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Abstract the discovery of the medical records of the Governor of
Massachusetts from an easily accessible and supposedly
Recent work has shown the necessity of considering ananonymized dataset. All that was needed was to link it to
attacker’'s background knowledge when reasoning aboutvoter registration records [32]. To defend against such at-
privacy in data publishing. However, in practice, the data tacks, Samarati and Sweeney [29] introduced a privacy cri-
publisher does not know what background knowledge theterion calledk-anonymity which requires that each individ-
attacker possesses. Thus, it is important to consider theual be indistinguishable (with respect to the non-seresitiv
worst-case. In this paper, we initiate a formal study of attributes) from at leagt— 1 others. This is done by group-
worst-case background knowledge. We propose a languageng individuals intobucketsof size at leask, and then per-
that can express any background knowledge about the datamuting the sensitive values in each bucket and sufficiently
We provide a polynomial time algorithm to measure the masking their externally observable non-sensitive atteb.
amount of disclosure of sensitive information in the worst Figure 2 depicts a table that i$eanonymous version of the
case, given that the attacker has at mbgiieces of infor-  table in Figure 1. Figure 3 depicts the permutation of sensi-
mation in this language. We also provide a method to effi- tive values that was used to construct this table.
ciently sanitize the data so that the amount of disclosure in  However, k-anonymity does not adequately protect the
the worst case is less than a specified threshold. privacy of an individual for example, when all individuals
in a bucket have the same disease, the disease of the indi-
viduals in that bucket is disclosed regardless of the bucket
1. Introduction size. Even when there are multiple diseases in the same
bucket, the frequencies of the diseases in the bucket still
matter when an attacker has some background knowledge
about the particular individuals in the table. Suppose the
data publisher has published th&anonymous table as de-
picted in Figure 2. Consider an attacker Alice who would
like to learn the diseases of all her friends and neighbors.

We consider the following situation. A data publisher
(such as a hospital) has collected useful information about
a group of individuals (such as patient records that would
help medical researchers) and would like to publish thia dat

while preserving the privacy of the individuals involved. One of her neighbors is Ed, a 27 year-old male fiving in

The information is stored as a ta}ble (_as n Figure 1) whe_re Ithaca (zip code 14850). Alice knows that Ed is in the hos-
each record corresponds to a unique individual and contains

a sensitive attribute (e.g., disease) and some non-sensiti pital that published the anonymized data;et in Figure 3, and
attributes (e.g., address, gender, age) that might beddarn she wants to find out Ed’s disease. Using her knowledge

. . .. of Ed’s age, gender, and zip-code, Alice can identify the
using externally available data (e.g., phone books, b|rthIO ketin th -ed table that Ed bel i |
records). The data publisher would like to limit the disclo- ucket In the anonymized table tha elongs to (namely,

sure of the sensitive values of the individuals in order to de the first bucket). Alice does not know which disease listed

. . within that bucket is Ed’s since the sensitive values were
fend against an attacker who possibly already knows some

facts about the table. Our goal in this paper is to quantify _per,mute_d. Therefore, W'thc.)l.ﬂ additional knowledge, Al.
. ice’s estimate of the probability that Ed has lung cancer is
the precise effect of background knowledge possessed by . .
: : 2/5. But suppose Alice knows that Ed had mumps as a child
an attacker on the amount of disclosure and to provide al-

. . and is therefore extremely unlikely to get it again. Afterru
%ﬂre';hsn:s;ﬁ ;hseiacekcﬁirgj?r?rseusrﬁglzat the amount of dISCIOSWemg out this possibility, the probability that Ed has lungnea

The prObIem We. solve is of real and praCtical im- lindeed, the definition of-anonymity does not even mention the sen-
portance; an egregious example of a privacy breach wassitive attribute!




non-sensitive sensitive non-sensitive sensitive non-sensitive sensitive

Name | Zip |[Age|Sex| Disease Name| Zip |Age|SexX Disease Name | Zip |Age|Sex Disease
Bob [ 14850 23 | M Flu = Bob | 14850 23 | M Flu
Charlie| 14850] 24 | M Flu Lung Cancer | |Charlie| 14850 24 | M Lung Cancer
Dave [14850| 25 | M | Lung Cancer * 11485*| 2% | M Mumps Dave |14850( 25 | M Mumps
Ed |14850 27 | M | Lung Cancer Flu Ed |14850| 27 | M Flu
Frank | 14853 29 | M Mumps Lung Cancer Frank | 14853 29 | M Lung Cancer
Gloria | 14850 21 | F Flu Flu Gloria | 14850 21 | F Flu
Hannah 14850] 22 | F Fiu Breast Cancef |Hannaf 14850 22| F & Breast Cancel
Irma | 14853] 24 | F | Breast Cancel * |1485* 2% | F Flu Irma | 14853) 24 | F Flu
Jessicd 14853 26 | F | Ovarian Cancefr Heart Disease| ~ |Jessicq 14853 26 | F > Heart Disease
Karen 14853 28 | E | Heart Diseasa Ovarian Cancelr Karen | 14853| 28 | F Ovarian Cancey
Figure 1. Original table Figure 2. 5-anonymous table Figure 3. Bucketized table

cer increases tb/2. Now, if Alice also somehow discovers we can quantify the worst-case disclosure risk posed by an
that Ed does not have flu, then the fact that he has lung canattacker withk such units of information4 can be thought
cer becomes certain. Here, two pieces of knowledge of theof as a bound on the power of an attacker. In Section 3,
form “Ed does not have X” were enough to fully disclose we show how to efficiently preserve privacy by ensuring
Ed’s disease. To guard against this, Machanavajjhala et althat theworst-case(i.e., maximum) disclosure foany &

