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Motivation
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Guiding Principles?

SSN Gender Age Zip Code Disease

111111111 M 25 90210 AIDS

222222222 F 43 90211 AIDS

333333333 M 29 90212 Cancer

456456456 M 41 90213 AIDS

567867867 F 41 07620 Cancer

654321566 F 40 33109 Cancer

799999999 F 40 07620 Flu

800000000 F 24 33109 None

934587938 M 48 07620 None

109494949 F 40 07620 Flu

112525252 M 48 33109 Flu

121111111 M 49 33109 None
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Guiding Principles?

We know this is not enough

SSN Gender Age Zip Code Disease

///////////////111111111 M 25 90210 AIDS

///////////////222222222 F 43 90211 AIDS

///////////////333333333 M 29 90212 Cancer

///////////////456456456 M 41 90213 AIDS

///////////////567867867 F 41 07620 Cancer

///////////////654321566 F 40 33109 Cancer

///////////////799999999 F 40 07620 Flu

///////////////800000000 F 24 33109 None

///////////////934587938 M 48 07620 None

///////////////109494949 F 40 07620 Flu

///////////////112525252 M 48 33109 Flu

///////////////121111111 M 49 33109 None
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So what happens?

Aug 6, 2006 - AOL releases data

20 Million Search Queries from 3 months
650,000 users

How is data protected: Change AOL id to a number.

What happened?
NYT identified user # 4417749

People search for names of friends/relatives/self
People search for locations “What to do in State College”
Age-related searches

Many people got fired.
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Introduction

Statistical Privacy

Art of turning sensitive data into nonsensitive data suitable for public
release.

Sensitive data:

Cannot release sensitive data directly.
Detailed information about individuals (search logs, health records,
census/tax data, etc.)
Proprietary secrets (search logs, network traces, machine debug info)

Want to release useful but non-private information from this data.

Typical user web search behavior
Demographics
Information that can be used to build models
Information that can be used to design & evaluate algorithms

Mechanism: a (randomized) algorithm that converts sensitive into
nonsensitive data.

Goal: Design a mechanism that protects privacy and provides utility.
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Introduction

Privacy & Utility

What does privacy mean?
Many, many privacy definitions in the literature.
How do I compare them?
How do I identify strengths and weaknesses?
How do I customize them (for an application)?
How do I design one?
Does it really do what I want it to do?
What statements are/aren’t privacy definitions?

What does utility mean?
Many, many measures of utility in the literature:

KL-divergence.
Expected (Bayesian) utility.
Minimax estimation error.
Task-specific measures.

Which one should I choose?
Does it do what I want it to do?
How do I design one?
Does it make sense in statistical privacy?
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Introduction

A Common Approach

1 Start with a privacy mechanism.

Generalization (e.g. coarsen “state college” → “Pennsylvania”)
Suppression (remove parts of data items)
Add random noise

2 Create privacy definition that feels most natural with this privacy
mechanism.

3 Create utility measure that feels most natural for this mechanism.

# of generalizations
# of suppressions
variance of noise
anything we can borrow from statistics
often can’t compare utility across mechanisms

4 (Usually) Find flaws, revise steps 2 and 3.
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Introduction

The Axiomatic Approach

What if we did this in reverse? For a given application:

1 Identify properties we think a privacy definition should satisfy.
2 Identify properties we think a utility metric should satisfy.
3 Find a privacy mechanism that satisfies those properties.

Benefits of axiomatization:

Apples to apples comparison of properties of privacy definitions.
Small set of axioms easier to study than large set of privacy definitions.
Abstract approaches yield general results and insights (e.g. group
theory, vector spaces, etc.)
Can study relationships between axioms.
Easier to identify weaknesses.
Design mechanisms by picking axioms depending on application.
Can study consequences of omitting axioms.

Is it really necessary for privacy and utility?

Let’s look at some illustrative results.
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Axiomatizing Privacy

Axioms for Privacy

Hard to create a good privacy definition.

