning A(X).

Let us investigate how witnesses actually work when mining
with constraints. Each itemset mining algorithm enumerates can-
didate itemsets in some order, for example through a tree structure
(see Figure 1 for an enumeration for a, b, c, d) that is traversed in a
depth-first or breadth-first manner. When we examine a set X, we
need to find a witness for the subtree rooted at X. In simple cases,
such as mining with a single antimonotone constraint, X is this
witness, whereas in other cases finding a witness is not so trivial.

For an example where X is not a witness forA(X), suppose that
the prices of a, b, c, d are 1, 7, 6, 5, respectively, and that we are in-
terested in all sets whose average is at least 6. If we examine node
{a} in Figure 1 then clearly the average price of {a} does not tell
us much about the average price of nodes in A({a}), the subtree
rooted at {a}. However, if we add to {a} all items with price ≥ 6
we obtain the candidate witness {a, b, c}. Since we added as many
items with price ≥ 6 as possible, if {a, b, c} does not have an aver-
age ≥ 6, then no set in A({a}) can have an average ≥ 6, and thus
{a, b, c} is a negative witness. The average price of {a, b, c} actu-
ally is less than 6 and so same is true for any set in A({a}). Thus
this witness allows us to prune the complete subtree. Had the price
of item a been 5 or higher, the witness would not give us enough
information and we would have to traverse A({a}). Thus finding
witnesses for constraints involving an average is rather straightfor-
ward: we add all items with value greater than the threshold to

obtain the witness itemset, and then we test its average.
Now let us consider a more difficult case. Assume that our con-

straint states that the variance of the prices must be ≤ k (or ≥ k)
for some constant k. Now when we examine node {a}, good wit-
nesses are elements inA({a}) that have maximal or minimal vari-
ance. But how do we find an element with maximal variance? In-
tuitively, the variance of a set is large if the elements are far away
from the average. This motivates the following simple algorithm:
We add to {a} the item x that is furthest from the average of {a},
then add the item y that is furthest away from the average of {a, x},
etc. This simple algorithm overlooks the subtlety that we want to
add elements that are furthest away from the average of the final
witness, rather than the average of {a} – but we do not know the
average of the final witness a priori. Nevertheless, as we will show
in Section 2, a variant of this algorithm actually finds the itemset
with maximal variance.

Now let us consider the case where we want to find an itemset
with minimal variance. Intuitively we want to include items that
are close to the average of the final witness, but not items that are
far from the average. Here we run into the same subtlety — the
average we are talking about is the average of the witness, not the
average of {a}. These subtleties present significant hurdles to the
development of an efficient algorithm for finding a witness. As
examples, assume that we are currently examining node X in a
search tree. The following two approaches are doomed to fail:

First Algorithm
1. Start at C = I (all of the items).
2. Remove from C the element in C \X which is furthest away

from the current average of C, and return true if this new set
has variance ≤ k

3. Repeat step 2.

Second Algorithm
1. Start at C = X.
2. Add to C the element closest to avg(C), and return true if

this new set has variance ≤ k

3. Repeat step 2.

We can construct an example where both algorithms fail to return
the correct witness. Let X be {45, 55}, the set of two items with
prices 45 and 55, respectively. Assume that the subtree rooted at
X contains the following items: 1, 000, 000 items with price 100;
999, 999 items with price 0; one item with price 30 and another
item with price 15. From this example it is clear that there is only
one set with minimal variance and we obtain it by adding to X all
elements with price 100. Let k be slightly larger than the minimal
variance but smaller than the variance of any other set containing
X. The first algorithm will fail because it will add the item with
price 30. The second algorithm will fail because the average of all
prices is slightly less than 50, and thus the algorithm will remove
all items with price = 100.

From this example we see that we can lower the variance by
adding a “dense cluster” — many items with similar values. If
we order the items on a line by price and slide an appropriately
sized window, we may be able to find a good cluster that lowers
the variance enough. In Section 3.2 we will explain the structure
of such a window. However, the size of the window depends not
only on the values of the elements in the window, but also on the
number of elements the window contains. In fact, as we slide the
window, it can shrink: as the left endpoint of the window moves to
the right, the right endpoint of the window might move to the left!
In Section 3.2, using subtle reasoning about the structure of the
space, we describe an algorithm that finds a witness in time linear
in the number of items.

2. WITNESSES
The execution of a typical data mining algorithm for antimono-

tone constraints looks like a tree. At the root is the empty set and
all other nodes are non-empty sets of items. A child is a superset
of its parent and contains one more item than its parent (see Figure
1 for an example). Let n be some node in the tree. Let B(n) be
the set of items associated with n, and let Free(n) be the collection
of items that can be added to B(n). Free(n) is the minimal set
such that for any descendant n′ of n, B(n′) = B(n) ∪ J where
J ⊆ Free(n). For example in Figure 1, if B(n) = {a, b} then
Free(n) = {c, d}. Let A(n) be the collection of sets X such that
B(n) ⊆ X ⊆ B(n) ∪ Free(n). As is done in practice, we assume
constraints have the following form: f(X)#c where # is either
<,≤, > or ≥, c is a constant, X is a set and f is a real-valued
function whose domain is 2I , the powerset of I.

Definition 4 (Witness). Given a fixed constant c, node n and a
function f : 2I → R, a set Yn ∈ A(n) is called a large witness if

f(Yn) ≤ c⇒ ∀X ∈ A(n) : f(X) ≤ c

A set Zn ∈ A(n) is called a small witness if

f(Zn) ≥ c⇒ ∀X ∈ A(n) : f(X) ≥ c

For a general predicate P , Wn ∈ A(n) is a positive witness if

P (Wn) = true⇒ ∀X ∈ A(n) : P (X) = true

and Wn is a negative witness if

P (Wn) = false⇒ ∀X ∈ A(n) : P (X) = false

The intuition behind this nomenclature is that a set in A(n) that
maximizes f (over A(n)) is a large witness and a set that mini-
mizes f is a small witness. When it is unambiguous, the notational
dependency on n will be dropped. We will use Y to represent a
large witness and Z to represent a small witness. Note that

f(Y) < c⇒ ∀X ∈ A : f(X)) < c

and

f(Z) > c⇒ ∀X ∈ A : f(X) > c

When we are mining for itemsets X that satisfy f(X) ≥ c, if
f(Yn) < c then clearly we can prune out A(n) — we do not need
to look at any set in that collection. If f(Yn) ≥ c then we do not
have enough information to prune and must examine the children
of n. If f(Zn) ≥ c then we do not need to evaluate f on the sets
in A(n) — we know the result will be greater than or equal to c.
If f(Zn) < c then we do not have enough information and must
examine the children of n. Analogous statements are true when we
have constraints f(X)#c, where # is >, <, or ≤.

