
Information Retrieval in a Peer-to-Peer Environment

Dik Lun Lee Dyce Jing Zhao Qiong Luo
Department of Computer Science

the Hong Kong University of Science & Technology, Hong Kong
{dlee,zhaojing,luo}@cs.ust.hk

Abstract

Due to rapid information growth, peer-to-peer (P2P)
systems have become a promising alternative to central-
ized, client/server-based approaches for large-scale data
sharing. By allowing peers to join and leave the sys-
tem freely, they offer the peers autonomy to control their
own resources, high scalability and high robustness against
single-peer failures. P2P systems have many applications.
This paper focuses on peer-to-peer information retrieval
(P2PIR), which aims to retrieve textual documents based
on their contents and ranks them based on some relevance
measures against the query. The “open nature” of P2P sys-
tems and their lack of centralized control pose difficult chal-
lenges to the search capability and performance of P2PIR
systems.

In this paper, we study the recent works on P2P infor-
mation retrieval, introduce our current research, discussa
few open problems that have not been studied in great depth
and propose some future directions for information retrieval
research in a P2P environment.

1. Introduction

From its birth, the World Wide Web has grown with a
surprisingly rapid speed. As a result, peer-to-peer (P2P)
technologies have been advancing rapidly [9] since their
first commercial application, Napster [12], was introduced
in 1999. P2P systems exhibit three important characteris-
tics: self-organization, symmetric communication and dis-
tributed control. Further, no global information is supposed
to be available at any single peer, and there is no powerful
servers serving as centralized control.

In this paper, we focus on P2P Information Retrieval
(P2PIR), where autonomous computers cooperate with each
other to publish and manage a large amount of data and to
retrieve the result for any query submitted from any peer.
Within the scope of this paper, P2PIR deals with textual
documents and retrieval is based on some ranking measures

computed between the query and the document texts. Since
the results may come from more than one peer, result merg-
ing is needed to combine the results.

The most important benefit of P2P systems is that, by
distributing the workload of data management, which in-
cludes storage, processing and network communication,
they are able to index a massive amount of data with a
large number of inexpensive peers. Compared to centralized
search engines such as Google,1 the peers are physically
distributed and managed by their individual owners. This
approach yields two major advantages. First, it avoids the
system administration problem associated with large data
centers, such as huge power consumption and cooling prob-
lems and the physical space needed for system expansion.
Second, the owners of the peers are more motivated in main-
taining the information on the peers because they put it to-
gether, compared to crawlers that gather information blindly
from the web.2 Third, unlike centralized search engines,
queries in P2PIM are executed directly on the peers and
thus can make use of local search facilities tailored for the
information on the peers (e.g., ranking information based
on local access statistics on the peers). Centralized search
engines such as Google can only provide the same search
interface for all kinds of web contents.

Despite the various strengths that P2P systems possess,
important challenges must be overcome before P2PIR can
take up practical real-world applications. For example,
the peers’ lack of global information about the entire sys-
tem makes finding resources difficult and thus weakens
the query capability and search performance of the system.
As such, elaborated indexing and query routing techniques
must be developed to make the query capability and re-
trieval quality comparable to traditional centralized search
systems. Clearly, P2P systems have other problems such as
their low resistance to attacks from malicious peers, but this

1Although Google has hundreds of thousands of servers distributed
over a large number of data centers with load balancing, we regard it as
centralized because the system are by-and-large client-server based, and
the index is logically centralized.

2Although websites may be professionally managed, important infor-
mation structures in the websites would be ignored by the crawlers.

paper will only focus on IR related issues.
The above issues have motivated a number of works with

the goal to meet the challenges in P2P systems and to real-
ize the potential of P2P technologies. In this paper, we sur-
vey the research that was done for P2P information retrieval
(P2PIR). The rest of this paper is organized as follows. Sec-
tion 2 presents a taxonomy of P2P IR works. Section 3 in-
troduces some of our recent and ongoing works. The open
problems and future directions are proposed in Section 4.
Section 5 concludes our discussion on P2PIR.

2. Taxonomy for Peer-to-Peer Information Re-
trieval

P2PIR research can be classified along various dimen-
sions. Regarding overlay structures, there are hash-based
approaches, non-hash-based approaches and hybrid ap-
proaches. Considering the routing algorithm, P2P routing
can be classified as structured or unstructured. In terms
of query capability, the representative examples are exact
match queries, partial match queries, ranked queries, range
queries, and so on. The above taxonomy is by no means
comprehensive. In the following, we focus on routing algo-
rithms, studying the structured and the unstructured ones.
We also discuss the query capability and four categories of
query operations.

