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Abstract

Recent work has shown the necessity of considering an
attacker’s background knowledge when reasoning about
privacy in data publishing. However, in practice, the data
publisher does not know what background knowledge the
attacker possesses. Thus, it is important to consider the
worst-case. In this paper, we initiate a formal study of
worst-case background knowledge. We propose a language
that can express any background knowledge about the data.
We provide a polynomial time algorithm to measure the
amount of disclosure of sensitive information in the worst
case, given that the attacker has at mostk pieces of infor-
mation in this language. We also provide a method to effi-
ciently sanitize the data so that the amount of disclosure in
the worst case is less than a specified threshold.

1. Introduction

We consider the following situation. A data publisher
(such as a hospital) has collected useful information about
a group of individuals (such as patient records that would
help medical researchers) and would like to publish this data
while preserving the privacy of the individuals involved.
The information is stored as a table (as in Figure 1) where
each record corresponds to a unique individual and contains
a sensitive attribute (e.g., disease) and some non-sensitive
attributes (e.g., address, gender, age) that might be learned
using externally available data (e.g., phone books, birth
records). The data publisher would like to limit the disclo-
sure of the sensitive values of the individuals in order to de-
fend against an attacker who possibly already knows some
facts about the table. Our goal in this paper is to quantify
the precise effect of background knowledge possessed by
an attacker on the amount of disclosure and to provide al-
gorithms to check and ensure that the amount of disclosure
is less than a specified threshold.

The problem we solve is of real and practical im-
portance; an egregious example of a privacy breach was

the discovery of the medical records of the Governor of
Massachusetts from an easily accessible and supposedly
anonymized dataset. All that was needed was to link it to
voter registration records [32]. To defend against such at-
tacks, Samarati and Sweeney [29] introduced a privacy cri-
terion calledk-anonymity which requires that each individ-
ual be indistinguishable (with respect to the non-sensitive
attributes) from at leastk−1 others. This is done by group-
ing individuals intobucketsof size at leastk, and then per-
muting the sensitive values in each bucket and sufficiently
masking their externally observable non-sensitive attributes.
Figure 2 depicts a table that is a5-anonymous version of the
table in Figure 1. Figure 3 depicts the permutation of sensi-
tive values that was used to construct this table.

However,k-anonymity does not adequately protect the
privacy of an individual;1 for example, when all individuals
in a bucket have the same disease, the disease of the indi-
viduals in that bucket is disclosed regardless of the bucket
size. Even when there are multiple diseases in the same
bucket, the frequencies of the diseases in the bucket still
matter when an attacker has some background knowledge
about the particular individuals in the table. Suppose the
data publisher has published the5-anonymous table as de-
picted in Figure 2. Consider an attacker Alice who would
like to learn the diseases of all her friends and neighbors.
One of her neighbors is Ed, a 27 year-old male living in
Ithaca (zip code 14850). Alice knows that Ed is in the hos-
pital that published the anonymized dataset in Figure 3, and
she wants to find out Ed’s disease. Using her knowledge
of Ed’s age, gender, and zip-code, Alice can identify the
bucket in the anonymized table that Ed belongs to (namely,
the first bucket). Alice does not know which disease listed
within that bucket is Ed’s since the sensitive values were
permuted. Therefore, without additional knowledge, Al-
ice’s estimate of the probability that Ed has lung cancer is
2/5. But suppose Alice knows that Ed had mumps as a child
and is therefore extremely unlikely to get it again. After rul-
ing out this possibility, the probability that Ed has lung can-

1Indeed, the definition ofk-anonymity does not even mention the sen-
sitive attribute!



non-sensitive sensitive
Name Zip Age Sex Disease
Bob 14850 23 M Flu

Charlie 14850 24 M Flu
Dave 14850 25 M Lung Cancer
Ed 14850 27 M Lung Cancer

Frank 14853 29 M Mumps
Gloria 14850 21 F Flu
Hannah 14850 22 F Flu

Irma 14853 24 F Breast Cancer
Jessica 14853 26 F Ovarian Cancer
Karen 14853 28 F Heart Disease

Figure 1. Original table

non-sensitive sensitive
Name Zip Age Sex Disease

Flu
Lung Cancer

* 1485* 2* M Mumps
Flu

Lung Cancer
Flu

Breast Cancer
* 1485* 2* F Flu

Heart Disease
Ovarian Cancer

Figure 2. 5-anonymous table

non-sensitive sensitive
Name Zip Age Sex Disease
Bob 14850 23 M Flu

Charlie 14850 24 M Lung Cancer
Dave 14850 25 M Mumps
Ed 14850 27 M Flu

Frank 14853 29 M Lung Cancer
Gloria 14850 21 F Flu
Hannah 14850 22 F Breast Cancer

Irma 14853 24 F Flu
Jessica 14853 26 F Heart Disease
Karen 14853 28 F Ovarian Cancer

Figure 3. Bucketized table

cer increases to1/2. Now, if Alice also somehow discovers
that Ed does not have flu, then the fact that he has lung can-
cer becomes certain. Here, two pieces of knowledge of the
form “Ed does not have X” were enough to fully disclose
Ed’s disease. To guard against this, Machanavajjhala et al.
[24] proposed a privacy criterion calledℓ-diversity that en-
sures that it takes at leastℓ − 1 such pieces of information
to sufficiently disclose the sensitive value of any individual.
The main idea is to require that, for each bucket, theℓ most
frequent sensitive values are roughly equi-probable.