2.1 Comparison to Existing Methods
When mining with antimonotone constraints, such as

support(X) > c, then for any node n, clearly B(n) is a nega-
tive witness and B(n) ∪ Free(n) is a positive witness. For mono-
tone constraints, such as support(X) < c, B(n) is a positive wit-
ness and B(n) ∪ Free(n) is a negative witness. For the function
support(X), B(n) is a large witness and B(n)∪Free(n) is a small
witness (clearly a small or large witness is negative or positive de-
pending on the inequality used in the constraint). Thus we have
generalized pruning with monotone and antimonotone constraints.
Most algorithms that prune with monotone and/or antimonotone
constraints can easily be modified to search for witnesses in order
to prune efficiently.

Algorithm 1 : AVGminer

Require: antimonotone P , node n,Free(n), Zsum, Zcount
1: if n =root then
2: Free(n)← I
3: Zsum← ∑

x∈Free,price(x)≤c

price(x)

4: Zcount ← ∑
x∈Free,price(x)≤c

1

5: else if ¬P (n) ∨ Zsum/Zcount > c then
6: RETURN (no set inA satisfies both constraints)
7: else if P (n) ∧ avg(price(n)) ≤ c then
8: OUTPUT B(n)
9: end if

10: Temp← Free(n)
11: while Temp �= ∅ do
12: choose some x ∈ Temp; Temp← Temp \ {x}
13: if x ≤ c then
14: Zsum← Zsum − x; Zcount ← Zcount − 1
15: end if
16: create child n′ such that B(n′) = B(n) ∪ {x}
17: AVGminer(P ,n′,Temp,Zsum + x,Zcount + 1)
18: end while

Witness-based pruning can also handle many convertible con-
straints. One of the most interesting convertible constraints is aver-
age (i.e., average price). Assuming all items have a price,

Yn = B(n) ∪ {x ∈ Free(n) : price(x) ≥ c}
is clearly a large witness, and

Zn = B(n) ∪ {x ∈ Free(n) : price(x) ≤ c}
is a small witness.

Naively, it may take O(Free(n)) time to find a witness and cal-
culate its average. However, we just need to know the average of a
witness and this can be maintained incrementally in constant time
per node. Algorithm 1 shows this technique applied to a simple
depth-first algorithm for antimonotone constraints. Note the O(I)
initialization step done once at the beginning of the algorithm. We
can apply this technique in a straightforward manner to many other
algorithms for mining monotone and antimonotone constraints, in-
cluding DualMiner [6]. One advantage of this technique is that the
modified algorithms can handle conjunctions of constraints. This
is possible by simply searching for a witness for each constraint.
Thus our technique can efficiently find sets of items X such that
R ≡ avg price(X) < c ∧ avg weight(X) < d, whereas an
algorithm designed for convertible constraints cannot prune with
R — despite the fact that R is simply a conjunction of convertible
constraints. Another advantage of our approach is that the pres-
ence of a conjunction of several constraints does not restrict the
order in which nodes can be evaluated. This gives our technique
an extra degree of freedom for optimization of traversal strategies
with heuristics. Note that our technique can even be used to modify
existing algorithms for convertible constraints.

Let us introduce some notation before we discuss some concep-
tual extensions. For convenience we will start identifying items
xi with their prices (price(xi)). Since several items may have the
same price we are now dealing with multisets and as a reminder
of this fact, ⊕ will represent multiset union and � will represent
multiset set-difference. Therefore when we talk about a set in A
we are really talking about a multiset.

The same witnesses that work for average also work for a more
general class, the class of stable functions, as introduced in the fol-
lowing definition.

Definition 5. A real-valued function f is stable if, for any c

f(A), f({x}) ≥ c ⇒ f(A⊕ {x}) ≥ c, and

f(A), f({x}) ≤ c ⇒ f(A⊕ {x}) ≤ c.

The predicates f(S) ≥ c and f(S) ≤ c are called stable con-
straints.

Examples of stable functions are average, median, and even lin-
ear combinations of moments. A linear combination of moments
has the form

f(X) =
∑

j

aj

n

n∑
i=1

xj
i =

n∑
i=1

∑
j

ajx
j
i

n
=

n∑
i=1

f({xi})
n

and is clearly stable. The following theorem shows how to find
witnesses Y and Z for stable functions.

Theorem 2.1. Let n be a node and f a stable function. Then

f(B(n)⊕ {x ∈ Free(n) : f(x) ≤ c}) ≤ c

if and only if ∃X ∈ A(n) such that f(X) ≤ c.

Also

f(B ⊕ {x ∈ Free(n) : f(x) ≥ c}) ≥ c

if and only if ∃X ∈ A(n)such thatf(X) ≥ c.

A stable function f is invertible if given f(x1, x2, . . . , xk) and
xi (for 1 ≤ i ≤ k) we can compute
f(x1, . . . , xi−1, xi+1, . . . , xk). In this case we can use the same
approach we used for average to maintain (in constant time per
node) the value of f of a witness. For example, linear combinations
of moments are invertible. It should be noted that the common
convertible constraints are included in the class of invertible stable
functions.

3. MINING VARIANCE
We now apply our framework to solve an open problem: mining

variance. Due to space constraints, all proofs can be found in the
appendix. We have essentially reduced the problem from finding
itemsets to searching for a particular node in a lattice. The follow-
ing key property will be used extensively.

Lemma 3.1. If M is a multiset and c, d ∈ R such that

|d − avg(M)| ≥ |c− avg(M)|,
then we have

var(M ⊕ {d}) ≥ var(M ⊕ {c}).
This is intuitively obvious; the further away an element is from

the average, the larger the variance. This leads to the following
simple corollary.

Corollary 3.1. If c ∈M and either d ≥ c ≥ avg(M) or d ≤ c ≤
avg(M) then var(M � {c} ⊕ {d}) ≥ var(M).

To find itemsets that satisfy var(X) > c we need to prune sets
where var(X) ≤ c. Thus we need to find a witness Y such that
var(Y) ≤ c ⇒ var(X) ≤ c for any X ∈ A. The next subsection
shows how this is done.

3.1 Finding Maximal Variance
An obvious choice for such a witness Y is a set inA(n) that has

maximal variance. We begin by examining what such a witness
looks like. For any set S let mink(S) be the k smallest elements
of S and maxk(S) be the k largest elements of S. Ties are broken
according to some convention >κ; that is if a = b with a ∈ X and
b /∈ X then

• if a > avg(X) let a >κ b

• if a ≤ avg(X) then a <κ b

We break all other ties arbitrarily.

Lemma 3.2. Given a node n, then for any element X in A(n)
with maximal variance, there exist two nonnegative integers L and
R such that

X = B(n)⊕min
L
{y ∈ Free : y ≤ avg(X)}

⊕max
R
{y ∈ Free : y > avg(X)}

In other words, in addition to B, X contains the Lth most ex-
treme elements on the left and the Rth most extreme elements on
the right.

A naive approach to finding a witness Y would look at all pairs
of integers L, R and use Lemma 3.2, but that would result in an
O(|Free |2) algorithm. We need to find the elements that are fur-
thest away from the average of Y without knowing what this aver-
age is. Because of this subtlety, it is surprising not only that a linear
time algorithm exists, but also that this algorithm is greedy.