[24] proposed a privacy criterion calléediversity that en-  pieces of information is less than a specified threshold- Fur
sures that it takes at least- 1 such pieces of information  thermore, we show to integrate our techniques into existing
to sufficiently disclose the sensitive value of any indivallu ~ frameworks to find a “minimally sanitized” table for which
The main idea is to require that, for each bucket,hgost the maximum disclosure is less than a specified threshold.
frequent sensitive values are roughly equi-probable. We present experiments in Section 4, related work in Sec-

¢-diversity focuses on one type of background knowl- tion 5, and we conclude in Section 6.
edge: know|edge of the form “individual X does not have To the best of our knOWIedge, this is the first such formal
sensitive value Y”. But an attacker might well have other analysis of the effect of unknown background knowledge
types of background knowledge. For example, suppose Al-0n the disclosure of sensitive information.
ice lives across the street from a married couple, Chartle an
Hannah, who were both taken to the hospital. Once again,2. Framework
using her knowledge of their genders, ages and zip-codes,
Alice can identify the buckets Charlie and Hannah belong  We begin by modeling the data publishing situation for-
to. Without additional background knowledge, Alice thinks mally. Let P be a (finite) set of people. For eagle P, we
that Charlie has the flu with probabili/5. But suppose  associate a tuple, which has one sensitive attributge.qg.,
that Alice knows that Hannah has had a flu shot recently butdisease) with finite domain and one or more non-sensitive
Charlie has not. Believing Hannah's immunity to the flu to attributes. We overload notation and uSeto represent
be much stronger than Charlie’s and knowing that they live both the sensitive attribute and its domain. The data pub-
together, Alice deduces that if Hannah has succumbed to thdisher has a tabl&’, which is a set of tuples corresponding
flu then it is extremely likely that Charlie has as well. This to a subset of?. The publisher would like publisi’ in a
knowledge allows her to update her probability that Charlie form that protects the sensitive information of any individ
has the flu tol0/19. We show how these probabilities are ual from an attacker with background knowledge that can
computed in Sectiofi. ¢-diversity does not guard against be expressed in a language(We propose such a language
the type of background knowledge in this example. to express background knowledge in Sectiah)

It is thus clear that we need a more general-purpose o
framework that can capture knowledgeanfy property of ~ 2-1. Bucketization
the underlying table that an attacker might know. More-
over, unlike in the two examples above where we knew Al-
ice’s background knowledge, we will not assume that we - : ! -
know exactly what the attacker knows. We therefore take COTrectly interpret this published data. That is, we need to
the following approach. In Section 2, we propose a lan- speufya_san_ltlzauon method. We briefly describe two pop-
guage that is expressive enough to capture any property of!lar sanitization methods.
the sensitive values in a table. This language enables us to e The first, which we ternbucketization34], is to par-
decompose background knowledge into basic units of in- tition the tuples inT" into buckets and then to sepa-
formation. Then, given an anonymized version of the table, rate the sensitive attribute from the non-sensitive ones

We first need to carefully describe how the published
data is constructed from the underlying table if we are to



by randomly permuting the sensitive attribute values link quasi-identifying non-sensitive attributes pubgshin
within each bucket. The sanitized data then consists ofthe bucketization (e.g., address, gender, age) with gyblic
the buckets with permuted sensitive values. available data (e.g., phone directories, birth recorda]) [3

e The second sanitization techniqueud-domain gen- We make the standard random worlds assump_tion [6]:in
eralization [32, where we coarsen the non-sensitive the absence of any further knowledge, we consider all ta-
attribute domains. The sanitized data consists of the PI€S consistent with this bucketization to be equally kel
coarsened table along with generalization used. NoteThat is, the probability of, € b havings for its sensitive
that, unlike bucketization, the exact values of the non- attribute isn,(s)/n, since each assignment of sensitive at-

sensitive attributes are not released; only the coarsenedibutes to tuples within a bucketis equally likely.
values are released. We now need to consider knowledge beyond the identi-

fication information that an attacker might possess. We as-

Note that if the attacker knows the set of people in the table sume that this further knowledge is the knowledge that the
and their non-sensitive values, then full-domain geneaali  underlying table satisfies a givgmedicateon tables. That
tion and bucketization are equivalent. In this paper, we useis, the attacker knows that the underlying table is among the
bucketization as the method of constructing the publishedset of tables satisfying the given predicate. This is a rathe
data from the original tabl&, although all our results hold  general assumption. For example, “the average age of heart
for full-domain generalization as well. We plan to extend disease patients in the table is 48 years” could be one such
our algorithms to work for other sanitization techniques, predicate. In order to quantify the power of such knowl-
such as data swapping [10] (which, like bucketization, also edge, we use the notion oftesic unitof knowledge, and
permutes the sensitive values, but in more complex ways)we propose a language which consists of finite conjunctions
and suppression [29], in the future. of such basic units. Given full identification information,