ℓ-diversity focuses on one type of background knowl-
edge: knowledge of the form “individual X does not have
sensitive value Y”. But an attacker might well have other
types of background knowledge. For example, suppose Al-
ice lives across the street from a married couple, Charlie and
Hannah, who were both taken to the hospital. Once again,
using her knowledge of their genders, ages and zip-codes,
Alice can identify the buckets Charlie and Hannah belong
to. Without additional background knowledge, Alice thinks
that Charlie has the flu with probability2/5. But suppose
that Alice knows that Hannah has had a flu shot recently but
Charlie has not. Believing Hannah’s immunity to the flu to
be much stronger than Charlie’s and knowing that they live
together, Alice deduces that if Hannah has succumbed to the
flu then it is extremely likely that Charlie has as well. This
knowledge allows her to update her probability that Charlie
has the flu to10/19. We show how these probabilities are
computed in Section3. ℓ-diversity does not guard against
the type of background knowledge in this example.

It is thus clear that we need a more general-purpose
framework that can capture knowledge ofany property of
the underlying table that an attacker might know. More-
over, unlike in the two examples above where we knew Al-
ice’s background knowledge, we will not assume that we
know exactly what the attacker knows. We therefore take
the following approach. In Section 2, we propose a lan-
guage that is expressive enough to capture any property of
the sensitive values in a table. This language enables us to
decompose background knowledge into basic units of in-
formation. Then, given an anonymized version of the table,

we can quantify the worst-case disclosure risk posed by an
attacker withk such units of information;k can be thought
of as a bound on the power of an attacker. In Section 3,
we show how to efficiently preserve privacy by ensuring
that theworst-case(i.e., maximum) disclosure forany k
pieces of information is less than a specified threshold. Fur-
thermore, we show to integrate our techniques into existing
frameworks to find a “minimally sanitized” table for which
the maximum disclosure is less than a specified threshold.
We present experiments in Section 4, related work in Sec-
tion 5, and we conclude in Section 6.

To the best of our knowledge, this is the first such formal
analysis of the effect of unknown background knowledge
on the disclosure of sensitive information.

2. Framework

We begin by modeling the data publishing situation for-
mally. LetP be a (finite) set of people. For eachp ∈ P , we
associate a tupletp which has one sensitive attributeS (e.g.,
disease) with finite domain and one or more non-sensitive
attributes. We overload notation and useS to represent
both the sensitive attribute and its domain. The data pub-
lisher has a tableT , which is a set of tuples corresponding
to a subset ofP . The publisher would like publishT in a
form that protects the sensitive information of any individ-
ual from an attacker with background knowledge that can
be expressed in a languageL. (We propose such a language
to express background knowledge in Section2.2.)

2.1. Bucketization

We first need to carefully describe how the published
data is constructed from the underlying table if we are to
correctly interpret this published data. That is, we need to
specify a sanitization method. We briefly describe two pop-
ular sanitization methods.

• The first, which we termbucketization[34], is to par-
tition the tuples inT into buckets, and then to sepa-
rate the sensitive attribute from the non-sensitive ones



by randomly permuting the sensitive attribute values
within each bucket. The sanitized data then consists of
the buckets with permuted sensitive values.

• The second sanitization technique isfull-domain gen-
eralization [32], where we coarsen the non-sensitive
attribute domains. The sanitized data consists of the
coarsened table along with generalization used. Note
that, unlike bucketization, the exact values of the non-
sensitive attributes are not released; only the coarsened
values are released.

Note that if the attacker knows the set of people in the table
and their non-sensitive values, then full-domain generaliza-
tion and bucketization are equivalent. In this paper, we use
bucketization as the method of constructing the published
data from the original tableT , although all our results hold
for full-domain generalization as well. We plan to extend
our algorithms to work for other sanitization techniques,
such as data swapping [10] (which, like bucketization, also
permutes the sensitive values, but in more complex ways)
and suppression [29], in the future.

We now specify our notion of bucketization more for-
mally. Given a tableT , we partition the tuples into buckets
(i.e., horizontally partition the tableT according to some
scheme), and within each bucket, we apply an independent
random permutation to the column containingS-values.
The resulting set of buckets, denoted byB, is then pub-
lished. For example, if the underlying tableT is as de-
picted in Figure1, then the publisher might publish buck-
etizationB as depicted in Figure3. Of course, for added
privacy, the publisher can completely mask the identifying
attribute (Name) and may partially mask some of the other
non-sensitive attributes (Age, Sex, Zip).

For a bucketb ∈ B, we use the following notation.

Pb set of peoplep ∈ P with tuplestp ∈ b
nb number of tuples inb
nb(s) frequency of sensitive values ∈ S in b

s0b , s
1
b , . . . sensitive values in decreasing order

of frequency inb

2.2. Background Knowledge

We pessimistically assume that the attacker has man-
aged to obtain complete information about which individ-
uals have records in the table, what their non-sensitive data
is, and which buckets in the bucketization these records fall
into. That is, we assume that the attacker knowsPb, the
set of people in bucketb, for eachb ∈ B, and knowstp[X ]
for every personp in the table and every non-sensitive at-
tributeX . We call thisfull identification information. One
way of obtaining identification information in practice is to

link quasi-identifying non-sensitive attributes published in
the bucketization (e.g., address, gender, age) with publicly
available data (e.g., phone directories, birth records) [32].