2.1 Structured and Unstructured Systems

P2P routing algorithms can be classified as structured
or unstructured. One well-known example for unstructured
systems is Gnutella. Gnutella [1] applies flooding for query
routing, and query messages are broadcasted within the
neighborhood of the query initiator before their time-to-live
(TTL) values are reduced to zero. Pastry [16], CHORD [21]
and the Content Addressable Network (CAN) [14] are ex-
amples for the structured systems.

Structured routing usually outperforms unstructured
routing with respect to the scope (i.e., the percentage of data
that a query could reach) and efficiency. However, peers in
a structured network maintain information about a group
of other peers, which incurs additional storage and update
cost. Furthermore, since many structured systems apply
strict mapping from data resources to their hosting peers,
these systems do not exhibit high peer autonomy. Because
the auxiliary information on peers is pre-defined, structured
systems have limited query capability compared to unstruc-
tured systems. For example, Pastry, CHORD and CAN sup-
port exact match only, while almost any kind of query that a
centralized system supports can be done in an unstructured
system such as Gnutella.

Efforts had been made to provide ranked search in struc-
tured systems. Two recent examples are pSearch [22, 23]

and the Semantic Small World (SSW) [10]. pSearch and
SSW use Latent Semantic Indexing (LSI) to map docu-
ments into a semantic vector space and perform search
based on the Euclidean distance between the query point
and the document points. In particular, pSearch is devel-
oped on top of CAN. In addition to LSI, pSearch employs a
rolling index and registers a document top places in CAN
usingp separate partial semantic spaces. This reduces the
dimensionality and therefore enables CAN to manage full-
text documents. In SSW, nodes form clusters, each of which
manages non-overlapping regions of the semantic vector
space. A cluster is split into two when the cluster size ex-
ceeds a certain threshold. Every node in a cluster knows
its region and splitting history, which are used to compute
a unique ID for the cluster. All the clusters form a circle
with clockwise ascending cluster ID’s. A query message
computes a partial cluster ID using the available splitting
history and hops along the circle in a greedy manner until it
reaches the cluster with the complete ID. pSearch and SSW
split successively the vector space into cells and position
data points according to the cells that they reside in. Given
a keyword based query, both approaches are able to identify
the most relevant data resource while the similarity metrics
can be cosine or Euclidean distance.

2.2 Query Capability

In order to be practical search solutions, P2P information
retrieval systems must be able to support expressive query
languages. In this section, we enumerate a list of query op-
erations that have been extensively studied in recent years.

• Exact Match Queries
Exact match is the simplest type of query. Given a
queryQ and the keyK of a data resourceD, D is a
result if and only ifQ = K. Most hash-based P2P
systems [16, 21, 10] are able to support exact match.
As with all hash-based methods, the hash key must be
fixed at the time the resources are inserted into the sys-
tem. Therefore, queries must be expressed on the cho-
sen key. Clearly, exact match queries are useful only
in applications where an “obvious” key exists (e.g., file
sharing systems where the filename could be such a
key).

A generalization of the exact match query defined
above is to allow multiple keys in the query. That
is, a resource has multiple key attributes, such as
K1, K2, K3, and the query specifies a condition on
each of the attributes, e.g.,Q1, Q2, Q3. A resource
is a match ifQ1 = K1, Q2 = K2, andQ3 = K3.
Multiple-key exact match requires the resources to be
hashed based on composite key attributes, resulting in
a large index space.

• Range Queries
Range queries relax exact match queries to allow range
conditions to be specified on the key attributes. Ap-
proaches for range queries can be divided into those
that rely on an underlying Distributed Hash Table
(DHT) [17, 13] and those that do not [24]. Several
DHT-based range query methods have been proposed
recently. For example, Gupta, et al., relied on lo-
cality sensitive hashing to ensure that similar ranges
have a high probability to be mapped to the same node
[7]. They proposed one particular family of locality
sensitive hash functions, called min-wise independent
permutations, and showed that the hop-count distribu-
tion was very similar to that of the Chord exact match
scheme. Other range query approaches avoided us-
ing DHT’s since DHT was considered not suitable for
range queries [3]. For example, SkipNet [8] was based
on skip graphs.