Simple things usually don’t work.

Different applications have different privacy requirements.

Instead of starting from a privacy definition:

Identify axioms you want it to support.
Determine the privacy definition implied by axioms
Let axioms be the building blocks.

It is easier to reason about axioms that about entire privacy
definitions.

Efficiency: insights into 1 axiom lead to insights into many privacy
definitions.

Example: how to relax differential privacy.
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Axiomatizing Privacy A framework

Some definitions

Abstract input space I (all possible data).
Semantics (e.g. neighboring databases in differential privacy) should be
given by axioms.

Abstract output space O.
Semantics (e.g. query answers, synthetic data, utility) should be given
by axioms.

Definition (Randomized Algorithm)

A randomized algorithm A is a regular conditional probability distribution
P(O | I ) with O ⊂ O and I ⊂ I

Privacy definition: intentionally undefined (all parameters must be
instantiated).

Definition (Privacy Mechanism for D)

A privacy mechanism M is a randomized algorithm that satisfies privacy
definition D.
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Axiomatizing Privacy Privacy Axioms

Two Simple Privacy Axiom

Intuition: postprocessing the output of a privacy mechanism should
still maintain privacy.

Axiom (Transformation Invariance)

Given a privacy mechanism M and a randomized algorithm A
(independent of the data and M), the composition A ◦M is a privacy
mechanism.

Intuition: it does not matter which privacy mechanism I choose.

Axiom (choice)

If M1 and M2 are privacy mechanisms for D, then the process of choosing
M1 with probability c and M2 with probability 1− c (with randomness
independent of the data, M1, and M2) results in a privacy mechanism for
D.
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Axiomatizing Privacy Privacy Axioms

Two Simple Privacy Axiom

Axiom (Transformation Invariance)

Given a privacy mechanism M and a randomized algorithm A
(independent of the data and M), the composition A ◦M is a privacy
mechanism.

Axiom (choice)

If M1 and M2 are privacy mechanisms for D, then the process of choosing
M1 with probability c and M2 with probability 1− c (with randomness
independent of the data, M1, and M2) results in a privacy mechanism for
D.

Consistency conditions for privacy definitions

Thus privacy definitions should discuss how they are affected by
postprocessing.

Privacy definitions cannot focus only on deterministic mechanisms.

Many privacy definitions do not satisfy these axioms!
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Axiomatizing Privacy Application to Differential Privacy

Applications Differential Privacy

Definition (Differential Privacy [Dwo06, DMNS06])

M satisfies ε-differential privacy if P(M(i1) ∈ S) ≤ eεP(M(i2) ∈ S) for all
measurable S ⊂ O and all neighboring input databases i1, i2 ∈ I.

There has been interest in relaxing differential privacy. For example:
For example:

P(M(i1) ∈ S) ≤ eεP(M(i2) ∈ S) + δ
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Axiomatizing Privacy Application to Differential Privacy

Example

a = P(M(i1) ∈ S) b = P(M(i2) ∈ S) a ≤ 2b
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Axiomatizing Privacy Application to Differential Privacy

Example

a = P(M(i1) ∈ S) b = P(M(i2) ∈ S) a ≤ 2b + .1
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Axiomatizing Privacy Application to Differential Privacy

Applications Differential Privacy

Definition (Differential Privacy [Dwo06, DMNS06])

M satisfies ε-differential privacy if P(M(i1) ∈ S) ≤ eεP(M(i2) ∈ S) for all
measurable S ⊂ O and all neighboring input databases i1, i2 ∈ I.

There has been interest in relaxing differential privacy. For example:
For example:

P(M(i1) ∈ S) ≤ eεP(M(i2) ∈ S) + δ

Definition (A Generic Version)

M is a privacy mechanism if G [P(M(i1) ∈ S),P(M(i2) ∈ S)] = T for all
measurable S ⊂ O and all neighboring input databases i1, i2 ∈ I.