We make the standard random worlds assumption [6]: in
the absence of any further knowledge, we consider all ta-
bles consistent with this bucketization to be equally likely.
That is, the probability oftp ∈ b havings for its sensitive
attribute isnb(s)/nb since each assignment of sensitive at-
tributes to tuples within a bucket is equally likely.

We now need to consider knowledge beyond the identi-
fication information that an attacker might possess. We as-
sume that this further knowledge is the knowledge that the
underlying table satisfies a givenpredicateon tables. That
is, the attacker knows that the underlying table is among the
set of tables satisfying the given predicate. This is a rather
general assumption. For example, “the average age of heart
disease patients in the table is 48 years” could be one such
predicate. In order to quantify the power of such knowl-
edge, we use the notion of abasic unitof knowledge, and
we propose a language which consists of finite conjunctions
of such basic units. Given full identification information,
we desire that any predicate on tables be expressible using
a conjunction of the basic units that we propose. We employ
a very simple propositional syntax.

Definition 1 (Atoms) An atom is a formula of the form
tp[S] = s, for some values ∈ S and personp ∈ P with
tupletp ∈ T . We say that atomtp[S] = s involvespersonp
and values.

The interpretation of atoms is obvious:tJack[Disease] = flu
says that the Jack’s tuple has the valueflu for the sensitive
attribute Disease.

The basic units of knowledge in our language arebasic
implications, defined below.

Definition 2 (Basic implications) A basic implicationis a
formula of the form

(∧i∈[m]Ai) → (∨j∈[n]Bj)

for somem ≥ 1, n ≥ 1 and atomsAi, Bj , i ∈ [m], j ∈ [n]
(note that we use the standard notation[n] to denote the set
{0, . . . , n− 1}).

The fact that basic implications are a sufficiently expressive
“basic unit” of knowledge is made precise by the following
theorem.2

Theorem 3 (Completeness)Given full identification in-
formation and any predicate on tables, one can express the
knowledge that the underlying table satisfies the identifica-
tion information and the given predicate using a finite con-
junction of basic implications.

2See [25] for proofs.



Hence we can model arbitrarily powerful attackers.3 Con-
sider an attacker who knows the disease of every person in
the table except for Bob. Then publishing any bucketiza-
tion will reveal Bob’s disease. To avoid pathological and
unrealistic cases like this, we need to assume a bound on
the power of an attacker. We model attackers with bounded
power by limiting the number of basic implications that the
attacker knows. That is, the attacker knows a single formula
from languageLk

basic defined below.

Definition 4 Lk
basic is the language consisting of conjunc-

tions of k basic implications. That is,Lk
basic consists of

formulas of the form∧i∈[k]ϕi where eachϕi is a basic im-
plication.

k can thus be viewed as a bound on the attacker’s power
and can be increased to provide more conservative privacy
guarantees.

Note that our choice of basic implications for the “ba-
sic unit” of our language has important consequences on
our assumptions about the attacker’s power. In particu-
lar, some properties of the underlying table might require
a large number of basic implications to express. Since ba-
sic implications are essentially CNF clauses with at least
one negative atom, our language suffers from an exponen-
tial blowup in the number of basic units required to express
arbitrary DNF formulas. It may be that other choices of ba-
sic units may lead to equally expressive languages while at
the same time requiring fewer basic units to express certain
natural properties, and we consider this an important direc-
tion for future research. Nevertheless, many natural typesof
background knowledge have succinct representations using
basic implications. For example, Alice’s knowledge that “if
Hannah has the flu, then Charlie also has the flu” is simply
the basic implication

tHannah[Disease] = flu → tCharlie[Disease] = flu

And the knowledge that “Ed does not have flu” is

tEd[Disease] = flu → tEd[Disease] = ovarian cancer

In general, we can represent¬t[S] = s by (t[S] = s) →
(t[S] = s′) for any choice ofs′ 6= s since each tuple has
exactly one sensitive attribute value.

Note that maintaining privacy when there is dependence
between sensitive values, especiallyacross buckets, is a
problem that has not been previously addressed in the pri-
vacy literature. The assignments of individuals to sensitive
values in different buckets are not necessarily independent.
As we saw in the example with Hannah and Charlie, fix-
ing a particular assignment in one bucket could affect what

3A major shortcoming of theℓ-diversity definition was that its choice of
“basic unit” of knowledge was essentially negated atoms (i.e.,¬tp[S] = s)
which cannot capture all properties of the underlying table. For example,
negations cannot express basic implications in general.

assignments are possible in another. One of the contribu-
tions of this paper is that we provide a polynomial time al-
gorithm for computing the maximum disclosure even when
the attacker has knowledge of such dependencies.

2.3. Disclosure

Having specified how the bucketizationB is constructed
from the underlying tableT and how an attacker’s knowl-
edge about sensitive information can be expressed in lan-
guageLk

basic, we are now in a position to define our notion
of disclosure precisely.

Definition 5 (Disclosure risk) Thedisclosure riskof buck-
etizationB with respect to background knowledge repre-
sented by some formulaϕ in languageLk

basic is

max
tp∈T,s∈S

Pr(tp[S] = s | B ∧ ϕ)

That is, disclosure risk is the likelihood of the most highly
predicted sensitive attribute assignment.