• Partial Match Queries
A partial match query contains a set of keywords.
Likewise, data sources are indexed on a number of key
attributes. Data sources which match the query in one
or more key attributes form the result set. The fact that
a query could specifyany numberof attributes inany
combinationmay it practically impossible to use hash-
based P2P systems to answer partial match queries.

In unstructured P2P systems, routing indexes and var-
ious search heuristics [20, 6, 26] have been proposed
to support partial match efficiently. However, most of
them can only return partial results (i.e., not all rel-
evant resources are explored). This limitation makes
P2PIR inferior in terms of search quality when com-
pared to centralized search services which indexes and
logically searches all resources for a query.3

DPTree [28] is a structured approach for partial match
queries, so it supports complete search (i.e., all relevant
resources are considered). It is based on a distributed
index which achieves high storage and query efficiency
by indexing only the frequently queried keyword com-
binations. See Section 3.2 for more details.

• Ranked Queries
Ranking can be applied orthogonally to the query types
above. That is, results returned from any of the above
query types can be ranked based on some scoring or
goodness measures. Ranked queries allow the system
to return the topK ranked resources. This opens up the
possibility of optimization ifK is much smaller than
the size of the entire result set.

3Centralized search services such as Google do not need to physically
search through all resources for each query by utilizing a combination of
indexing, caching and search heuristics.

The most popular scoring method in IR is based on the
vector-space model which computes relevance scores
between the query and the results. P2PIR systems
had been proposed based on this model and different
relevance measures had been adopted. For example,
pSearch [22] adopted Euclidean distance, and DPTree
[28] supported inner-product as well as Euclidean dis-
tance.

Notice that although it might sound unnatural from a
traditional (relational) database point of view, even ex-
act match queries can produce ranked results from an
IR point of view because the results can be ranked by
other non-query specific parameters such as the au-
thorities of the results, which is best exemplified by
Google’s PageRank. In fact, P2P systems open up
more ways for non-content-based ranking. For exam-
ple, the availability and access time of the nodes host-
ing the results, which are assumed to be perfect in the
web environment, are important ranking factors in a
P2P environment.

The above classification includes common query types
in general P2P systems. For IR specifically, exact match
queries, either ranked or unranked, don’t make much sense
because they require the queries to specify a value for each
key attributes. Likewise, range queries are not useful for
textual contents unless some sort of semantic distance can
be defined for the keywords. For textual contents, the most
useful query type for IR is ranked partial match queries.
This is the type of queries supported by arguably all IR sys-
tems and as such must be supported adequately in P2PIR
systems if P2PIR systems aspire to be a competitive alterna-
tive of centralized search systems. In the rest of this paper,
we examine recent research that we have done for ranked
partial match queries.

3. Our Recent Research

In this section, we present our recent research on dis-
tributed information retrieval applicable to P2PIR.

3.1 Collection Ranking with Term Corre-
lation

Collection selection is a crucial step for unstructured
P2PIR. Recall that an unstructured P2P system relies on
query routing to spread the query across the nodes in the
P2P system in order to find the results. To reduce the num-
ber of nodes examined, queries much be routed more intel-
ligently than flooding. One way to achieve this is for each
node to maintain an index of the resources on the neigh-
boring nodes so that it can determine which neighboring

nodes are the best candidates to receive the query. Collec-
tion ranking refers to the determination of which collections
are better in matching the query based on condensed de-
scriptors of the collections (i.e., without actually evaluating
the query against each collection). When each peer repre-
sents a collection, it can also be called peer ranking. Re-
search had been done along this direction [20, 6]. These
methods, however, only maintain information (typically oc-
currence frequencies) about single terms in the collections.
They have no information about whether terms co-occur in
the same documents. Thus, they perform poorly for multi-
term queries because they may mistakenly give high ranks
to collections in which the query terms appear many times
but very few documents match all of the query terms.

We resolve this problem by maintaining information
about both the indexed terms and the correlation of the
terms in each collection [29].4 In our approach, a collec-
tion is first divided into clusters. For each cluster, we create
a descriptor that consists of two components, namely, the
centroid of the cluster and a co-occurrence matrix for the
terms in the cluster. Collection ranking is based on both
components. The co-occurrence matrix encodes the occur-
rence correlation values of pairs of words in the cluster. In
order to reduce the storage requirement, the co-occurrence
matrix only contains term co-occurrence information for the
frequent terms in the cluster. We evaluated different ways
of combining these two components in the server ranking
formula.