We now specify our notion of bucketization more for- we desire that any predicate on tables be expressible using
mally. Given a tablél’, we partition the tuples into buckets a conjunction of the basic units that we propose. We employ
(i.e., horizontally partition the tabl& according to some  a very simple propositional syntax.
scheme), and within each bucket, we apply an independent. . )
random permutation to the column containisgvalues. Definition 1 (Atoms) An atomis a formula of the form

The resulting set of buckets, denoted By is then pub- t[S] = s, for some value < S and Persorp € P with
lished. For example, if the underlying tabfeis as de-  tUPle?p € T'. We say that atort},[S] = s involvespersonp
picted in Figurel, then the publisher might publish buck- &nd values.

etizationB as depicted in Figur8. Of course, for added e interpretation of atoms is obvioug;. [Disease = flu

privacy, the publisher can completely mask the identifying g4y that the Jack’s tuple has the vafuefor the sensitive
attribute (Name) and may partially mask some of the other 4itribute Disease.

non-sensitive attributes (Age, Sex, Zip). _ The basic units of knowledge in our language basic
For a buckeb € B, we use the following notation. implications defined below.
Py set of people € P with tuplest, € b Definition 2 (Basic implications) A basic implicationis a
ny number of tuples ib formula of the form
np(s) frequency of sensitive valuec S in b
s).sl,... sensitive values in decreasing order (Nieim)4i) = (Vjem By)
of frequency inb

for somem > 1,n > 1 and atomsA;, B;, i € m], j € [n]
(note that we use the standard notatiah to denote the set

{0,...,n—1}).

The fact that basic implications are a sufficiently expressi

We pessimistically assume that the attacker has man-"basic unit” of knowledge is made precise by the following
aged to obtain complete information about which individ- theorent.
uals have records in the table, what their non-sensitive dat
is, and which buckets in the bucketization these recordls fal
into. That is, we assume that the attacker kndwysthe
set of people in bucket, for eachb € 3, and knows, [ X]
for every persorp in the table and every non-sensitive at-
tribute X. We call thisfull identification information One
way of obtaining identification information in practice @ t 2See [25] for proofs.

2.2. Background Knowledge

Theorem 3 (Completeness)Given full identification in-
formation and any predicate on tables, one can express the
knowledge that the underlying table satisfies the identifica
tion information and the given predicate using a finite con-
junction of basic implications.




Hence we can model arbitrarily powerful attackér€on- assignments are possible in another. One of the contribu-
sider an attacker who knows the disease of every person irtions of this paper is that we provide a polynomial time al-
the table except for Bob. Then publishing any bucketiza- gorithm for computing the maximum disclosure even when
tion will reveal Bob’s disease. To avoid pathological and the attacker has knowledge of such dependencies.
unrealistic cases like this, we need to assume a bound on

the power of an attacker. We model attackers with bounded?2 .3, Disclosure

power by limiting the number of basic implications that the
attacker knows. That s, the attacker knows a single formula
from languageC?, . defined below.

basic
Definition 4 £F

basic

Having specified how the bucketizati#his constructed
from the underlying tabld” and how an attacker’s knowl-

is the language consisting of conjunc- ©€dge about sensitive information can be expressed in lan-

tions of k basic implications. That isCk . consists of ~ 9UageLy, ., we are now in a position to define our notion
formulas of the form\;c () ¢; Where eachp; is a basic im- of disclosure precisely.

plication. — . . . .
Definition 5 (Disclosure risk) Thedisclosure rislof buck-

k can thus be viewed as a bound on the attacker’s poweretization 3 with respect to background knowledge repre-
and can be increased to provide more conservative privacysented by some formujain languagel
guarantees.

Note that our choice of basic implications for the “ba-
sic unit” of our language has important consequences on
our assumptions about the attacker's power. In particu-That s, disclosure risk is the likelihood of the most highly

lar, some properties o_f the u_nde_rlying table might _require predicted sensitive attribute assignment.
a large number of basic implications to express. Since ba-

k .
basic IS

tpénT:g(eSPr(tp[S] =s|BAyp)

sic implications are essentially CNF clauses with at least

one negative atom, our language suffers from an exponenciosureof bucketizatior3 with respect to languag€?

tial blowup in the number of basic units required to express
arbitrary DNF formulas. It may be that other choices of ba-

sic units may lead to equally expressive languages while at
the same time requiring fewer basic units to express certain

natural properties, and we consider this an important direc
tion for future research. Nevertheless, many natural tppes
background knowledge have succinct representations usin
basic implications. For example, Alice’s knowledge thét “i
Hannah has the flu, then Charlie also has the flu” is simply
the basic implication

tHannah [Disease] = flu — toparie[Disease] = flu
And the knowledge that “Ed does not have flu” is
tpa[Disease] = flu — tgq[Disease] = ovarian cancer

In general, we can represent[S] = s by (¢t[S] = s) —
(t[S] = §') for any choice ofs’ # s since each tuple has
exactly one sensitive attribute value.