Definition 6 (Maximum disclosure) The maximum dis-
closureof bucketizationB with respect to languageLk

basic

that expresses background knowledge is

max
tp∈T,s∈S,ϕ∈Lk

basic

Pr(tp[S] = s | B ∧ ϕ)

By our assumptions in 2.2, we computePr(tp[S] = s|B∧ϕ)
by considering the set of all tables consistent with bucketi-
zationB and with background knowledgeϕ and then taking
the fraction of those tables that satisfytp[S] = s. Using
this, the maximum disclosure of the bucketization in Figure
3 with respect toL1

basic turns out to be5
8 and occurs when

ϕ is tp′ = s′ → tp = s wherep andp′ are distinct people in
the first bucket ands ands′ are flu and lung cancer or vice
versa. Our goal is to develop general techniques to:

1. efficiently calculate the maximum disclosure for any
given bucketization, and

2. efficiently find a “minimally sanitized” bucketization4

(or the set of all minimally sanitized bucketizations)
for which the maximum disclosure is below a specified
threshold (if any exist).

3. Checking And Enforcing Privacy

In Section2.2, we defined basic implications as the “unit
of knowledge” and showed that this was a fully expressive

4We will make precise the notion of “minimally sanitized” in Section
3.4; we want “minimal sanitization” in order to preserve the utility of the
data.



(in the presence of full identification information) and rea-
sonable choice. We now show how to efficiently calculate
and limit maximum disclosure against an attacker who has
full identification information and has up tok additional
pieces of background knowledge (i.e., up tok basic impli-
cations). In order to do this, we will show in Theorem 9 that
there is a set ofk basic implications that maximizes disclo-
sure with respect toLk

basic. Furthermore, each such impli-
cation hasonly one atom in the antecedent and one atom in
the consequent. This motivates the following definition.

Definition 7 (Simple implications) A simple implication
is a formula of the formA→ B for some atomsA,B.

3.1. Hardness of computing disclosure risk

Unfortunately, naive methods for computing the maxi-
mum disclosure will not work – in fact, we can show that
computing the disclosure risk of a given bucketization with
respect to a given set ofk simple implications is#P-hard.
Note thatk simple implications can be written in2-CNF,
for which satisfiability is easily checkable. Complexity is
introduced in trying tosimultaneouslysatisfy thek implica-
tionsand the given bucketization. In fact, deciding whether
a given bucketization is consistent with a set ofk simple
implications isNP-complete.

Theorem 8 Given as input bucketizationB and a conjunc-
tion of simple implicationsϕ, the problem of deciding ifB
andϕ are both satisfiable by some tableT is NP-complete.
Moreover, given an atomC as further input, the problem of
computingPr(C | B ∧ ∧i∈[k]ϕi) is #P-complete.

3.2. A special form for maximum disclosure

It turns out that, despite the hardness results above, com-
puting themaximumdisclosure with respect to language
Lk

basic can be done in polynomial time. The key insight
is summarized in Theorem 9.

Theorem 9 For any bucketization, there is a set ofk sim-
ple implications, all sharing the same consequent,such that
the conjunction of thesek simple implications maximizes
disclosure with respect toLk

basic.

This insight is tremendously useful in devising a
polynomial-time dynamic programming algorithm for com-
puting the maximum disclosure with respect toLk

basic as it
allows us to restrict our attention to sets ofk simple impli-
cations of the form(tpi

[S] = si) → (tp[S] = s) for people
p, pi ∈ P , and valuess, si ∈ S, i ∈ [k]. The proof of
Theorem 9 follows from the following two lemmas.

Lemma 10 For any formulasψ, ϕ, θi, ϕi,

Pr(ϕ | ψ ∧ (∧i∈[k](θi → ϕi)))
≤ Pr(ϕ | ψ ∧ (∧i∈[k](θi → ϕ)))

Starting with any set ofk basic implications that maxi-
mize disclosure,5 Lemma10 enables us to replace the con-
sequent in all the basic implications by a single common
atom (namely the atom corresponding to the highest pre-
dicted assignment of sensitive value to an individual), while
still maintaining maximum disclosure.

Lemma 11 For any formulasψ,B, θi, whereB is an atom
andθi is a conjunction of atoms, there exist atomsAi such
that

Pr(B | ψ ∧ (∧i∈[k](θi → B)))
≤ Pr(B | ψ ∧ (∧i∈[k](Ai → B))).

Next, Lemma11 allows us to replace the antecedent of
each of the resulting implications by an atom (possibly with
a different atom for each implication), while still maintain-
ing maximum disclosure.

In both Lemmas10 and11, we useψ to represent the at-
tacker’s knowledge about the bucketizationB. However, it
is worthwhile pointing out that neither lemma places any re-
striction onψ or on the underlying probability distribution.
This makes the results presented here extremely general and
powerful becausethey characterize the form of background
knowledge that maximizes disclosure risk for any form of
anonymization and for any additional background knowl-
edge.