We conducted experiments using the TREC-45 and
TREC-56 subsets. Figures 1 and 2 compare the search pre-
cisions of our method (denoted by CL) and a collection
ranking method proposed by Shen, et al. [19], under various
query lengths and for uniformly distributed and Zipf dis-
tributed collection sizes. We showed that combining clus-
tering and term correlation improves the search quality sig-
nificantly. In addition, a simple but efficient clustering al-
gorithm (e.g., the K-means algorithm was adopted as the
clustering method in our implementation) and a small num-
ber of clusters are sufficient to achieve this improvement,
thus alleviating concerns about the overhead of the cluster-
ing procedure.

In the above work, correlation information is captured
for pairs of terms, but in reality correlation may exist across
more than two terms. Encoding the correlation information
for a large number of term combinations will consume a

4In [29], the term correlation method was presented in the context of a
metasearch engine, but the idea of selecting search enginesto send a query
is the same as selecting peers to route a query.

5TREC Volume 4, May 1996 Collection includes material from the
Financial Times Limited (1991, 1992, 1993, 1994), the Congressional
Record of the 103rd Congress (1993), and the Federal Register (1994).

6TREC Volume 5, April 1997 Collection includes material fromthe
Foreign Broadcast Information Service (1996) and the Los Angeles Times
(1989, 1990).

K = 30, N = 10, T = 10

20

25

30

35

40

45

50

55

60

1 2 3 4 5

Query Length

R
e
tr

ie
v
a
l
P

re
c
is

io
n
 (

%
)

CT
CL

Figure 1. Uniform distribution (K: Number of
clusters in each collection; N: Number of top
documents retrieved from each collection; T:
The number of peers that a query is forwarded
to). [29]

K = 30, N = 10, T = 10

20

25

30

35

40

45

50

55

60

1 2 3 4 5

Query Length
R

e
tr

ie
v
a
l
P

re
c
is

io
n
 (

%
)

CT
CL

Figure 2. Zipf distribution (K: Number of clus-
ters in each collection; N: Number of top doc-
uments retrieved from each collection; T: The
number of peers that a query is forwarded to).
[29]

lot of storage. To further exploit term correlation informa-
tion for collection ranking, we applied latent semantic index
(LSI) via singular value decomposition (SVD) to capture
term correlation more comprehensively but at a compara-
tively low storage overhead.7 If we represent a document
collection as a matrix of term vectors, SVD decomposes this
document-term matrix into three matrices: a term-concept
matrix which can be used to transform a term vector into a
semantic vector, a diagonal matrix and a concept-document
matrix. We found that the term-concept matrix is a more ef-
fective term descriptor component than the term correlation
matrix used in our previous work. To route a query, a peer
computes a semantic vector for the query with respect to the
term-concept matrices of its neighboring peers. We showed
that semantic vectors with better sparseness and large L2-

7Ongoing research work not yet published.

norm correspond to more fruitful peers.

3.2 DPTree

Most structured P2P systems are based on DHT’s and
thus cannot efficiently support ranked partial matched
queries that are vital for IR. In [28], we developed a dis-
tributed index calledDPTreewhich efficiently supports full-
text ranked partial match queries on peer-to-peer networks.
The idea is that each node manages a list of relevant docu-
ments for popular queries, and organizes the document lists
to be searchable withinO(log N) time whereN is the total
number of participating nodes. Let’s call the (unordered)
set of keywords in a query apattern. While the number of
possible patterns is astronomical, we can imagine that only
a relatively small number the patterns, compared to the to-
tal number of possible patterns, are frequently used in the
queries. Therefore, although it is not feasible to create an
index to contain all possible patterns, it is practical to doso
for frequently used patterns, which can be mined from the
query history. In fact, query history has been utilized suc-
cessfully in other peer-to-peer search systems to improve
search performance [4, 18].

The distributed pattern trees (DPTree) was developed to
support the organization of patterns and pattern mining. By
definition, a DPTree is a tree structure that can be imple-
mented on one or more machines. Each DPTree node cor-
responds to a pattern. In particular, the root of a DPTree
represents a single-word pattern, its children are responsi-
ble for 2-word patterns, and its grand children correspond to
3-word patterns, etc. Each node maintains an index to the
list of documents matching the pattern maintained by the
node. The roots of the DPTree’s are positioned on the peers
following the Chord protocol. Figure 3 displays a simple
example of this DPTree-based ring structure.