What other predicates can be used?
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Axiomatizing Privacy Application to Differential Privacy

Relaxations of Differential Privacy

Definition (A Generic Version)

M is a privacy mechanism if G [P(M(i1) ∈ S),P(M(i2) ∈ S)] = T for all
measurable S ⊂ O and all neighboring input databases i1, i2 ∈ I.

In principle, G could be any predicate:

G (a, b) = T if a− b is rational.
G (a, b) = T if a < b2.
G (a, b) = T if b = (1 + cos(2πa))/2

Choice and Transformation Invariance Axioms limit the possibilities.
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Axiomatizing Privacy Application to Differential Privacy

Example

a = P(M(i1) ∈ S) b = P(M(i2) ∈ S) b = (1 + cos(2πa))/2
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Axiomatizing Privacy Application to Differential Privacy

Relaxations of Differential Privacy

Definition (A Generic Version)

M is a privacy mechanism if G [P(M(i1) ∈ S),P(M(i2) ∈ S)] = T for all
measurable S ⊂ O and all neighboring input databases i1, i2 ∈ I.

Replacing G [a, b] with G ∗[a, b] ≡ G [a, b] ∧ G [1− a, 1− b] does not
change privacy definition.

Theorem

Axioms of Transformation Invariance and Choice provide necessary and
sufficient conditions on G ∗[a, b]. There exists a well-behaved upper
envelope M(a) and lower envelope m(a) that determine G ∗.
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Axiomatizing Privacy Application to Differential Privacy

See paper for details

a = P(M(i1) ∈ S) b = P(M(i2) ∈ S)

M(a) is

continuous*
concave
strictly
increasing*

m(a) is determined
by M(a)
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Axiomatizing Privacy Application to Differential Privacy

Summary

Definition (A Generic Version)

M is a privacy mechanism if G [P(M(i1) ∈ S),P(M(i2) ∈ S)] = T for all
measurable S ⊂ O and all neighboring input databases i1, i2 ∈ I.

Axioms imply a nice intuitive form for predicate G .

For every a, there is interval of allowable b values

Interval endpoints vary nicely with a.

Makes sense intuitively

But no need for intuition after axioms are selected
Avoids faulty/incomplete intuition
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Axiomatizing Utility

Axioms for Utility?

Privacy axioms limit the privacy mechanisms we can consider.

How to choose among allowable mechanisms?

M as a column stochastic matrix:
Column i of M is PM(· | i).

µ(M) – how good is a privacy mechanism M?

How much information does it contain?
How useful are the outputs?

Do we understand utility well enough?
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Axiomatizing Utility Counterexample

Example: Expected Utility

Conducting a survey: Is this your favorite conference venue?

Sensitive question, people may not respond truthfully.

Idea: allow respondent to lie with certain probability (randomized
response [War65]).

Utility: expected loss (?)

I get a loss of 1 every time they lie (0 loss for truth)
I believe 75% of population could not imagine a better conference
venue
Expected loss what do I believe my average (expected) loss is?
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Axiomatizing Utility Counterexample

Example: Expected Utility

Is this your favorite conference venue?

Subjective prior belief: 75% yes

Privacy Mechanism M2

True Answer

Yes No

Yes 1 1

No 0 0

E [Loss] = 1× 1/4

= 1/4

Privacy Mechanism M1

True Answer

Yes No

Yes 2/3 1/3

No 1/3 2/3

E [Loss] = 1× 3/4× 1/3

+1× 1/4× 1/3

= 1/3
Mechanism M2 has lower expected loss

Yet contains no information

M2(true answer) = A(M1(true answer))
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Axiomatizing Utility Counterexample

Example: Expected Utility

User has a prior distribution over the input space I.

Output space O = I.

User has a loss function L(i , j).

Create mechanism with smallest expected loss.

Theorem ([GRS09])

Under suitable conditions on I and L, the geometric mechanism is
universal – for any prior, the optimal mechanism is achieved by applying a
many-to-one deterministic function to the output of geometric mechanism.