The main idea behind the proof of Lemma 10 (and also
Lemma 11) can be illustrated as follows. Consider a buck-
etizationB. Let (tpi

[S] = si) → (tp′

i
[S] = s′i), for

i ∈ {0, 1}, be two simple implications which maximize the
disclosure ofB with respect toL2

basic. For convenience,
we letAi denote the atomtpi

[S] = si andBi the atom
tp′

i
[S] = s′i. Let C be the atomtp[S] = s such that

Pr(C | B ∧ (∧i∈[2](Ai → Bi))) is the maximum disclosure.
Now let us restrict our attention to the set of tables con-

sistent withB. LetT1 be the set of tables satisfying the sim-
ple implicationsA0 → B0 andA1 → B1, and letT2 be the
set of tables satisfyingA0 → C andA1 → C. Figure 4 is a
diagrammatic representation ofT1 andT2. Each row in the
the truth table on the left (resp., right) in Figure 4 represents
a subset ofT1 (resp.,T2). The variablesa, b, c, d, e, f, g, h in
the left-most (resp.,a, b, d′, f ′, h′ in the right-most) column
represents the size of the corresponding set. For example,
the set of tables represented by the second row is the set of
tables that satisfy the atomC but do not satisfyA0 andA1,
and the number of such of tables isb.

It is now clear from Figure 4 that the implicationsA0 →
C andA1 → C also produce the maximum disclosure as
follows. Pr(C | ∧i∈[2]Ai → Bi) = b+d+f+h

a+b+c+d+e+f+g+h

and Pr(C | ∧i∈[2]Ai → C) = b+d′+f ′+h′

a+b+d′+f ′+h′ . Also

5There always exists some set ofk basic implications that maximize
disclosure since there are only finitely many atoms and thereforeLk

basic is
finite.



∧i∈[2](Ai → Bi) ∧i∈[2](Ai → C)

A0 A1 B0 B1 C A0 A1 B0 B1 C

a 0 0 * * 0 = 0 0 * * 0 a

b 0 0 * * 1 = 0 0 * * 1 b

c 0 1 * 1 0
d 0 1 * 1 1 ⊆ 0 1 * * 1 d′

e 1 0 1 * 0
f 1 0 1 * 1 ⊆ 1 0 * * 1 f ′

g 1 1 1 1 0
h 1 1 1 1 1 ⊆ 1 1 * * 1 h′

Figure 4. Truth tables

b+d+f+h
a+b+c+d+e+f+h

≤ b+d+f+h
a+b+d+f+h

≤ b+d′+f ′+h′

a+b+d′+f ′+h′ since
d ≤ d′, f ≤ f ′, andh ≤ h′. ThusPr(C | ∧i∈[2]Ai →
Bi) ≤ Pr(C | ∧i∈[2]Ai → C).

3.3. Computing maximum disclosure efficiently

Having reduced our search space from sets of basic im-
plications that could lead to maximum disclosure to sets of
simple implications with the same consequent, we are now
in a position to create an efficient algorithm to compute the
maximum disclosure. We want tomaximizePr(A | B ∧
∧i∈[k](Ai → A)) over all atomsA,Ai, i ∈ [k]. Notice that
for any atomsA,Ai, i ∈ [k] such thatA and∧i∈[k]Ai → A
are consistent with bucketizationB we have:

Pr(A | B ∧ (∧i∈[k]Ai → A))

=
Pr(A ∧ (∧i∈[k](Ai → A)) | B)

Pr((∧i∈[k](Ai → A)) | B)

=
Pr(A | B)

Pr((¬A ∧ (∧i∈[k]¬Ai)) ∨ A | B)

=
Pr(A | B)

Pr(¬A ∧ (∧i∈[k]¬Ai) | B) + Pr(A | B)

So it suffices to construct an efficient algorithm tominimize,
over all atomsA,Ai, i ∈ [k],

Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B) . (1)

In Section 3.3.1, we show how to minimize
Pr(∧i∈[k]¬Ai | B) over atomsAi involving individu-
als in the same bucket. We use this in Section 3.3.2 to
provide a dynamic programming algorithm MINIMIZE 1
that minimizes Formula (1) over atomsA,Ai, i ∈ [k]
involving individuals in the same bucket. Finally, in
Section 3.3.3, we use MINIMIZE 1 to construct another
dynamic programming algorithm MINIMIZE 2 to minimize
Formula (1) jointly over the entire bucketization.

3.3.1 Minimizing Pr(∧i∈[k]¬Ai | B) for one bucket

Consider all sets ofk atoms involving people whose tu-
ples are in a singleb ∈ B. Each set ofk atoms is asso-

Algorithm 1 : M INIMIZE 1(b, i, k̂i, k̂)
Input: b is the bucket under consideration
Input: i is the index of the next personpi for whichki (i.e., the number

of atoms involving personpi) is to be determined (initially0)
Input: k̂i is the the upper bound forki (initially k)
Input: k̂ is the number of atoms for which the people involved have yet to

be been determined (initiallyk)
1: pmin← 1
2: for ki = 1, 2, . . . , min(k̂i, k̂) do
3: p← M INIMIZE 1(b, i + 1, ki, k̂ − ki)

4: p←
nb−i−

P

j∈[ki ] nb(s
j

b
)

nb−i
× p

5: pmin←min(pmin, p)
6: end for

7: return pmin

ciated with a tuple(l, k0, . . . , kl−1), wherel is the num-
ber of people involved in thek atoms, andki is the num-
ber of atoms involving thei-th person. We label thek
atomsAi,j for i ∈ [l] and j ∈ [ki] such that atomAi,j

is thej-th atom (out ofki atoms) involving thei-th person.
Lemma 12 provides a closed form for the minimum value
of Pr(∧i∈[k]¬Ai |B) over all sets ofk atoms associated with
a particular(l, k0, . . . , kl−1).