However, we have one precondition. Before we begin to mine,
we must sort all elements by value. The sorted order of Free(n)
can easily be maintained by most algorithms as they examine dif-
ferent nodes n. Thus we pay a one-time O(|I| log |I|) startup cost
– which is not so bad considering how much time mining algo-
rithms take – and a constant cost per node maintaining this order.
Algorithm 2 shows the witness-search algorithm. It returns true if
the witness has variance greater than c, false otherwise.

Algorithm 2 : Maximal Variance

Require: node n, Free(n) is sorted
1: C0 ← B(n), i← 0
2: if var(C0) > c then
3: RETURN true
4: end if
5: Temp← Free(n)
6: while Temp �= ∅ do
7: choose x ∈ Temp with |x− avg(Ci)| largest
8: Ci+1 ← Ci ⊕ {x}
9: if var(Ci+1) > c then

10: RETURN true
11: else if var(Ci−1) ≥ max

(
var(Ci), var(Ci+1)

)
, i ≥ 1

then
12: RETURN false
13: end if
14: i← i + 1
15: end while
16: RETURN false

In algorithm 2 we keep adding elements that are furthest away
from the current average until we find a Y ∈ Awith var(Y) > c or
we reach the stopping condition. The stopping condition essentially
says that we get two chances to keep the variance growing.

In order to show that this algorithm is correct, we need only show
that it visits an element with maximal variance and that the condi-
tion for returning “false” is correct. Hence correctness is immediate
from the following two theorems.

Theorem 3.1. Without any stopping conditions, Algorithm 2 will
visit an element in A(n) with maximal variance.

Theorem 3.2. Let Ci be a multiset such that varCi+1 ≤ varCi

and varCi+2 ≤ varCi. Then for any j ≥ i, var(Cj) ≤ var(Ci).

The implication of this theorem is that if no set has variance
greater than c, then we will find this out two iterations after we
reach a node with maximal variance. The reason for this is that the
variance does not grow monotonically, but instead zigzags. This is
clear from the following example.

Example. Let B = {−40,−40, 40, 40} and
Free = {−42,−42, 42, 42}. The chain of sets produced is

C0 = {−40,−40, 40, 40} var(C0) = 1600

C1 = C0 ⊕ {42} var(C1) = 1562.24

C2 = C1 ⊕ {−42} var(C2) = 1654
2

3

C3 = C2 ⊕ {42} var(C3) = 1634
2

7

C4 = C3 ⊕ {−42} var(C4) = 1682

Algorithm 2 is not just correct; it is also optimal.

Theorem 3.3. If there exists a set X with var(X) ≥ c, then Al-
gorithm 2 will find the shortest path to any node whose variance
≥ c.

3.2 A Small Witness for Variance
Now that we know how to find a large witness Y , we need an

algorithm to find a witness Z such that var(Z) > c ⇒ var(X) >
c for all X ∈ A. This is a much more difficult problem. To see
why, note that we used the following property to show that a greedy
algorithm worked for finding maximal variance.

Lemma 3.3. For any constant h, if var(Y) ≥ h and var(X) ≥ h
then var(X ⊕ Y) ≥ h.

This allowed us to add elements that had the largest effect on
the variance without worrying too much about the structure of the
set we were creating. The constraint var(X) < c does not have a
similar property and this suggests that a greedy algorithm to find a
witness Z does not exist. Thus the intuitive algorithms in Section
1.2 do not work. Instead, the following lemma describes what a
witness should look like.

Lemma 3.4. For any element X in (B, T) with minimal variance,
there exist two nonnegative integers L and R such that

X = B(n)⊕max
L
{y ∈ Free : y ≤ avg(X)}

⊕min
R
{y ∈ Free : y > avg(X)}

In other words, if we order the points in Free on a line, X con-
tains B(n) and only the points in some window of size L+R over
this line.

It is clear from Lemma 3.4 that if there exists a set X with
var(X) < c then there exists a witnessZ with var(Z) < c and that
Z is the multiset union of B(n) and some window over Free(n).
The next lemma states that this window does not have to be too big.

Lemma 3.5. Let C be a set, a ∈ C, n = |C| and let D ≥ var(C).
If (a− avg(C � {a}))2 > n

n−1
D then var(C � {a}) < D

We can derive an easy O(|Free |2) search algorithm using Lemma
3.4, but it is possible to do better. The algorithm to determine if
there is a set Z with var((Z)) ≤ c is a two-step sliding window
algorithm. In the first step, we start with a window whose right
endpoint is the largest element in Free. We slide the window to
the left until the right endpoint is no longer greater than or equal
to avg(B(n)). If we have not found a witness, we repeat the same
thing, but on the left hand side. We can reflect all points around the
y-axis (i.e. multiply them by −1) without affecting the variance of
any set, and so by symmetry we only need to describe the first step
of the algorithm.

We can use Lemma 3.5 to define a suitable window. Note that
the window size depends on the number of points in the window.
We also have no guarantees that the window associated with the
witness (by Lemma 3.4) is the same size as the algorithm’s window.
Therefore we must be careful about checking for witnesses to avoid
a quadratic search algorithm. Once again, the algorithm assumes
the elements of Free are maintained in sorted order. Let F be the
array of elements of Free sorted in descending order. Given the
index r of the right endpoint, we want the largest � such that

Tr,� = {F [r],F [r + 1], . . . ,F [�]} ⊕B(n) (1)

satisfies the following properties.

1. F [r] − avg(Tr,� � F [r]) ≤ √ck/(k − 1) - where |Tr,� �
F [r]| = k − 1

2. F [r]− F [�] ≤ 2
√

ck/(k − 1)

Figure 2: The Window

infinity

avg(B(n))

F[l] F[r]

F[r+1]

F[r+2]

Window Moves

The first condition states that we do not want the right endpoint
to be further away from the average (without the endpoint) than
allowable by the hypothesis of Lemma 3.5. Thus given a right end-
point, we know what the smallest allowable average is. Condition 2
states that we do not want the left endpoint to be further away from
this quantity than is allowable by Lemma 3.5. The window defined
by r and � is Wr, our target window for r.

The window associated with a set M of minimal variance is a
subset of Wr for some r. To see why, suppose this were not the
case. Then one of the two conditions is false. This means that
either the left endpoint or the right endpoint of M ’s window is too
far from avg(M), so by Lemma 3.5 we can remove this endpoint
and decrease the variance further.

Theorem 3.4. Let Z be a witness which has a window associated
to it as in Lemma 3.4. Then there exists a witnessZ′ whose window
is a subset of the window of Z, and the window of Z′ is contained
in a target window Wr for some r.

For some choices of r, it may not be possible to get a window
which brings the average close enough to F [r]. In this case set � to
be the largest integer such that the set in equation (1) satisfies

1*. F [r]− F [�] ≤√ck/(k − 1) but
F [r]− avg(Tr,� � F [r]) >

√
ck/(k − 1)

The intuition behind this idea is that we add all the elements that
are greater than or equal the minimum average allowed by Lemma
3.5. If this cannot get the average (without F [r]) high enough, then
no window will. But if this does move the average close enough,
we can keep adding elements that satisfy condition 2. In any case
we can move the left endpoint to the left until we reach � and we
will recognize � as soon as we see it. Note that this does not change
the truth of Theorem 3.4 since this added definition only enlarges
windows that would have had length 0 otherwise.