A

AB

AC

AD

ABC

ACD
Chord Ring

ABE

B

C

BC CD

BCE

D

BD

EBEBDE

 root

A tree node is managed
by a cluster of computers.

Figure 3. Distributed pattern trees positioned
along a Chord ring.

A DPTree node is capable of initiating, forwarding and
responding to queries. During the search procedure, a DP-
Tree node selectively records a query history, from which

frequent patterns can be mined periodically. A DPTree
starts with a single-word pattern (i.e., the root node) and
is expanded and adapted dynamically based on the frequent
patterns found. The roots of the DPTree’s form an address-
able network using distributed hash tables. By mining the
query history, our approach is able to answer most queries
quickly and precisely by managing a suitable number of
frequent patterns. In addition, we employrandom access
sequenceon patterns to establish strict mapping between a
pattern and the DPTree that it resides. This eliminates re-
dundant patterns across DPTree’s without breaking the stor-
age and network load balance among the peers. Another
data structure calledsub-tree summaryenables a DPTree
node to explore its entire sub-tree in an economical way,
thus reducing the overlay maintenance cost.

0

10

20

30

40

50

60

70

80

90

100

1K 3K 5K 8K 10K 20K

Number of peers (N)
P

re
c
is

io
n

 /
 R

e
c
a

ll
(%

) DPTree - Precision
DPTree - Recall
BLF - Precision
BLF - Recall
pSearch - Precision
pSearch - Recall

Figure 4. Precision-recall curve [28].

0

5

10

15

20

25

30

35

40

45

50

55

60

1K 3K 5K 8K 10K 20K

Number of Peers (N)

N
u

m
b

e
r

o
f

H
o

p
s

 p
e

r
Q

u
e

ry

DPTree

pSearch

BLF

Figure 5. Search Path Length [28].

In Figures 4, 5, 6, and 7, we compare our method with
other two state-of-the-art systems, namely psearch [22] and
Bloom Filter [15] in terms of search precision/recall, search
efficiency, search cost and maintenance cost. The experi-
mental results show that our approach achieves significant

0

20

40

60

80

100

120

140

160

180

1K 3K 5K 8K 10K 20K

Number of Peers (N)

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s
 p

e
r

Q
u
e
ry

DPTree w=0
DPTree w=1k
DPTree w=5k
BLF
pSearch

Figure 6. Search cost [28].

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1K 3K 5K 8K 10K 20K

Number of Peers (N)

N
u

m
b

e
r

o
f

M
e
s
s
a
g

e
s
 p

e
r

O
p

e
ra

ti
o

n

DPTree w/o sub-tree summary

DPTree gamma=1

DPTree gamma=1.2

DPTree gamma=2

BLF

pSearch

Figure 7. Maintenance for various number of
peers [28].

gain on search effectiveness and efficiency.

4. Open Problems

In this section, we consider some open problems associ-
ated with data-sharing and search in the P2P environment
that require more study. A wide variety of issues require
further investigation and research such as tradeoff among
autonomy, efficiency and robustness, query expressiveness,
quality of service, security, anonymity, and so on. In the
following, we discuss a few research issues that particularly
concern IR.

4.1 Autonomy, Efficiency and Robustness
Tradeoff

Autonomy, efficiency and robustness are three desirable
features that a P2P system could provide. Autonomy mea-

sures a peer’s independence in the network when it chooses
its neighbors, indexes resources on other peers or leaves the
network. Efficiency is evaluated along several lines such
as storage, processing and bandwidth cost. Robustness is a
network’s tolerance to intensive peer joins/leaves and peer
failures.

These three features, however, are often conflicting to
each other. For example, structured P2P approaches such as
DHT’s sacrifice autonomy for efficiency by applying strict
randomized hash functions on data positioning. At the same
time, since these systems contain routing information so as
to offer informed search, they are difficult to maintain es-
pecially when peers join and leave the network with a high
frequency. Offering only local routing information, unstruc-
tured P2P systems are at the opposite extreme. Therefore,
one great challenge is to seek a good tradeoff among auton-
omy, efficiency and robustness. For example, by restricting
the topology of the P2P network and thus peer autonomy,
Viceroy [11] managed to bound the maintenance overhead
of a peer join/leave at a constant factor, which is better than
most DHT-based method which bears logarithmic mainte-
nance cost with respect to the network size.