Lemma 12 Let b ∈ B be any bucket. Letk, l, andk0, k1,
. . . , kl−1 be such thatk = Σi∈[l]ki and ki ≥ ki+1 for
all i ∈ [l − 1]. Let s0b , s

1
b , s

2
b , . . . be the sensitive val-

ues arranged in descending order of frequency inb. Then
Pr(∧i∈[l],j∈[ki]¬Ai,j | B) is minimized over all atomsAi,j

when,Ai,j is tpi
[S] = sj

b, for all i ∈ [l] and all j ∈ [ki],
wherep0, p1, . . . , pl−1 ∈ Pb are distinct. Consequently, the
minimum probability is given by:

∏
i∈[l]

nb−i−
P

j∈[ki ] nb(s
j

b
)

nb−i
(2)

Note thatl ≤ k andk =
∑

i∈[l] ki since each atom in-
volves at exactly one person. So the question of minimizing
Pr(∧i∈[k]¬Ai|B) over all atomsAi that mention only tuples

in b becomes one of minimizing
∏

i∈[l]

nb−i−
P

j∈[ki ] nb(s
j

b
)

nb−i

over alll ≤ k and allk0, . . . , kl−1 such that
∑

i∈[l] ki = k.
This can easily be done using Algorithm1. Thus, calling

M INIMIZE 1(b, 0, k, k) minimizesPr(∧i∈[k]¬Ai | ϕB) over
all atomsAi that involve people with tuples in bucketb. It is
easy to modify the algorithm to remember the minimizing
values ofk0, . . . , kl−1, and thus we can even reconstruct the
set of minimizing atoms according to Lemma12.

Algorithm complexity. Note that the parameters of
M INIMIZE 1 are bounded. That is, for every recursive call
M INIMIZE 1(b, i, ki, k̂) that occurs inside the initial call to
M INIMIZE 1(b, 0, k, k), parameterb does not change, and
parametersi, k̂i, k̂ are all bounded byk (i.e., the number of
implications we allow the attacker to know). So we can eas-
ily turn this into anO(k3) time and space algorithm using
dynamic programming.



3.3.2 Minimizing Formula (1) within one bucket

Let us now minimize
Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B) over all k + 1

atomsA andAi, for i ∈ [k], that only mention tuples in
bucketb. Clearly anyA,Ai that simultaneously minimize
the numerator and maximize the denominator will work.
We know that MINIMIZE 1(b, 0, k + 1, k + 1) will mini-
mize the numerator. According to Lemma 12, at least one
of these minimalk + 1 atoms mention the most frequent
sensitive value. So, taking this atom to beA, we maximize
the denominator as well. Thus, the minimum value is

M INIMIZE 1(b, 0, k + 1, k + 1) ×
nb

nb(s0b)
.

3.3.3 Minimizing Formula (1) over all buckets

We look again at minimizing
Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B) , except
this time, we allowA andAi for i ∈ [k] to mention tuples
in possibly different buckets. To do this, we make use of
the independence between buckets. Suppose that thek + 1
minimizing atoms (includingA) are such thatki of them
mention tuples in bucketbi, for eachi ∈ [l] for somel ≤
k + 1. Let bj be the bucket containing the tuple mentioned
by A. Then, since the permutation of sensitive values for
each bucket was picked independently, we can compute the
minimum as

nbj

nbj
(s0bj

)
×

∏

i∈[l]

M INIMIZE 1(bi, 0, ki, ki).

So we need to minimize the above for all choices ofl ≤
k + 1, j, andk0, k1, . . . , kl−1 (which we can assume with-
out loss of generality to be in descending order). Assuming
buckets inB are labeled asb0, b1, b2, . . . , this is done by the
M INIMIZE 2.

So MINIMIZE 2(0, k, true) minimizes
Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B) over all atomsA,Ai, i ∈ [k]. It
is easy to modify the algorithm to remember thei’s and
hi’s, and hence reconstruct the minimizing atoms.

Algorithm complexity. Note that the parameters of
M INIMIZE 2 are bounded. That is, for every recursive call
to MINIMIZE 2(i, hi, a) that occurs inside the initial call
to MINIMIZE 2(0, k, true), parameteri is bounded by the
number of buckets, parameterki is bounded by the total
number of implicationsk, and a is either true or false .
Thus, assuming that we first memoize (i.e., precompute
all possible calls to) MINIMIZE 1 (which we can do in
time O(|B| × k3)), we can modify the MINIMIZE 2 algo-
rithm using dynamic programming to take an additional
O(|B| × k)time and space. So the whole algorithm can be
made to run inO(|B| × k3)time and space.