Note that maintaining privacy when there is dependence

between sensitive values, especiadlgross bucketsis a

Definition 6 (Maximum disclosure) The maximum dis-

basic

that expresses background knowledge is

max

Pr(t,[S] = s| BAp)
t,€T,s€ES,pEL

Basic
By our assumptionsin 2.2, we compte(t,, [S] = s|BAy)

y considering the set of all tables consistent with bueketi

ationB and with background knowledgeand then taking
the fraction of those tables that satigfy{S] = s. Using
this, the maximum disclosure of the bucketization in Figure
3 with respect toC} ;. turns out to be2 and occurs when
pist, = s —t, = swherep andp’ are distinct people in
the first bucket and ands’ are flu and lung cancer or vice
versa. Our goal is to develop general techniques to:

1. efficiently calculate the maximum disclosure for any
given bucketization, and

2. efficiently find a “minimally sanitized” bucketizatifn
(or the set of all minimally sanitized bucketizations)
for which the maximum disclosure is below a specified
threshold (if any exist).

problem that has not been previously addressed in the pri-

vacy literature. The assignments of individuals to sersiti

values in different buckets are not necessarily indepemnden
As we saw in the example with Hannah and Charlie, fix-
ing a particular assignment in one bucket could affect what

3A major shortcoming of thé-diversity definition was that its choice of
“basic unit” of knowledge was essentially negated atores, tit,, [S] = s)
which cannot capture all properties of the underlying tabler example,
negations cannot express basic implications in general.

3. Checking And Enforcing Privacy

In Section2.2, we defined basic implications as the “unit
of knowledge” and showed that this was a fully expressive

4We will make precise the notion of “minimally sanitized” ire&ion
3.4; we want “minimal sanitization” in order to preserve thditytiof the
data.



(in the presence of full identification information) and+ea Starting with any set ok basic implications that maxi-
sonable choice. We now show how to efficiently calculate mize disclosuré,Lemmal0 enables us to replace the con-
and limit maximum disclosure against an attacker who hassequent in all the basic implications by a single common

full identification information and has up tb additional
pieces of background knowledge (i.e., upktbasic impli-
cations). In order to do this, we will show in Theorem 9 that
there is a set of basic implications that maximizes disclo-
sure with respect t&}, ... Furthermore, each such impli-
cation haonly one atom in the antecedent and one atom in
the consequent his motivates the following definition.

Definition 7 (Simple implications) A simple implication
is a formula of the formd — B for some atomsl, B.

3.1. Hardness of computing disclosure risk

Unfortunately, naive methods for computing the maxi-
mum disclosure will not work — in fact, we can show that
computing the disclosure risk of a given bucketization with
respect to a given set @fsimple implications is#P-hard.
Note thatk simple implications can be written i2-CNF,
for which satisfiability is easily checkable. Complexity is
introduced in trying tesimultaneouslgatisfy thek implica-
tionsandthe given bucketization. In fact, deciding whether
a given bucketization is consistent with a setko§imple
implications isNP-complete.

Theorem 8 Given as input bucketizatiofi and a conjunc-
tion of simple implications, the problem of deciding 8
andy are both satisfiable by some tatfleis NP-complete.
Moreover, given an ator@ as further input, the problem of
computingPr(C' | B A Aiepi i) is #P-complete.

3.2. A special form for maximum disclosure

It turns out that, despite the hardness results above, com-

puting themaximumdisclosure with respect to language
L .. can be done in polynomial time. The key insight
is summarized in Theorem 9.

Theorem 9 For any bucketization, there is a set bfsim-
ple implications, all sharing the same consequsunth that
the conjunction of thesg simple implications maximizes
disclosure with respect t6*

basic*

This insight is tremendously useful in devising a
polynomial-time dynamic programming algorithm for com-
puting the maximum disclosure with respectdp, ;. as it
allows us to restrict our attention to setskosimple impli-
cations of the fornit,,, [S] = s;) — (¢,[S] = s) for people
p,p; € P, and valuess,s; € S, i € [k]. The proof of
Theorem 9 follows from the following two lemmas.

Lemma 10 For any formulasy), ¢, 0;, s,

Pr(p [ A (Nigix) (0 — ¢i)))
< Pr(e v A (N (0 — ©)))

atom (namely the atom corresponding to the highest pre-
dicted assignment of sensitive value to an individual) Jevhi
still maintaining maximum disclosure.

Lemma 11 For any formulas), B, 0;, whereB is an atom
andd; is a conjunction of atoms, there exist atorssuch
that

Pr(B |4 A (Niew) (0: — B)))
< Pr(B[y A (New(Ai — B))).

Next, Lemmall allows us to replace the antecedent of
each of the resulting implications by an atom (possibly with
a different atom for each implication), while still mairmai
ing maximum disclosure.