The degree of autonomy and robustness needed and the
sacrifice in search efficiency acceptable for IR application
must be considered. Whether a P2PIR system can be tuned
at a fine granularity level would be an interesting research
problem.

4.2 Expressiveness

Expressiveness measures how much detail can a query
language describe the desired resources. A diverse fam-
ily of query languages is available in centralized systems.
However, not all of them are realized in P2P networks, and
here we discuss a few examples of useful query languages.

• Ranked queries
The implementation difficulty of ranked keyword
queries heavily depends on the ranking metric. Al-
though quite a few works [28, 22, 10] have been done
using traditional IR similarity metrics such as inner-
product and Euclidean distance, these ranking meth-
ods fall short of the ranking methods employed by
today’s web search engines, where extensive global
analysis such as PageRank and personalization meth-
ods are used. P2PIR systems will not become a main
stream IR tool by replicating an older search technol-
ogy. The very nature of decentralized control in P2P
systems makes it difficult to implement such global
ranking techniques. On the bright side, P2P systems
lend themselves to ranking methods based on reputa-
tion, access frequencies and peer authority tailored for
P2P systems.

• SQL and aggregation queries
Although the focus of this paper is IR, IR functions
are increasingly incorporated into database manage-
ment systems. If P2PIR systems are to be deployed
in enterprises, IR cannot exist as a separate functional
module. Support of SQL requires many fundamen-
tal operations such as aggregation and join operations.
Current research on supporting SQL in a P2P envi-
ronment is mostly preliminary [25]. For example,
RDFPeers [5] built on the Multi-Attribute Address-
able Network (MAAN) which extended Chord to an-
swer SQL-like queries over RDF triplets presented as
< subject, predicate, object >. Although RDFPeers
is a scalable approach, it only supports limited types
of SQL functions and user defined schemas, which are
essential for enterprise databases. Aggregation func-
tionsMin, Max, Sum, CountandAvg were studied in
[2]. They are difficult to implement when the data are
distributed on a huge number of autonomous peers.

• Analytical search queries
Analytical search queries include both the ranked
search and the SQL components. We call it analytical
search because it queries about textual content as well
as provides analytical functions through SQL range
predicates and aggregation. It is suitable for P2P envi-
ronments, where people are interested in knowing the
distribution statistics of contents, comparing contents
from different peers, in addition to document sharing.
This type of queries is the most expressive and yet the
most challenging to support due to its complexity. The
ranked search and SQL components for P2P environ-
ments deserve careful study by themselves; moreover,
seamless integration of the two components for P2P
environments will generate great research value, given
the sharp differences between database and IR process-
ing logics and the distributed nature of P2P systems.

5. Conclusion

In this paper, we briefly surveyed P2P information re-
trieval (P2PIR) research and present some of our recent
research in this area. We pointed out a few key research
problems that must be addressed before P2PIR can be com-
petitive to the centralized search engines. Further study is
needed for P2PIR to carve out applications that are unique
and complementary to existing centralized search engines.

References

[1] E. Adar, B.A. Huberman,Free Riding on Gnutella.
Technical report. Xerox PARC, 10 Aug. 2000.

[2] M. Bawa, H. Garcia-Molina, A. Gionis, R. Mot-
wani, Estimating Aggregates on a Peer-to-Peer Net-
work, Technical Report, Computer Science Depart-
ment, Stanford University, 2003.

[3] A. Bharambe, M. Agrawal, S. Seshan,Mercury: Sup-
porting scalable multi-attribute range queries, Proc.
SIGCOMM, 2004.

[4] H. Cai, J. Wang, Peer-to-peer computing: Fore-
seer: a novel, locality-aware peer-to-peer system
architecture for keyword searches, Proc. the 5th
ACM/IFIP/USENIX international conference on Mid-
dleware, Oct 2004.

[5] M. Cai, M. Frank,RDFPeers: A Scalable Distributed
RDF Repository based on A Structured Peer-to-Peer
Network, in International World Wide Web Confer-
ence (WWW), 2004.

[6] A. Crespo, H. Garcia-Molina,Routing indices for
peer-to-peer systems, in Proc. of the 28 tn Conference
on Distributed Computing Systems, July 2002.

[7] A. Gupta, D. Agrawal, A.E. Abbadi,Approximate
range selection queries in peer-to-peer systems, Pro-
ceedings of the First Biennial Conference on Innova-
tive Data Systems Research, Asilomar, CA, Jan 2003.