The problem with target windows is that sliding this window to
the left may cause the left endpoint to move to the right. In other
words, it is possible that Wr+1 ⊆ Wr and therefore sliding this
window over F may require an O(|F|2) computation. For exam-
ple, suppose F [r] = F [r + 1] and equality holds in condition 1.
Sliding the window over would cause the average to move further
away from F [r + 1] and thus violate condition 1. Because of this
our algorithm will maintain a window larger than the target win-
dow by simply leaving the left endpoint fixed in such cases. Fur-
thermore, if the left endpoint is defined by condition 1*, the left
endpoint will never move to the right.

Algorithms 3 and 4 show how to slide the window.

Algorithm 3 : SlideWindow
Require: r, �
1: r ← r + 1
2: if var(Tr,�) ≤ c then
3: RETURN (true, r, �)
4: end if
5: �← ExpandWindow(r, �)
6: if var(Tr,�) ≤ c then
7: RETURN (true,r,�)
8: else
9: RETURN (false,r,�)

10: end if

Algorithm 4 : ExpandWindow

Require: r, �
1: while � < |I| − 1 do
2: k← |Tr,�+1|
3: if F [r]− F [� + 1] ≤√ck/(k − 1) then
4: �← � + 1 (Condition 1*)
5: else if F [r]−avg(Tr,�+1� F [r])≤√ck/(k − 1), F [r]−

F [� + 1] ≤ 2
√

ck/(k − 1) then
6: �← � + 1
7: else
8: BREAK
9: end if

10: if var(Tr,�) ≤ c then
11: BREAK
12: end if
13: end while
14: RETURN �

Notice that ExpandWindow (Algorithm 4) checks the variance
as it moves the left boundary. Since the left and right endpoints
shift in one direction only, the variance can be computed in con-
stant time by incrementally maintaining the number of elements in
the window, their sum, and the sum of their squares. If the algo-

rithm finds a witness, then it returns immediately and SlideWindow
(Algorithm 3) will know this.

The main algorithm is shown in Algorithm 5, where we assume,
for simplicity, that F [−1] = ∞. This algorithm returns true if
there is an element with var ≤ c and false otherwise.

Algorithm 5 : SmallVar
1: r ← −1, �← 0
2: while F [r] ≥ avg(B(n)) do
3: (result, r, �)← SlideWindow(r, �)
4: if result =true then
5: RETURN true
6: end if
7: end while
8: Repeat with window to the left of avg(B(n)).
9: RETURN false

This algorithm runs in O(|F|) time because variance is com-
puted once each time we move the right endpoint and once each
time we move the left endpoint. Although SlideWindow is called
O(|F|) times, it either does not move the left endpoint (hence do-
ing a constant unit of work) or it moves the left endpoint to the left.
Thus overall it does O(|F|) + O(|F|)=O(|F|) units of work.

Theorem 3.5. If there is some set in A with variance not greater
than c then SmallVar (Algorithm 5) will find one such set.

4. HEURISTICS
In practice, we do not always want to run a linear time (or greater)

search algorithm to find a witness. Although a linear time algorithm
may allow us to prune away an exponential number of sets, some-
times our negative witness satisfies the constraint. In those cases
we cannot prune away A(n) and our time is wasted.

There are two techniques to deal with this problem. It may be
possible to amortize the cost of the search by maintaining state that
avoids redundant computation. For example, when we showed how
to mine average, we maintained the average of the witness incre-
mentally instead of recomputing it every time.

When amortization is not possible, we can use heuristics to tell
us when to run the search algorithm. For example, if we are min-
ing with a constraint var(S) < c then we want to prune sets with
variance greater than or equal to c. We can use the observation that
the higher the value of var(B(n)), the less likely that var(S) < c
for some S ∈ A. Thus we can set some threshold τ on var(B(n)),
and if the variance is larger than the threshold we search for wit-
ness. A similar approach works for the constraint var(S) > c. A
heuristic can also be based on some precomputed statistics.

When using such constraints we can also benefit from a heuristic
which chooses the order in which elements are added to B(n) to
create children of B(n). Thus we can try to arrange it so that we
see many nodes n for which B(n) has high variance. One such
heuristic could be to order all items (in descending order) by their
distance from the overall average of I. This is very similar to the
approach taken by the convertible algorithms [16].

We should note that in most cases amortization is possible by
avoiding redundant computation. For example, suppose we have
the constraint var(S) > c and that we are currently examining a
node n. We run Algorithm 2 but find a set with variance > c. We
cannot prune the subtree rooted at n but we can amortize the cost
of the search. Let a1, a2, . . . , ak be the elements that were added
to B(n) by the algorithm in that order. Because we cannot prune,
we will eventually have to visit the nodes represented by the sets

B(n)⊕{a1}, B(n)⊕{a1, a2}, B(n)⊕{a1, a2, a3}, etc, in order
to traverse the subtrees rooted at those nodes.

If we run the algorithm at those nodes we will get the same wit-
ness as when we ran it at n. Thus at those nodes we can choose not
to run the algorithm. Since we visit these nodes anyway, the amor-
tized cost of the search is at most a constant per node plus the cost
of maintaining this information. By doing a depth-first traversal of
nodes, we can arrange it so that the next k nodes that the algorithm
traverses are these k nodes for which we already know the result of
the witness search. In this case, maintaining extra state is constant
per node. Otherwise we just need to maintain two numbers - the
smallest ai that is at least avg(B(n)) and the largest aj that is less
than avg(B(n)). Then whenever we come to a node of the form
B(n)⊕J (where J ⊆ {a1, a2, . . . , ak}) we do not have to run the
algorithm again since the same witness is also valid.

Similarly, if we had the constraint var(S) ≤ c, we run Algorithm
5 on a node n only to discover a set with variance ≤ c. Again we
cannot prune the subtree rooted an n. We let a1, . . . , ak be the con-
secutive sequence of points that define the window of the witness
we have found. Clearly this would also be a witness when we ex-
amine a node represented by B(n)⊕J (where J ⊆ {a1, . . . , ak}).
We still have to traverse to these nodes to examine their subtrees,
however we do not need to run the algorithm again. To maintain
this state we need just two numbers – the left and right endpoints
of the window of this witness.