Incidentally, if one had two bucketizationsB andB∗ that
differed only in thatB∗ was the result of removing some

Algorithm 2 : M INIMIZE 2(i, hi, a)
Input: i is the current bucketbi (initially 0)
Input: hi is number of atomsAj , j ∈ [k] that we have yet to determine

(initially k)
Input: a is a flag representing whether atomA involves a person in an

earlier bucketbj , j < i (initially false)
1: rmin←∞
2: if i = |B| then
3: // Finished all buckets
4: return rmin

5: end if
6: for hi+1 = 0, 1, 2, . . . , hi do
7: u← M INIMIZE 1(bi, 0, hi+1, hi+1)
8: x← M INIMIZE 2(i + 1, hi − hi+1, true)
9: if a = false then

10: // AtomA does not involve an earlier bucketbj , j < i

11: // So eitherA involvesbi...
12: v← M INIMIZE 1(bi, 0, hi+1 + 1, hi+1 + 1)

13: rmin←min(rmin, v × x×
nbi

nbi
(s0

bi
)
)

14: // ... or elseA involves a later bucketbj , j > i

15: rmin←min(rmin, u×M INIMIZE 2(i+1, hi−hi+1, false))
16: else
17: // AtomA involves an earlier bucketbj , j < i

18: rmin←min(rmin, u× x)
19: end if
20: end for

21: return rmin

buckets fromB and addingx new buckets toB, then, after
we run the algorithm forB, we memoize MINIMIZE 1 for
thex new buckets; so the incremental cost of running the
algorithm forB∗ isO(|B∗| × k + x× k3)-time. Moreover,
if one knew in advance which buckets were going to be re-
moved, one could order the bucketsb0, b1, . . . appropriately
to reuse much of the memoization of MINIMIZE 2 as well.

3.4. Finding a safe bucketization

Armed with a method to compute the maximum disclo-
sure, we now show how to efficiently find a “minimally san-
itized” bucketization for which maximum disclosure is be-
low a given threshold. Intuitively, we would like a minimal
sanitization in order to preserve the utility of the published
data. Let us be more concrete about the notion of minimal
sanitization. Given a table, consider the set of bucketiza-
tions of this table. We impose a partial ordering� on this
set of bucketizations whereB � B′ if and only if every
bucket inB′ is the union of one of more buckets inB. Thus
the bucketizationB⊤ that has all the tuples in one bucket is
the unique top element of this partial order, and the bucketi-
zationB⊥ that has one tuple per bucket is the unique bottom
element of this partial order. Our notion of a “minimally
sanitized” bucketization is one that is as low as possible in
the partial order (i.e., as close toB⊥) while still having max-
imum disclosure lower than a specified threshold.

Definition 13 ((c, k)-safety) Given a thresholdc ∈ [0, 1],



we say thatB is a (c, k)-safe bucketizationif the maximum
disclosure ofB with respect toLk

basic is less thanc.

If the maximum disclosure ismonotonicwith respect to
the partial ordering�, then finding a�-minimal(c, k)-safe
bucketization can be done in time logarithmic in the height
of the bucketization lattice (which is at most the number of
tuples in the table) by doing a binary search. The following
theorem says that we do indeed have monotonicity.

Theorem 14 (Monotonicity) Let B and B′ be bucketiza-
tions such thatB � B′. Then the maximum disclosure of
B is at least as high as the maximum disclosure ofB′ with
respect toLk

basic.

Another approach is to findall �-minimal(c, k)-safe buck-
etizations, and return the one that maximizes a specified
utility function. The monotonicity property allows us to
make use of existing algorithms for efficient itemset mining
[4], k-anonymity [7, 22] andℓ-diversity [24].6 For example,
we can modify the Incognito [22] algorithm, which finds all
the�-minimalk-anonymous bucketizations, by simply re-
placing the check fork-anonymity with the check for(c, k)-
safety from Section 3.3. We can thus find the bucketization
that maximizes a given utility function subject to the con-
straint that the bucketization be(c, k)-safe.

4. Experiments

In this section, we present a case-study of our framework
for worst-case disclosure using the Adult Database from the
UCI Machine Learning Repository [27]. We only consider
the projection of the Adult Database onto five attributes –
Age, Marital Status, Race, Gender and Occupation. The
dataset has 45,222 tuples after removing tuples with miss-
ing values. We treat Occupation as the sensitive attribute;
its domain consists of fourteen values. We use pre-defined
generalization hierarchies for the attributes similar to the
ones used in [22]. Age can be generalized to six levels (un-
suppressed, generalized to intervals of size 5, 10, 20, 40,
or completely suppressed), Marital Status can be general-
ized to three levels, and Race and Gender can each either be
left as is or be completely suppressed. We consider all the
possible anonymized tables using those generalizations.

We computed the maximum disclosure fork pieces of
background knowledge, fork ranging from0 (i.e., no back-
ground knowledge) to12 (since we know that maximum
disclosure certainly reaches1 at k = 13 because there are
only fourteen possible sensitive values). Figure5 plots, for
one anonymized table, the number of pieces of knowledge
available to an adversary against the maximum disclosure

6While these algorithms typically have worst-case exponential running
time in the height of the bucketization lattice, they have been shown to run
fast in practice.

for both negated atoms (ℓ-diversity) and basic implications.
In the anonymized table used, all the attributes other than
Age were suppressed and the Age attribute was general-
ized to intervals of size20. The solid line corresponds to
implication statements and the dotted line corresponds to
negated atoms. This graph agrees with our earlier observa-
tion that implication-type background knowledge subsumes
negation; the maximum disclosure fork negated atoms is
always smaller than the maximum disclosure fork impli-
cations. However, note that, for a givenk, the difference
between the maximum disclosure for negated atoms and
for basic implications is not too large. This means that an
anonymized table which tolerates maximum disclosure due
to k negated atoms need not be anonymized much further to
defend againstk implications.