[8] N.J. Harvey, M.B. Jones, S. Saroiu, M. Theimer, A.
Wolman, SkipNet: A scalable overlay network with
practical locality properties, in USENIX Symposium
on Internet Technologies and Systems (USITS), Mar
2003.

[9] R., Konrad,Napster Among Fastest-growing Net Tech-
nologies, CNET news.com, October 2000.

[10] M. Li, W.C. Lee, A. Sivasubramaniam, D.L. Lee,
A Small World Overlay Network for Semantic Based
Search in P2P, 2nd Workshop on Semantics in Peer-
to-Peer and Grid Computing.

[11] D. Malkhi, M. Naor, D. Ratajczak,Viceroy: A scal-
able and dynamic emulation of the Butterfly, Proc.
21st ACM Symposium on Principles of Distributed
Computing (PODC’02), July 2002.

[12] Napster, athttp://www.napster.com.

[13] S. Ramabhadran, S. Ratnasamy, J.M. Hellerstein, S.
Shenker,Brief Announcement: Prefix Hash Tree, in
Proc 23th Annual ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing (PODC),
2004.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker,A scalable content-addressable network, In
Proc. ACM SIGCOMM 2001, August 2001.

[15] P. Reynolds, A. Vahdat,Efficient peer-to-peer key-
word searching, Proc. ACM/IFIP/USENIX Middle-
ware Conference, volume 2672, pages 21-40, Rio de
Janeiro, Brazil, June 2003.

[16] A. Rowstron, P. Druschel,Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems, IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, pages 329-350, Novem-
ber, 2001.

[17] C. Schmidt, M. Parashar,Enabling Flexible Queries
with Guarantees in P2P Systems, IEEE Internet Com-
puting, vol. 08, no. 3, pp. 19-26, 2004.

[18] Y. Shao, R.Y. Wang,BuddyNet: History-Based P2P
Search, 23-37, ECIR, 2005.

[19] Y. Shen, Y., D.L. Lee,A Meta-Search Method Rein-
forced by Descriptors of Clusters, Proc. 2nd Interna-
tional Conference on Web Information Systems Engi-
neering (WISE01), 129-136, Kyoto, Japan, Dec 2001.

[20] Y. Shen, D.L. Lee, An MDP-based Peer-to-Peer
Search Server Network, Proc. 3rd International Con-
ference on Web Information Systems Engineering
(WISE02) Singapore, Dec, 2002, 269-278.

[21] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H.
Balakrishnan,Chord: A scalable peer-to-peer lookup
service for internet applications, In Proc. ACM SIG-
COMM 2001, August 2001.

[22] C. Tang, Z. Xu, S. Dwarkadas,Peer-to-Peer Informa-
tion Retrieval Using Self-Organizing Semantic Over-
lay Networks, ACM SIGCOMM 2003, Karlsruhe,
Germany, August 2003.

[23] C. Tang, S. Dwarkadas, Z. Xu,On Scaling Latent Se-
mantic Indexing for Large Peer-to-Peer Systems, Proc.
27th Annual International ACM SIGIR Conference,
Sheffield, UK, July 2004.

[24] E. Tanin, A. Harwood, H. Samet,Indexing Distributed
Complex Data for Complex Queries. DG.O 2004.

[25] P. Triantafillou, T. Pitoura,Towards a Unifying Frame-
work for Complex Query Processing over Structured
Peer-to-Peer Data Networks, VLDB ’03 Workshop
on Databases, Information Systems, and Peer-to-Peer
Computing, September 2003.

[26] B. Yang, H. Garcia-Molina,Improving search in
Peer-to-Peer networks, in Proc. of the 22nd Interna-
tional Conference on Distributed Computing Systems
(ICDCS02), 2002.

[27] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, J.
Kubiatowicz,Tapestry: A resilient global-scale over-
lay for service deployment, IEEE Journal on Selected
Areas in Communications, 2003. 15.

[28] D.J. Zhao, D.L. Lee, Q. Luo,DPTree: A Dis-
tributed Pattern Tree Index for Partial-Match Queries
in Peer-to-Peer Networks, in Proc. of the 10th Interna-
tional Conference on Extending Database Technology
(EDBT), 2006.

[29] D.J. Zhao, D.L. Lee, Q. Luo,A Meta-Search Method
with Clustering and Term Correlation, in Proc. 9th In-
ternational Conference on Database Systems for Ad-
vanced Applications (DASFAA), 2004.