5. RELATED WORK
Agrawal et al. first introduced the problem of mining frequent

itemsets as a first step in mining association rules [1]. They also
considered item constraints such as an item must or must not be
contained in an association rule. Agrawal and Srikant introduced
the Apriori algorithm and some variations of it [3, 2]. Srikant et
al. generalized this mining problem to item constraints over tax-
onomies[18]. Other types of constraints were introduced later by
Ng et al. [13, 12]. These papers introduced the concepts of anti-
monotone and succinct constraints and presented methods for using
them to prune the search space. These classes of constraints were
also studied in the case of 2-variable constraints [10] and along with
monotone constraints were further generalized and studied by Pei
et al. [16, 14]. Boulicant and Jeudy present algorithms for mining
frequent itemsets with both antimonotone and non-antimonotone
constraints [4, 5]. However they assume that the minimal itemsets
satisfying the monotone constraint are easy to compute, also the
minimum size of such itemsets is one and there is no gap in the
sizes of itemsets that satisfy all the constraints - assumptions that
frequently do not hold. This problem was also given a theoretical
treatment by Gunopoulos et al. [8]. DualMiner is the first algo-
rithm that simultaneously uses both monotone and antimonotone
constraints for pruning the search space [6]. Some recent papers
study the problem in the context of multi-attribute data of high di-
mensionality [17] or take another approach to the problem, such
as not pushing the constraints deeply into the mining process, but
enforcing the constraints in a final phase [9]. Other papers present
specializations of previous algorithms, based on FP-trees [11] or
based on projected databases [15].

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large databases. In
P. Buneman and S. Jajodia, editors, Proc. SIGMOD 1993,
pages 207–216. ACM Press, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast Discovery of Association Rules. In U. M.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data Mining,
chapter 12, pages 307–328. AAAI/MIT Press, 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In J. B. Bocca, M. Jarke,
and C. Zaniolo, editors, Proc. VLDB 1994, pages 487–499.
Morgan Kaufmann, 1994.

[4] J. Boulicaut and B. Jeudy. Using constraints during set
mining: Should we prune or not, 2000.

[5] J.-F. Boulicaut and B. Jeudy. Mining free itemsets under
constraints. In International Database Engineering and
Application Symposium, pages 322–329, 2001.

[6] C. Bucila, J. E. Gehrke, D. Kifer, and W. White. Dualminer:
A dual-pruning algorithm for itemsets with constraints. In
Proc. SIGKDD 2002, Edmonton, Alberta, Canada, July
2002.

[7] A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors.
SIGMOD 1999, Philadephia, Pennsylvania, USA. ACM
Press, 1999.

[8] D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen.
Data mining, hypergraph transversals, and machine learning.
In Proc. PODS 1997, pages 209–216, 1997.

[9] J. Hipp and U. Guntzer. Is pushing constraints deeply into
the mining algorithms really what we want? SIGKDD
Explorations, 4(1):50–55, 2002.

[10] L. V. S. Lakshmanan, R. T. Ng, J. Han, and A. Pang.
Optimization of constrained frequent set queries with
2-variable constraints. In Delis et al. [7], pages 157–168.

[11] C. K.-S. Leung, L. V. Lakshmanan, and R. T. Ng. Exploiting
succinct constraints using fp-trees. SIGKDD Explorations,
4(1):31–39, 2002.

[12] R. T. Ng, L. V. S. Lakshmanan, J. Han, and T. Mah.
Exploratory mining via constrained frequent set queries. In
Delis et al. [7], pages 556–558.

[13] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of constrained
association rules. In L. M. Haas and A. Tiwary, editors, Proc.
SIGMOD 1998, pages 13–24. ACM Press, 1998.

[14] J. Pei and J. Han. Can we push more constraints into frequent
pattern mining? In ACM SIGKDD Conference, pages
350–354, 2000.

[15] J. Pei and J. Han. Constrained frequent pattern mining: A
pattern-growth view. SIGKDD Explorations, 4(1):31–39,
2002.

[16] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent
item sets with convertible constraints. In ICDE 2001, pages
433–442. IEEE Computer Society, 2001.

[17] C.-S. Perng, H. Wang, S. Ma, and J. L. Hellerstein.
Discovery in multi-attribute data with user-defined
constraints. SIGKDD Explorations, 4(1):56–64, 2002.

[18] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules
with item constraints. In Proc. KDD 1997, 1995.

APPENDIX

A. PROOFS

Lemma 3.2. Given a node n, then for any element X in A(n)
with maximal variance, there exist two nonnegative integers L and
R such that

X = B(n)⊕min
L
{y ∈ Free : y ≤ avg(X)}

⊕max
R
{y ∈ Free : y > avg(X)}

Proof. We need only show the existence of L, as the existence of
R is analogous. Let S1 = {y ∈ X � B : y ≤ avg(X)} and let
F1 = {y ∈ Free : y ≤ max(S1)}. If S1 = ∅ then L = 0 and if
S1 = F1 then L = |S1|. Otherwise, let m = max(S1) and choose
y = min(F1 � S1). If y = m then L = |S1| and we are done by
the tie-breaking convention. The only other possibility is y < m,
in which case it is further away from avg(X) than m and, since
y /∈ X, by Corollary 3.1 we can replace m with y in X to increase
the variance. Clearly this case can’t happen and so a suitable L
always exists.

Theorem 2.1. Let n be a node and f a stable function. Then
f(B(n) ⊕ {x ∈ Free(n) : f(x) ≤ c}) ≤ c if and only if
∃X ∈ A(n) such that f(X) ≤ c. Also, f(B ⊕ {x ∈ Free(n) :
f(x) ≥ c}) ≥ c if and only if ∃X ∈ A(n) such that f(X) ≥ c.

Proof. We only prove the first statement, as the second is similar.
One direction is obvious. Assume there is some X ∈ A such that
f(X) ≤ c. Since f is stable, it follows by induction that f(X �
{x ∈ Free : f(x) > c}) ≤ c. Then, f(B ⊕ {x ∈ Free : f(x) ≤
c}) = f(X�{x ∈ Free : f(x) > c}⊕{x ∈ Free�X : f(x) ≤
c}) ≤ c.

Lemma 3.1. If M is a multiset and c, d ∈ R such that |d −
avg(M)| ≥ |c−avg(M)|, then we have var(M⊕{d}) ≥ var(M⊕
{c}).

Proof. Assume |d − avg(M)| ≥ |c − avg(M)|. Let n = |M |.
Given a constant k,

var(M ⊕ {k})

=

k2 +
∑
M

x2
i

n + 1
−

(
k +

∑
M

xi

)2

(n + 1)2

=

k2 +
∑
M

x2
i

n + 1
−

k2 + 2k
∑
M

xi +

(∑
M

xi

)2

(n + 1)2

Thus

var(M ⊕ {d})− var(M ⊕ {c})

=
d2 − c2

n + 1
−

d2 − c2 + 2(d− c)
∑
M

xi

(n + 1)2

=
n

(n + 1)2
[
(d2 − c2)− 2(d − c) avg(M)

]
The last equation is nonnegative if and only if

(d− c)(d + c) ≥ (d− c)2 avg(M) (2)

Case 1 If d, c ≥ avg(M) then by hypothesis d ≥ c and so Equa-
tion (2) is satisfied.

Case 2 If d, c ≤ avg(M) then by hypothesis d ≤ c and clearly
d + c ≤ 2 avg(M). Therefore, Equation (2) is also satisfied.