In both Lemmad0 and11, we usey to represent the at-
tacker’s knowledge about the bucketizatiBn However, it
is worthwhile pointing out that neither lemma places any re-
striction on« or on the underlying probability distribution.
This makes the results presented here extremely general and
powerful becausthey characterize the form of background
knowledge that maximizes disclosure risk for any form of
anonymization and for any additional background knowl-
edge

The main idea behind the proof of Lemma 10 (and also
Lemma 11) can be illustrated as follows. Consider a buck-
etization B. Let (t,,[S] = si) — (ty[5] s}), for
i € {0, 1}, be two simple implications which maximize the
disclosure ofB8 with respect toCZ, ;.. For convenience,
we let A; denote the atom,, [S] = s; and B; the atom
tp [S] = si. Let C be the atomt,[S] = s such that
Pr(C'|BA (Mg (A: — B;))) is the maximum disclosure.
Now let us restrict our attention to the set of tables con-
sistent with5. Let7; be the set of tables satisfying the sim-
ple implications4, — By andA; — By, and let7; be the
set of tables satisfyingy — C' andA; — C. Figure 4is a
diagrammatic representation df and7;. Each row in the
the truth table on the left (resp., right) in Figure 4 represe
asubsetof; (resp.,73). The variables, b, c,d, e, f, g, hin
the left-most (respg, b, d’, f', k' in the right-most) column
represents the size of the corresponding set. For example,
the set of tables represented by the second row is the set of
tables that satisfy the ato@i but do not satisfyd, and A,
and the number of such of tablesis

It is now clear from Figure 4 that the implicatiods —

C andA; — C also produce the maximum disclosure as

btd+f+h

follows. Pr(C | Aiedi — Bi) = et
b d/ ’ h/

and PI‘(C | /\lE[Q]A’L — O) #—{ftﬁ-h“ Also

5There always exists some set/obasic implications that maximize
disclosure since there are only finitely many atoms and tbme.‘:ﬁasic is
finite.



| Miep(Ai—=Bi) || || Ne@Ai—0) |
[Ao A1 Bo Bi C] JAo A1 Bo Bi C]
al|l O 0 * * 0 |l=1|l 0 0 * * 0| a
b| O 0 * * 1 |=1| 0 0 * * 1|0
c| O 1 * 1 0
d| 0 1 * 1 1(¢C 0 1 * * 1| d
el 1 0 1 * 0
FIT 0 1 * 1IlctT 0 * * 1|7
g1 1 1 1 0
h| 1 1 1 1 1) C 1 1 * * 1 |h
Figure 4. Truth tables
bidtfih b+d+f+h bd +f +h  ginoa
atbtctd+et+f+h — a+btd+f+h — at+b+d'+f'+h’

d<d,f < f,andh < h'. ThusPr(C | AiggAi —

3.3. Computing maximum disclosure efficiently

Algorithm 1 : MINIMIZE 1(b, i, k;, k)

Input: b is the bucket under consideration

Input: < is the index of the next persgn for which k; (i.e., the number
of atoms involving persop;) is to be determined (initiallp)

Input:  k; is the the upper bound fd¥; (initially k)

Input: k is the number of atoms for which the people involved haveoyet t
be been determined (initially)

1 Pmin < 1 SR

2: for k; =1,2,...,min(k;, k) do

3 p— MINIMIZEL(b, 7+ 1, ki, k — ky)
oy J

4:  pe ekl TR Z,jfﬂkj] mel)

5 Pmin < min(pmirup)

6: end for

7

©return pmin

ciated with a tuple(l, ko, ..., ki—1), wherel is the num-
ber of people involved in thé atoms, and:; is the num-
ber of atoms involving the-th person. We label thé

Having reduced our search space from sets of basic im-atomsA; ; for i € [[] andj € [k;] such that atomd;

plications that could lead to maximum disclosure to sets of IS thej-th atom (out ofk; atoms) involving the-th person.
simple implications with the same consequent, we are nowl.€émma 12 provides a closed form for the minimum value
in a position to create an efficient algorithm to compute the of Pr(A;e(x—A;|B) over all sets of; atoms associated with

maximum disclosure. We want tmaximizePr(A | B A
Niepk) (A; — A)) over all atomsA, A;, i € [k]. Notice that
for any atomsA, A;, i € [k] such thatd andAcyA; — A
are consistent with bucketizatidhwe have:

PI"(A | B A (/\ie[k]Ai — A))
_ Pr(AA (Nig(Ai — A)) | B)
— Pr((Aiew(Ai — A)) | B)
Pr(A|B)
Pr((=AA (Nier=Ai)) V A | B)
B Pr(4| B)
a PI"(“A A (/\ie[k]_‘Ai) | B) + PI‘(A | B)

So it suffices to construct an efficient algorithrmianimize
over all atomsA, A;, i € [k],

Pr(=AA(Nigi—44)(1B)
Pr(A|B) ’

(1)

In Section 3.3.1,
Pr(Ajew—As | B) over atomsA; involving individu-

we show how to minimize

a particular(l, ko, ..., ki—1).

Lemma 12 Letb € B be any bucket. Let, [, andkg, k1,
..., ki1 be such thatt = X;c;yk; and k; > k;yq for
all i € [l —1]. Lets), s;,sz,... be the sensitive val-
ues arranged in descending order of frequency.iriThen
Pr(Aiep,jek,)~As,j | B) is minimized over all atom4; ;
when, A, ; ist,,[S] = s], foralli € [] and all j € [ki],
wherepg, p1,...,pi—1 € P, are distinct. Consequently, the
minimum probability is given by:

Ny —i=> ich M (s])
Hie[l] - st

nbfi

()

Note thatl < k andk = >, ; k: since each atom in-
volves at exactly one person. So the question of minimizing
Pr(Aiepn —Ai|B) over all atomsA; that mention only tuples

M=% je kg " (53)

in b becomes one of minimizinpy, ., oy

overalll < k and allk, . .., k1 such thatzie[l] ki = k.
This can easily be done using AlgorithmThus, calling

MINIMIZE 1(b, 0, k, k) minimizesPr(A;c;x—A; | ¢5) over

als in the same bucket. We use this in Section 3.3.2 to@ll atoms4; thatinvolve people with tuples in buckietltis

provide a dynamic programming algorithm ivmize 1
that minimizes Formula (1) over atomé, A;, i € [k]
involving individuals in the same bucket. Finally, in
Section 3.3.3, we use MIMIZEL to construct another
dynamic programming algorithm MIMIZE 2 to minimize
Formula (1) jointly over the entire bucketization.