In general, cannot recover geometric mechanism from “optimal”
mechanism.

∴ “Optimal” mechanism contains less information than geometric
mechanism.

“Optimal” mechanism should not be considered optimal.
Expected utility may not be an appropriate measure of utility.
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Axiomatizing Utility Axioms and Examples

How to measure utility

We should take a step back and think about what properties our
utility measures should have.

Definition (Sufficiency partial order)

Privacy mechanism M1 is sufficient for M2 (M2 ≺M1) if there exists a
randomized algorithm A such that M2 = A ◦M1.

Axiom (Sufficiency)

If M2 ≺M1 then µ(M2) ≤ µ(M1)

Definition (Sufficient Covering Set)

A set S of privacy mechanisms is a covering set if every mechanism in S is
maximally sufficient and: ∀M,∃M∗ ∈ S such that M ≺M∗

Utility metric µ should choose some M∗ ∈ S .
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Axiomatizing Utility Axioms and Examples

Examles - finite input/output spaces

M =


P(O1 | ∗)
P(O2 | ∗)
P(O3 | ∗)
P(O4 | ∗)

 =


P(O1 | i1) P(O1 | i2) P(O1 | i3)
P(O2 | i1) P(O2 | i2) P(O2 | i3)
P(O3 | i1) P(O3 | i2) P(O3 | i3)
P(O4 | i1) P(O4 | i2) P(O4 | i3)


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Axiomatizing Utility Axioms and Examples

Examples

|det M|
For finite input space and output space of the same size.
Measures how much M shrinks the unit hypercube (identity matrix).
Piecewise multilinear.

Negative Dobrushin’s coefficient of ergodicity.

−minj,k

∑
min(mi,j ,mi,k)

Finds the two columns that are hardest to distinguish.
Finds the two inputs hardest to distinguish.
Another measure of how the matrix contracts the input space [CDZ93].

Branching Measures.∑
i F (ri )

ri are the rows
F is convex and F (cx) = cF (x).
Example:

F (x1, . . . , xn) =
n∑

i=1

xi log
xi

x1 + · · ·+ xn
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Axiomatizing Utility Insights

Maximally Sufficient Mechanisms

Definition (Sufficient Covering Set)

A set S of privacy mechanisms is a covering set if every mechanism in S is
maximally sufficient and: ∀M,∃M∗ ∈ S such that M ≺M∗

What do they look like?

For finite input spaces, output space is finite but larger.

Neighboring databases form a connected graph of input space.

For each output o1, its row subgraph must be a spanning tree*.

Output space can be identified with a set of graphs.

Output space is a set of spanning trees* of input space.
Edges correspond to equality constraints in differential privacy.
Can also be interpreted as a restricted set of likelihood functions.
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Axiomatizing Utility Insights

Output Space

i1

i2 i3

i4

i1

i2 i3

i4

i1

i2 i3

i4

O1 O2 O3

P(O1 |   *  ) P(O2 |   *  ) P(O3 |   *  )
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Axiomatizing Utility Insights

Insights

Output of a privacy mechanism many not correspond to a query
answer.

Input: heads or tails
Output: red or blue or green

Output of a privacy mechanism many not correspond to synthetic
data.

May not have “attributes”
May not have “rows”

You will need to postprocess the output for what you want to do.

Use the likelihood principle.

Goal: find a mechanism that allows greatest flexibility for
postprocessing.
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Conclusion

Take home message

Axioms are our building blocks.

Easier to understand and argue about than privacy definitions and
utility measures.
Abstraction allows for generality.
Allows for comparison of privacy definitions.

Shouldn’t specify privacy definition directly, let axioms disqualify sets
of randomized algorithms.

Use axioms to choose the best mechanisms via utility.

Output space may not correspond to query answers or synthetic data.

Because of potentially many different uses for the data.

Need statistical postprocessing tools to work with resulting data.
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Thank You
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