Case 3 If d ≥ avg(M) ≥ c then d − c ≥ 0 and by hypothesis
d−avg(M) ≥ avg(M)− c and so d+ c ≥ 2 avg(M). Thus
Equation (2) is satisfied.

Case 4 Finally, if d ≤ avg(M) ≤ c then d − c ≤ 0 and by
hypothesis avg(M)− d ≥ c− avg(M) and so 2 avg(M) ≥
d + c. Even in this case Equation (2) is satisfied.

Theorem 3.1. Without any stopping conditions, Algorithm 2 will
visit an element in A(n) with maximal variance.

Proof. Let T be the set B(n) ⊕ Free(n). Without stopping con-
ditions, the execution of this algorithm produces a chain of sets
B(n) = C0 ⊂ C1 ⊂ · · · ⊂ Ck = T and for all i, |Ci+1�Ci| = 1.
If T has maximal variance then we are done. If not, let j be the
largest index such that Cj is a subset of an element with maximal
variance but Cj+1 is not. If Cj has maximal variance then we are
done. Otherwise, let M be some superset of Cj that has maximal
variance. Also let c = Cj+1 � Cj . By definition, c is chosen
by the algorithm because it is the free element furthest away from
avg(Cj).

Because of symmetry, we can assume c ≥ avg(Cj). By the
definition of c we know that M�Cj can only contain elements less
than c. If some element is larger, it is further away from avg(Cj);
if some element equals c, then we can just replace it with c without
affecting variance, which violates the definition of Cj . This means
that c ≥ avg(M) since we can not add M �Cj to Cj and increase
the average beyond c.

From Corollary 3.1, we know that M � Cj contains no element
≥ avg(M). Otherwise we could replace it with c and the variance
will not decrease. Therefore max(M � Cj) = m < avg(M).

Now we claim that avg(Cj) ≥ m. If this is not the case, then
m > avg(Cj) and adding M � Cj to Cj would not raise the
average past m. This implies m ≥ avg(M), which cannot happen.
Thus avg(Cj) ≥ m and adding M � Cj to Cj would only lower
the average. Since Cj ⊂ M , it follows that avg(Cj) ≥ avg(M).
If δ = min(M � Cj) (which is < avg(M)) it also follows that
avg(Cj) ≥ avg(M � {δ}). As c is the free element furthest away
from avg(Cj), we see that

c− avg(M � {δ}) ≥ c− avg(Cj) ≥ avg(Cj)− δ

≥ avg(M � {δ}) − δ ≥ 0

By Lemma 3.1 var(M � {δ} ⊕ {c}) ≥ var(M), a contradic-
tion. Therefore the greedy algorithm visits the node with the largest
variance.

Theorem 3.2. Let Ci be a multiset such that var(Ci+1) ≤ var(Ci)
and var(Ci+2) ≤ var(Ci). Then for any j ≥ i, var(Cj) ≤
var(Ci).

For this theorem, we need the following results.

Lemma A.1. var(Ci) ≥ var(Ci+1) if and only if d = Ci+1 �Ci

satisfies the condition

n(d− avg(Ci))
2 ≤ (n + 1) var(Ci), where n = |Ci|

Alternatively, if Ci has average 0 and sum of squares Q, then
n2d2 ≤ (n + 1)Q.

Proof. Let X = Ci, n = |X| and Y = Ci+1. Let d = Y �
X. First suppose that avg(X) = 0 and without loss of generality

assume that d ≥ 0. Let Q be the sum of squares in X. Since
var(X) ≥ var(Y),

var(Y)− var(X) =

Q + d2

n + 1
− d2

(n + 1)2
− Q

n
=

nd2 −Q

n(n + 1)
− d2

(n + 1)2
≤ 0

This is true if and only if

(n2 + n)d2 − (n + 1)Q− nd2

n(n + 1)
≤ 0

⇔ n2d2 − (n + 1)Q

n(n + 1)
≤ 0

⇔ n2d2 − (n + 1)Q ≤ 0

⇔ n2d2 ≤ (n + 1)Q

If X does not have average 0 then since variance is translation
invariant, we can apply this result to

X ′ = {x− avg(X) : x ∈ X}
and to Q′ =

∑
x∈X

(x − avg(X))2, d′ = d − avg(X). Now Q′ is

just n var(X) and so

n(d− avg(X))2 ≤ (n + 1) var(X)

When k is an integer and S is a multiset, we use k · S to denote
k multiset unions of S with itself.

Lemma A.2. Let C be a set, a be an element and let D ≥ var(C)
and p ∈ Z

+ be constants. If

var(C ⊕ (p · {a})) > D

then

(a− avg(C))2 >
|C|+ 1

|C| D

Proof. Let Q = var(C). Let

C′ = {x− avg(C) : x ∈ C}
and let n = |C| and b = a− avg(C). Clearly

avg(C′) = 0

and var(C′) = Q. nQ is the sum of squares of C′ and var(C′ ⊕
(p · {b})) = var(C ⊕ (p · {a})).

var(C ⊕ (p · {a})) ≥ D ⇒ var(C′ ⊕ (p · {b})) ≥ D

⇒ nQ + pb2

n + p
− p2b2

(n + p)2
≥ D

⇒ (n + p)nQ + (n + p)pb2 − p2b2 ≥ D(n + p)2

⇒ (n + p)nQ + npb2 ≥ D(n + p)2

⇒ (n + p)nD + npb2 ≥ D(n + p)2

⇒ npb2 ≥ npD + p2D

⇒ b2 ≥ D + pD/n ≥ n + 1

n
D

Proof of Theorem 3.2. Let n = |Ci| and e = Ci+1 � Ci, f =
Ci+2 � Ci+1. This theorem is obvious if n < 2 so we can as-
sume that n ≥ 2. Without loss of generality we can assume that
avg(Ci) = 0 and that e > 0.

Let Q be the sum of squares of Ci. Suppose there exists a j > i
such that var(Cj) > var(Ci). Then let J = Cj . Let a be the
largest value in J � Ci and b be the smallest value. Clearly a = e
and b ≤ f . a satisfies the conditions in Lemma A.1. If a2 ≤ Q

n

then this theorem is obviously true, so we can assume a2 > Q
n

.
Since f is at least as far from avg(Ci+1) as b, Lemma 3.1 implies

that var(Ci ⊕ {a, b}) ≤ var(Ci). Thus if b ≤ −
√

Q
n

then by
Lemma 3.1,

var(Ci ⊕ {a, b}) ≥ var

(
Ci ⊕

{√
Q

n
,−
√

Q

n

})
= var(Ci)

So b > −
√

Q
n

, which means that |a| > |b| and a + b > 0.

From J we will inductively construct a multiset J∗ such that
var(J∗) ≥ var(J). Let J0 = J and given Jk , pick some element
c from the set

H = {x ∈ Jk � Ci : a > x > b}

If c ≥ avg(Jk) then we know a > c and so let Jk+1 = Jk �
{c}⊕{a}. Similarly, if c ≤ avg(Jk) then we know c > b and so let
Jk+1 = Jk�{c}⊕{b}. By Lemma 3.1, var(Jk+1) ≥ var(Jk). If
H is empty and we cannot choose an element c, then let J∗ = Jk.
Clearly J∗ = Ci⊕ (p · {a, b})⊕ (q · {x}) for some integers p and
q, where x is either a or b.