3.3.1 Minimizing Pr(A;ck—A; | B) for one bucket

Consider all sets ok atoms involving people whose tu-
ples are in a singlé € B. Each set oft atoms is asso-

easy to modify the algorithm to remember the minimizing
values ofk, . .., k;_1, and thus we can even reconstruct the
set of minimizing atoms according to Lemm2.

Algorithm complexity.  Note that the parameters of
MiNIMIZE 1 are bounded. That is, for every recursive call
MINIMIZE 1(b, ¢, k;, l%) that occurs inside the initial call to
MiNIMIZE 1(b, 0, k, k), parameteb does not change, and
parameters, k;, k are all bounded by (i.e., the number of
implications we allow the attacker to know). So we can eas-
ily turn this into anO(k?) time and space algorithm using
dynamic programming.



3.3.2 Minimizing Formula (1) within one bucket

. e Pr(“A/\(/\iE[k]‘\Ai)IB)
Let us now minimize Br{AE) overallk +1

atomsA and A;, for i € [k], that only mention tuples in
bucketb. Clearly anyA, A; that simultaneously minimize
the numerator and maximize the denominator will work.
We know that MNIMIZE 1(b,0,k + 1,k + 1) will mini-

mize the numerator. According to Lemma 12, at least one

of these minimalk + 1 atoms mention the most frequent
sensitive value. So, taking this atom to Aewe maximize
the denominator as well. Thus, the minimum value is

MINIMIZE 1(b, 0,k + 1,k + 1) X

3.3.3 Minimizing Formula (1) over all buckets

We look again at minimizingPr(ﬂAAéf(ij‘[g;Ai)'B), except

this time, we allowA and A; for i € [k] to mention tuples

in possibly different buckets. To do this, we make use of
the independence between buckets. Suppose that-the
minimizing atoms (includingd) are such thak; of them
mention tuples in bucket;, for eachi € [I] for somel <

k+ 1. Letb; be the bucket containing the tuple mentioned
by A. Then, since the permutation of sensitive values for

Algorithm 2 : MINIMIZE 2(4, h;, a)

Input: < is the current bucket; (initially 0)

Input:  h; is number of atomsl;, j € [k] that we have yet to determine
(initially k)

Input: a is a flag representing whether atorh involves a person in an
earlier bucketb;, j < i (initially false)

1 Tmin < O
2: if ¢ = |B| then
3: /I Finished all buckets
4. return rin
5: end if
6: for hj11 =0,1,2,...,h; do
7 u — MINIMIZE 1(b;, 0, hit1, hit1)
8: z — MINIMIZE2(i + 1, hy — hjy1, true)
9: if a = false then
10: /I Atom A does not involve an earlier buckef, j < ¢
11: /I So eitherA involvesb;...
12: v — MINIMIZE 1(b;, 0, hj1 + 1, hiy1 + 1)
13: Tmin < min(rmim v XxTX Wn:;g?)
14: II'... or elseA involves a later bucket;, j > 4
15: Prin < MIN("min, ¥ X MINIMIZE 2(i 41, h; —h;41, false))
16: else
17: Il Atom A involves an earlier bucket;, j < i
18: Trmin < MiN(Fmin, U X )
19: end if
20: end for

21: return rpin

each bucket was picked independently, we can compute théuckets from3 and addinge new buckets td3, then, after

minimum as
nbj
—_x MINIMIZE 1(b;, 0, k;, k).
n, (sp.) zle_I[l]

So we need to minimize the above for all choiced of
k+1, 7, andkg, k1, ...,k _1 (which we can assume with-

out loss of generality to be in descending order). Assuming

buckets in5 are labeled a&y, b1, b, . . ., this is done by the

MINIMIZE 2.
So MINIMIZE 2(0, k, true) minimizes
Pr(=AA(Aigr—44)(B)

Br{AB) over all atomsA, A;, i € [k]. It

is easy to modify the algorithm to remember the and
h;'s, and hence reconstruct the minimizing atoms.

Algorithm complexity.  Note that the parameters of
MINIMIZE 2 are bounded. That is, for every recursive call
to MINIMIZE 2(4, h;,a) that occurs inside the initial call
to MINIMIZE 2(0, k, true), parametet is bounded by the
number of buckets, parametgy is bounded by the total
number of implicationsk, anda is either true or false.

we run the algorithm fo#3, we memoize NNIMIZE 1 for
the z new buckets; so the incremental cost of running the
algorithm for8* is O(|B*| x k + x x k3)-time. Moreover,

if one knew in advance which buckets were going to be re-
moved, one could order the buckégsb,, . . . appropriately

to reuse much of the memoization ofiMmizE 2 as well.