Intuitively, if all the buckets in a table have a nearly uni-
form distribution, then the maximum disclosure should be
lower, but the exact relationship is not obvious. To get a
better picture, we performed the following experiment. We
fixed a valuek for the number of pieces of information.
For every entropy valueh, we looked at all tablesT (h)
for which the minimum entropy of the sensitive attribute
over all buckets was equal toh. AmongstT (h) we found
the tableT (h) with the least maximum disclosure fork im-
plications. Let the worst case disclosure forT (h) givenk
pieces of knowledge be denoted byw(T (h), k). We plotted
h versusw(T (h), k) for k = 1, 3, 5, 7, 9, 11 in Figure 6. We
see a behavior which matches our intuition. For a givenk,
the disclosure risk monotonically decreases with increasein
h. This is because increasingh means that we are looking
at tables with more and more entropy in their buckets (and,
consequently, less skew). We plotted an analogous graph
(which we do not show here) for negation statements and
observed very similar behavior.

5. Related Work

Many metrics have been proposed to quantify privacy
guarantees in publishing publishing anonymized data-sets.
‘Perfect privacy’ [12, 26] guarantees that published data
does not disclose any information about the sensitive data.
However, checking whether a conjunctive query discloses
any information about the answer to another conjunctive
query is shown to be very hard (Πp

2-complete [26]). Subse-
quent work showed that checking for perfect privacy can be
done efficiently for many subclasses of conjunctive queries
[23]. Perfect privacy places very strong restrictions on the
types of queries that can be answered [26] (in particular,
aggregate statistics cannot be published). Less restrictive
privacy definitions based on asymptotic conditional proba-
bilities [11] and certain answers [30] have been proposed.
Statistical databases allow answering aggregates over sen-
sitive values without disclosing the exact value [1]. De-
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identification, likek-anonymity [28, 32] and “blending in
a crowd” [8], ensures that an individual cannot be associ-
ated with a unique tuple in an anonymized table. However,
under both of those definitions, sensitive information can be
disclosed if groups are homogeneous.

Background knowledge can lead to disclosure of sensi-
tive information. Su et al. [31] and Yang et al. [35] limit dis-
closure when functional dependencies in the data are known
to the data publisher upfront. The notion ofℓ-diversity [24]
guards against limited amounts of background knowledge
unknown to the data publisher. Farkas et al. [16] provide a
survey of indirect data disclosure via inference channels.

There are several approaches to anonymizing a dataset
to ensure privacy. These include generalizations [7, 22, 29],
cell and tuple suppression [9, 29], adding noise [1, 5, 8, 15],
publishing marginals that satisfy a safety range [14], and
data swapping [10], where attributes are swapped between
tuples so that certain marginal totals are preserved. Queries
can be posed online and the answers audited [20] or per-
turbed [13]. Not all approaches guarantee privacy. For ex-
ample, spectral techniques can separate much of the noise
from the data if the noise is uncorrelated with the data
[17, 19]. Anatomy [34] is a recently proposed anonymiza-
tion technique that corresponds exactly to the notion of
bucketization that we use in this paper. When the attacker
knows full identification information, then generalization
provides no more privacy than bucketization. However,
we recommend generalizing the attributes before publishing
the data since this will prevent attackers that do not already
have full identification information from reidentifying indi-
viduals via linking attacks [32]. In many cases, the fact that
a particular individual is in the table is considered sensitive
information [8].

The utility of data that has been altered to preserve pri-
vacy has often been studied for specific future uses of the
data. Work has been done on preserving association rules
while adding noise [15]; reconstructing distributions of con-
tinuous variables after adding noise with a known distri-

bution [5, 3]; reconstructing data clusters after perturbing
numeric attributes [8]; and maximizing decision tree ac-
curacy while anonymizing data [18, 33]. There have also
been some negative results for utility. Publishing a single
k-anonymous table can suffer from the curse of dimension-
ality [2] - large portions of the data need to be suppressed to
ensure privacy. Subsequent work [21] shows how to publish
several tables instead of a single one to combat this.

6. Conclusions

In this paper, we initiate a formal study of the worst-
case disclosure with background knowledge. Our analy-
sis does not assume that we are aware of the exact back-
ground knowledge possessed by the attacker. We only as-
sume bounds on the the attacker’s background knowledge
in terms of the number of basic units of knowledge that
the attacker possesses. We propose basic implications as an
expressive choice for these units of knowledge. Although
computing the probability of a specific disclosure from a
given set ofk basic implications is intractable, we show how
to efficiently determine the worst-case over all sets ofk ba-
sic implications. In addition, we show how to search for a
bucketization that is robust (to a desired thresholdc) against
anyk basic implications by combining our check for(c, k)-
safety with existing lattice-search algorithms. Finally,we
demonstrate that, in practice,ℓ-diversity has similar maxi-
mum disclosure to our notion of(c, k)-safety, which guards
against a richer class of background knowledge.

Since we chose basic implications as our units of knowl-
edge, our algorithms will clearly yield very conservative
bucketizations if we try to protect against an attacker who
knows information that can only be expressed using a large
number of basic implications. One way to reduce the num-
ber of basic units required is to add more powerful atoms to
our existing language. Finding the right language for basic
units of knowledge is an important direction of future work.

Other directions for future work include extending our



framework for probabilistic background knowledge, study-
ing cost-based disclosure (since it was observed in [24]
that not all disclosures are equally bad), and extending
our results to other forms of anonymization, such as data-
swapping and collections of anonymized marginals [21].
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