Now suppose q ≥ 1 and x is the element b. If p = 0 then a is
further away from avg J∗ � {b} than b. If p ≥ 1 then

avg J∗ � {b} ≤ p(a + b)/(n + 2p + q) ≤ (a + b)/2

and so a is also further away from avg J∗ � {b} than b. By Lemma
3.1, var(J∗ � {b} ⊕ {a}) ≥ var(J) and

J∗ � {b} ⊕ {a} = Ci ⊕ ((p + 1) · {a, b})⊕ ((q − 2) · {b})

Note this is also true when q = 1 if we interpret B ⊕ (−1) · A as
B � A. Using this argument repeatedly, we get the set

Ci ⊕ ((p + �q/2�) · {a, b})⊕ ((q mod 2) · {a})

which has variance ≥ var(J∗). Thus, without loss of generality
we can assume that x is the element a.

By hypothesis, var(Ci)− var(Ci+2) ≥ 0, and so

var(Ci)− var(Ci+2) =

Q

n
− Q + a2 + b2

n + 2
+

(a + b)2

(n + 2)2
=

2Q− na2 − nb2

n(n + 2)
+

(a + b)2

(n + 2)2
≥ 0

which implies that 2Q
n
− a2 − b2 + (a+b)2

n+2
≥ 0.

Let I = Ci ⊕ (p · {a, b}). Then we have that

var(Ci)− var(I) =

Q

n
− Q + pa2 + pb2

n + 2p
+

p2(a + b)2

(n + 2p)2
=

2pQ− npa2 − npb2

n(n + 2p)
+

p2(a + b)2

(n + 2p)2
=

p

n + 2p

(
2Q

n
− a2 − b2 +

p(a + b)2

n + 2p

)
=

p

n + 2p

(
2Q

n
− a2 − b2 +

p(n + 2)

n + 2p

(a + b)2

n + 2

)
=

p

n + 2p

(
2Q

n
− a2 − b2 +

pn + 2p

n + 2p

(a + b)2

n + 2

)
≥

p

n + 2p

(
2Q

n
− a2 − b2 +

(a + b)2

n + 2

)
=

p

n + 2p
(var(Ci)− var(Ci+2)) ≥ 0

Thus var(I) ≤ var(Ci) and J∗ = I ⊕ (q · {a}). By Lemma
A.2, it is only possible for var(J∗) > var(Ci) if (a− avg(I))2 >
n+1

n
var(Ci). Since a + b ≥ 0, we have a ≥ avg(I) ≥ 0 and so

a ≥ (a− avg(I)) ≥ 0.
From Lemma A.1

var(Ci)
n + 1

n
≥ a2 ≥ (a− avg(I))2

Therefore var(J∗) cannot be larger than var(Ci), and so when the
variance of a set is not less than the variance of either its two suc-
cessors, its variance is not less than the variance of any of its suc-
cessors.

Theorem 3.3. If there exists a set X with var(X) ≥ c, then Al-
gorithm 2 will find the shortest path to any node whose variance
≥ c.

Proof. Let Ci be the chain of sets from the proof of Theorem 3.1.
We call a node X quick if var(X) ≥ c and if ∀Y ∈ (B, T), then
|Y | ≤ |X| ⇒ var(Y) < c. We need to show that for some i, Ci is
quick.

Quickness is a maximality property. Therefore, to complete the
proof, we simply carry out the proof of Theorem 3.1, substituting
“quick” for “maximal variance”.

Lemma 3.3. For any constant h, if var(Y) ≥ h and var(X) ≥ h
then var(X ⊕ Y) ≥ h.

Proof. For convenience, let A =
∑

yi∈Y

yi and B =
∑

yi∈Y

y2
i and

n = |Y |. Also let C =
∑

xi∈X

xi and D =
∑

xi∈X

x2
i and m = |X|.

Since variance is invariant under translation, we can assume that
the elements of X and Y are nonnegative. We know that

var(Y) =
B

n
− A2

n2
≥ h⇒ B ≥ nh +

A2

n

var(X) =
D

m
− C2

m2
≥ h⇒ D ≥ mh +

C2

m

Therefore

B + D ≥ nh +
A2

n
+ mh +

C2

m

= h(n + m) +
mA2 + nC2

mn

= h(n + m) +
(mn + m2)A2 + (mn + n2)C2

mn(m + n)

≥ h(n + m) +
mnA2 + mnC2 + 2mnAC

mn(m + n)

= h(n + m) +
A2 + C2 + 2AC

m + n

= h(n + m) +
(A + C)2

m + n

This implies h ≤ B+D
m+n

− (A+C)2

(m+n)2
= var(X ⊕ Y)

Lemma 3.4. For any element X in (B, T) with minimal variance,
there exist two nonnegative integers L and R such that

X = B(n)⊕max
L
{y ∈ Free : y ≤ avg(X)}

⊕min
R
{y ∈ Free : y > avg(X)}

Proof. The proof is analogous to that of Lemma 3.2 and again as-
sumes that ties are broken according to the convention >κ.

Lemma 3.5. Let C be a set, a ∈ C, n = |C| and let D ≥ var(C).
If (a− avg(C � {a}))2 > n

n−1
D then var(C � {a}) < D.

Proof. We prove the lemma by contradiction. Assume var(C �
{a}) ≥ D. Without loss of generality, assume avg(C � {a}) =
0. Let Q be the sum of squares of C � {a}. So, we have Q ≥
(n− 1)D and (n− 1)a2 > nD. Then var(C) = (Q + a2)/n−
a2/n2 = (nQ + (n − 1)a2)/n2 > (nQ + nD)/n2 ≥ (n(n −
1)D+nD)/n2 = D. Thus, var(C) > D, contradiction, therefore
var(C � {a}) < D.

Theorem 3.5. If there is some set in A with variance not greater
than c then SmallVar (Algorithm 5) will find one such set.

To prove this theorem, we need the following result.

Lemma A.3 (The Expanding Window). If there exists a wit-
ness Z with var(Z) ≤ c and and window defined by right end-
point a and left endpoint b then if d > b and avg(Z) − F [d] ≤√

c(|Z|+ 1)/|Z| then there is a witness Z′ with var(Z ′) ≤ c and
window defined by endpoints a and d.

Proof. If d = b+1 then this is obvious by Lemma A.2. If d > b+1
then this is true by induction.

Proof of Theorem 3.5. The algorithm’s window can be in 3 states.

State 1: The window satisfies condition 1*.

State 2: The window satisfies conditions 1 and 2.

State 3: The left endpoint didn’t move and the previous win-
dow satisfied conditions 1 and 2 (otherwise the current win-
dow satisfies condition 1* and is in state 1).