3.4. Finding a safe bucketization

Armed with a method to compute the maximum disclo-
sure, we now show how to efficiently find a “minimally san-
itized” bucketization for which maximum disclosure is be-
low a given threshold. Intuitively, we would like a minimal
sanitization in order to preserve the utility of the pubdéigh
data. Let us be more concrete about the notion of minimal
sanitization. Given a table, consider the set of bucketiza-
tions of this table. We impose a partial orderiggon this
set of bucketizations wherB8 < B’ if and only if every
bucket inB’ is the union of one of more bucketsi Thus
the bucketizatio8+ that has all the tuples in one bucket is

Thus, assuming that we first memoize (i.e., precomputehe ynique top element of this partial order, and the bueketi

all possible calls to) MNIMIzE1 (which we can do in
time O(|B| x k%)), we can modify the NNimMIZE 2 algo-
rithm using dynamic programming to take an additional
O(|B| x k)time and space. So the whole algorithm can be
made to run irO(|B| x k3)time and space.

Incidentally, if one had two bucketizatioftsand3* that
differed only in thatB* was the result of removing some

zationBB, that has one tuple per bucket is the unique bottom
element of this partial order. Our notion of a “minimally
sanitized” bucketization is one that is as low as possible in
the partial order (i.e., as closelfa ) while still having max-
imum disclosure lower than a specified threshold.

Definition 13 ((c, k)-safety) Given a threshold € [0, 1],



for both negated atomg-giversity) and basic implications.

In the anonymized table used, all the attributes other than
Age were suppressed and the Age attribute was general-
h : - - ized to intervals of siz€0. The solid line corresponds to
the partial orderings, then finding a<-minimal (c, k)-safe implication statements and the dotted line corresponds to
bucketlzatlon_ can be dqne in tl_me_logarlthmlc in the height negated atoms. This graph agrees with our earlier observa-
of the k_Jucketlzatlon Iattlc_e (Whl(_:h is at most the number_ of tion that implication-type background knowledge subsumes
tuples in the table) by doing a binary search. The following egation: the maximum disclosure fomegated atoms is
theorem says that we do indeed have monotonicity. always smaller than the maximum disclosure fompli-
cations. However, note that, for a givénthe difference
between the maximum disclosure for negated atoms and
for basic implications is not too large. This means that an
anonymized table which tolerates maximum disclosure due
to k negated atoms need not be anonymized much further to
Another approach is to finall <-minimal(c, k)-safe buck-  defend against implications.

etizations, and return the one that maximizes a specified Intuitively, if all the buckets in a table have a nearly uni-
utility function. The monotonicity property allows us to form distribution, then the maximum disclosure should be
make use of existing algorithms for efficient itemset mining lower, but the exact relationship is not obvious. To get a

we say that3 is a (¢, k)-safe bucketizatioff the maximum
disclosure o3 with respect taCk . is less thart.

basic

If the maximum disclosure isnonotonicwith respect to

Theorem 14 (Monotonicity) Let B and B’ be bucketiza-
tions such that3 < B’. Then the maximum disclosure of
B is at least as high as the maximum disclosurébfvith
respect talf

basic*

[4], k-anonymity [7, 22] and-diversity [24]8 For example,
we can modify the Incognito [22] algorithm, which finds all
the <-minimal k-anonymous bucketizations, by simply re-
placing the check fok-anonymity with the check fafe, k)-
safety from Section 3.3. We can thus find the bucketization
that maximizes a given utility function subject to the con-
straint that the bucketization lfe, k)-safe.

4. Experiments

In this section, we present a case-study of our framework

for worst-case disclosure using the Adult Database from the

UCI Machine Learning Repository [27]. We only consider
the projection of the Adult Database onto five attributes —

Age, Marital Status, Race, Gender and Occupation. The
dataset has 45,222 tuples after removing tuples with miss-

ing values. We treat Occupation as the sensitive attribute;

better picture, we performed the following experiment. We
fixed a valuek for the number of pieces of information.
For every entropy valué, we looked at all tableg (h)

for which the minimum entropy of the sensitive attribute
over all buckets was equal fa Amongst7 (k) we found

the tableT’() with the least maximum disclosure fbim-
plications. Let the worst case disclosure fofh) given k
pieces of knowledge be denoted®yT' (%), k). We plotted
hversusw(T'(h), k) fork =1,3,5,7,9,11in Figure 6. We
see a behavior which matches our intuition. For a giken
the disclosure risk monotonically decreases with incraase
h. This is because increasimgmeans that we are looking
at tables with more and more entropy in their buckets (and,
consequently, less skew). We plotted an analogous graph
(which we do not show here) for negation statements and
observed very similar behavior.

its domain consists of fourteen values. We use pre-defined®. Related Work

generalization hierarchies for the attributes similarhe t
ones used in [22]. Age can be generalized to six levels (un-