It is clear that if the algorithm is in state 1, sliding the window will
only move it to states 1 or 2. If it is in state 2 then it will only go to
states 2 or 3. Finally, if it is in state 3, it can go to any other state.

We already know that there exists a witness Z that is charac-
terized by Lemma 3.4 – it has an associated window. By Lemma
3.5 we can restrict ourselves to only look for witnesses whose right
endpoints are close enough to the average of the rest of the witness
(i.e. satisfy condition 1). Without loss of generality we can assume
that the window is minimal in the sense that no witness has an as-
sociated window that is a proper subset of this. By symmetry, we
can also assume that the right endpoint of this window is not less
than avg(B(n)). Thus by sliding the algorithm’s window over to
the left, at some point the right endpoint r of the algorithm window
will also be the right endpoint of the minimal witness.

When this happens, by Theorem 3.4, the target window, Wr,
contains the window of the minimal witness. When the algorithm
window is in states 2 or 3 and has right endpoint r, it will con-
tain the target window and therefore the window of the minimal
witness. Since r is also the right endpoint of the window of the
minimal witness, the algorithm window with right endpoint r can
not satisfy condition 1* and so it will not be in state 1. Thus it is
sufficient to prove two things.

(i) If the algorithm is in states 2 or 3 and a witness’s window
is contained within the algorithm’s current window and both
windows have the same right endpoint, then the algorithm will
find this out.

(ii) If the window of a witness is inside the algorithm’s window
and the algorithm’s window is in state 1, then when we slide
the window it will still contain the window of a witness.

We prove property (ii) first. If the window satisfies condition
1* and a witness has its window inside the algorithm’s window,
then we test if var(Tr,�) ≤ c. If the variance is greater than c
then we claim there is a witness Z whose window is inside of this
window, but that the window of the witness has a right endpoint
different from r. If there was a witness whose right endpoint was
r then by condition 1*, F [r] is far away from avgZ � {F [r]},
and by Lemma 3.5 Z � {F [r]} is also a witness. Furthermore,
the right endpoint of this witness’s window will still be larger than
avg(B(n)) by the minimality assumption. At this point the algo-
rithm would slide the window over and the window of Z would
still be contained in the algorithm’s window.

Property (i) follows by induction. The inductive hypothesis will
also maintain the fact that if the algorithm window is in state 3
then if the window of a witness is inside the algorithm’s window,
then we can extend the left boundary of the witness’s window to
the left endpoint of the algorithm’s window and so create a set with
variance not greater than c.

The base case of the induction is the beginning of the algorithm.
The first window must be either in state 1 or 2. If it is in state 1 then
property (i) is vacuously true for the first algorithm window. If it is
in state 2, let r be the right endpoint. ExpandWindow will initially
start with the with right and left endpoints r and r and will check if
we have a witness whose window has right endpoint r every time it
moves the left endpoint. Thus we will know if a witness’s window
is inside the algorithm window and shares a right endpoint with it.

Let g(r) be the largest integer such that

F [r]− F [g(r)] ≤
√

ck/(k − 1)

where k = |Tr,g(r)|. Note that g(r) = � if condition 1* holds and
g(r) ≤ � for states 2 and 3. We will left r1, �1 be the boundaries of
the previous algorithm window and r2, �2 be the boundaries of the
current window. As we can treat any occurrence of state 1 as the

initial state, the inductive step has five cases.

Case (I) The current window is in state 2 and the previous win-
dow is in state 1. Since the algorithm explicitly checks for the vari-
ance of Tr2,�1 , . . . Tr2,�2 , we must show that we do not miss any-
thing by not checking the variance of Tr2,r2 , . . . , Tr2,�1−1. Since
�1 = g(r1) ≤ g(r2) it is sufficient to show that we do not need
to check the variance of Tr2,r2 , . . . , Tr2,g(r2)−1. Suppose there
is a witness Z whose window has right endpoint r and left end-
point L between r2 and g(r2) − 1. Because the witnesses must
satisfy condition 1, the distance between avg Z and F [g(r2)] is
not greater than the distance between F [r] and F [g(r2)]. Since
|Z| ≤ |Tr2,g(r2)| and

(|Z|+ 1)/|Z| ≥ (|Tr2,g(r2)|+ 1)/|Tr2,g(r2)|
the g(r2) and Z satisfy the conditions of the Expanding Window
Lemma. So Tr2,g(r2) would also be a witness and would be explic-
itly checked by the algorithm.

Case (II) Both the current window and the previous window are
in state 2. Once again we must show that we do not miss anything
by not checking the variance of the sets Tr2,r2 , . . . , Tr2,�1−1. Sup-
pose there is a witness Z whose window has right endpoint r and
left endpoint L between r2 and �1−1. If L ≤ g(r2) then we use the
same arguments as in Case (I). Otherwise L > g(r2) ≥ g(r1) and
so Tr1,L must satisfy Condition 1. But if Tr2,L were a witness then
by Lemma A.2 so is Tr1,L and this would have been discovered by
the inductive hypothesis.

Case (III) The current window is in state 2 and the previous win-
dow is in state 3. Again we show that we do not miss anything by
not checking the variance of Tr2,r2 , . . . , Tr2,�1−1. Suppose there
is a witness Z whose window has right endpoint r and left end-
point L between r2 and �1 − 1. Then the window of the witness
is bounded by r1, �1 and so by the inductive hypothesis we can ex-
tend its left endpoint and so Tr2,L will have var ≤ c. This set will
then be checked by the algorithm.

In the last two cases, the current state is 3. We must show that any
witness whose window fits inside the algorithm’s current window
can have its left endpoint extended to the algorithm’s window’s left
endpoint. From this it follows that if a witness has right endpoint
equal to r2, then the variance of Tr2,�2 is ≤ c and this is checked
by the algorithm. If �2 ≤ g(r2) then we should actually be in state
3. Therefore �2 > g(r2).

Case (IV) The current window is in state 3 and the previous
window is in state 2. In this case �1 = �2 and Tr1,�2 satisfies
both conditions 1 and 2 but Tr2,�2 does not. Since the fewer the
elements in the window, the larger 2

√
ck/(k − 1) is, condition 2

is automatically satisfied. Hence condition 1 must be false. Thus if
there is a witness whose window has endpoints R, L where r2 ≤
R ≤ L < �2 and if avg(TR,L) ≥ F [�2] then

| avg(TR,L)− F [�2]| ≤
√

ck/(k − 1)

where k − 1 = |Tr1,�2 |. Since k∗ = |TR,L| < |Tr1,�2 |, we
have | avg(TR,L) − F [�2]| ≤

√
c(1 + |TR,L|)/|TR,L| and we

can use the Expanding Window Lemma. If, on the other hand
avg(TR,L) < F [�2] then F [�2] is closer to avg(TR,L) than F [R]
is and because of our restriction on witnesses we can again use the
Expanding Window Lemma to expand the left endpoint from L to
�2.

Case (V) Both the current window and the previous window are
in state 3. This follows trivially from the inductive hypothesis since
r1 ≤ r2 and �1 = �2 and so the current algorithm window is
contained in the previous algorithm window.