Many metrics have been proposed to quantify privacy

suppressed, generalized to intervals of size 5, 10, 20, 40guarantees in publishing publishing anonymized data-sets
or completely suppressed), Marital Status can be general“Perfect privacy’ [12, 26] guarantees that published data
ized to three levels, and Race and Gender can each either beoes not disclose any information about the sensitive data.
left as is or be completely suppressed. We consider all theHowever, checking whether a conjunctive query discloses
possible anonymized tables using those generalizations. any information about the answer to another conjunctive
We computed the maximum disclosure fopieces of  query is shown to be very hartil{-complete [26]). Subse-

background knowledge, fdrranging from0 (i.e., no back-  quent work showed that checking for perfect privacy can be
ground knowledge) td2 (since we know that maximum  done efficiently for many subclasses of conjunctive queries
disclosure certainly reachésat k = 13 because there are [23]. Perfect privacy places very strong restrictions a@ th

only fourteen possible sensitive values). Fighipgots, for types of queries that can be answered [26] (in particular,
one anonymized table, the number of pieces of knowledgeaggregate statistics cannot be published). Less restricti

available to an adversary against the maximum disclosureprivacy definitions based on asymptotic conditional proba-

SWhile these algorithms typically have worst-case expdakninning
time in the height of the bucketization lattice, they haverbshown to run
fast in practice.

bilities [11] and certain answers [30] have been proposed.
Statistical databases allow answering aggregates over sen
sitive values without disclosing the exact value [1]. De-
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identification, likek-anonymity [28, 32] and “blending in  bution [5, 3]; reconstructing data clusters after pertugbi

a crowd” [8], ensures that an individual cannot be associ- numeric attributes [8]; and maximizing decision tree ac-
ated with a unique tuple in an anonymized table. However, curacy while anonymizing data [18, 33]. There have also
under both of those definitions, sensitive information can b been some negative results for utility. Publishing a single
disclosed if groups are homogeneous. k-anonymous table can suffer from the curse of dimension-

Background knowledge can lead to disclosure of sensi- @ity [2] - large portions of the data need to be suppressed to
tive information. Su etal. [31] and Yang et al. [35] limitdis ~ €NSure privacy. Subsequent work [21] shows how to publish
closure when functional dependencies in the data are knowrs€Vveral tables instead of a single one to combat this.
to the data publisher upfront. The notionfeliversity [24]
guards against limited amounts of background knowledge. Conclusions
unknown to the data publisher. Farkas et al. [16] provide a

survey of indirect data disclosure via inference channels. In this paper, we initiate a formal study of the worst-

There are several approaches to anonymizing a datasegase disclosure with background knowledge. Our analy-
to ensure privacy. These include generalizations [7, 2R, 29 sjs does not assume that we are aware of the exact back-
cell and tuple suppression [9, 29], adding noise [1, 5, 8, 15] ground knowledge possessed by the attacker. We only as-
publishing marginals that satisfy a safety range [14], and sume bounds on the the attacker’s background knowledge
data swapping [10], where attributes are swapped betweenn terms of the number of basic units of knowledge that
tuples so that certain marginal totals are preserved. @ieri the attacker possesses. We propose basic implications as an
can be posed online and the answers audited [20] or perexpressive choice for these units of knowledge. Although
turbed [13]. Not all approaches guarantee privacy. For ex-computing the probability of a specific disclosure from a
ample, spectral techniques can separate much of the noisgjven set of: basic implications is intractable, we show how
from the data if the noise is uncorrelated with the data to efﬁcient'y determine the worst-case over all setg bf-
[17,19]. Anatomy [34] is a recently proposed anonymiza- sjc implications. In addition, we show how to search for a
tion technique that corresponds exactly to the notion of pycketization that is robust (to a desired threshplgainst
bucketization that we use in this paper. When the attaCkeranyk basic imp"cations by Combining our check f((m; k)-
knows full identification information, then generalizatio  safety with existing lattice-search algorithms. Finalke
provides no more privacy than bucketization. However, demonstrate that, in practicediversity has similar maxi-
we recommend generalizing the attributes before publishin mum disclosure to our notion ¢, k)-safety, which guards
the data since this will prevent attackers that do not alread against a richer class of background knowledge.
have full identification information from reidentifying dir Since we chose basic implications as our units of knowl-
viduals via linking attacks [32]. In many cases, the facttha eqge, our algorithms will clearly yield very conservative
a particular individual is in the table is considered savesit  p,cketizations if we try to protect against an attacker who
information [8]. knows information that can only be expressed using a large

The utility of data that has been altered to preserve pri- number of basic implications. One way to reduce the num-
vacy has often been studied for specific future uses of theber of basic units required is to add more powerful atoms to
data. Work has been done on preserving association rulesur existing language. Finding the right language for basic
while adding noise [15]; reconstructing distributions ofhe units of knowledge is an important direction of future work.
tinuous variables after adding noise with a known distri-  Other directions for future work include extending our



framework for probabilistic background knowledge, study- [15] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting paisy

ing cost-based disclosure (since it was observed in [24] breaches in privacy preserving data miningPI@DS§ 2003.

that not all disclosures are equally bad), and extending[16] C. Farkas and S. Jajodia. The inference problem: a gurve

our results to other forms of anonymization, such as data- SIGKDD Explor. News].4(2), 2002.

swapping and collections of anonymized marginals [21].  [17] z. Huang, W. Du, and B. Chen. Deriving private infornaati
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