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ABSTRACT
We present universal estimators for the statistical mean, variance,

and scale (in particular, the interquartile range) under pure differ-

ential privacy. These estimators are universal in the sense that they

work on an arbitrary, unknown continuous distribution P over R,
while yielding strong utility guarantees except for ill-behaved P.
For certain distribution families like Gaussians or heavy-tailed dis-

tributions, we show that our universal estimators match or improve

existing estimators, which are often specifically designed for the

given family and under a priori boundedness assumptions on the

mean and variance of P. This is the first time these boundedness

assumptions are removed under pure differential privacy. The main

technical tools in our development are instance-optimal empirical

estimators for the mean and quantiles over the unbounded integer

domain, which can be of independent interest.
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1 INTRODUCTION
Parameter estimation is a central problem in statistics, data mining,

and machine learning. Let P be a continuous probability distribu-

tion over R with density function (pdf) 𝑓 (𝑥), and let 𝐹 (𝑥) be its
cumulative distribution function (CDF). We consider the following

three fundamental parameters, mean, variance, and IQR:

𝜇P =

∫ ∞

−∞
𝑥 𝑓 (𝑥), d𝑥, 𝜎2

P =

∫ ∞

−∞
(𝑥 − 𝜇)2 𝑓 (𝑥) d𝑥,

IQRP = 𝐹−1 (3/4) − 𝐹−1 (1/4) .
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Note that the interquartile range (IQR) is a widely used parameter

for the scale of P, but the particular choices of 1/4 and 3/4 are

not very important: changing them to other constants does not

affect our results (for both error bound and the requirement of 𝑛)

asymptotically. For simplicity, we omit the subscript P when there

is no confusion.

Given an i.i.d. sample 𝐷 = (𝑋1, . . . , 𝑋𝑛) drawn from P𝑛 , the
standard estimators for these parameters are (we reorder 𝐷 such

that 𝑋1 ≤ · · · ≤ 𝑋𝑛):

𝜇 (𝐷) = 1

𝑛

∑
𝑋𝑖 , d𝑥, 𝜎2 (𝐷) = 1

𝑛

∑
(𝑋𝑖 − 𝜇 (𝐷))2,

IQR(𝐷) =𝑋
3𝑛/4 − 𝑋𝑛/4,

which are often called the sample or empirical mean, variance, and

IQR. They all converge to the true parameter respectively at a rate

of 𝑂 (1/
√
𝑛), and the difference between the empirical parameter

and the statistical parameter is referred to as the sampling error.
Importantly, all these estimators are universal, namely, they work

on an arbitrary, unknown P. The 𝑂 (1/
√
𝑛) convergence rate is

optimal for many families of distributions, but not all. For instance,

the mid-range estimator (𝑋1 + 𝑋𝑛)/2 is a better estimator of 𝜇 for

uniform distributions with a convergence rate of𝑂 (1/𝑛). However,
such distribution-specific estimators are less used in practice as

we usually do not know which family P is chosen from, and they

may fail miserably when the distributional assumption does not

hold (e.g., the mid-range estimator is a very bad estimator of the

Gaussian mean).

In this paper, we design universal estimators under differential
privacy (DP) [33]. A randomized mechanismM : X𝑛 → Y satisfies

(𝜀, 𝛿)-DP if for any two neighboring datasets 𝐷 ∼ 𝐷 ′ (i.e., 𝐷 and

𝐷 ′ differ by one record), and any S ⊆ Y,

Pr[M(𝐷) ∈ S] ≤ 𝑒𝜀 · Pr[M(𝐷 ′) ∈ S] + 𝛿, (1)

for some privacy parameters 0 < 𝜀 < 1, 0 ≤ 𝛿 < 1/𝑛𝜔 (1) . For
statistical estimation problems, the high-privacy regime (e.g., 𝜀 <

1/
√
𝑛) is more interesting; otherwise, the error would be dominated

by the sampling error for many distributions (i.e., privacy is free).

This is because the privacy error is 𝑂̃ (1/(𝜖𝑛)) while the sampling

error is 𝑂̃ (1/
√
𝑛). The case 𝛿 = 0 is often called pure DP, abbreviated

as 𝜀-DP. It is preferable than the 𝛿 > 0 case, since 𝛿 corresponds to

the probability of catastrophic privacy breaches. However, there are

strong separation results showing that for certain problems, 𝜀-DP

is strictly harder to achieve than (𝜀, 𝛿)-DP [10, 16, 21, 36, 62]. Note

that, when designing a private estimator, the DP guarantee should

hold for any two neighboring datasets 𝐷,𝐷 ′, and (1) is only over

the internal randomness ofM. When analyzing its utility, however,

the randomness in both 𝐷 andM is taken into consideration.

In the past several years, quite a number of private estimators

have been proposed in the literature as summarized in Table 1. With

https://doi.org/10.1145/3584372.3588669
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𝜇 𝜎2
IQR

𝜀-DP
A1, A2, A3 [58] A1, A2, A3 [45] A1, A2, A3 [41] A1, A2, A3 [45] A2, A3 [41]

None

A1, A2, A3 [14] A1, A2, A3 [11] A1, A2 [44] A1, A2 [37] A1, A2, A3 [14] A2, A3 [11]

(𝜀, 𝛿)-DP
A3 [45] A1, A2 [17] A1, A2, A3 [41] A2, A3 [14] A3 [45] A2, A3 [41]

[30]A1, A2, A3 [18] A1, A2, A3 [11] A3 [1] A1, A2, A3 [38] A2, A3 [11] A3 [1] A3 [42]

A3 [42] A3 [12] A3 [49] A3 [6] A3 [46] A3 [49] A3 [6] A3 [46]

Table 1: Summary of existing private estimators1 and their assumptions.

the exception of the IQR estimator of [30], which only satisfies (𝜀, 𝛿)-
DP, none of them is universal. They all rely on the following three

assumptions or a subset of them:

A1. a predefined range for the mean, i.e., 𝜇 ∈ [−𝑅, 𝑅];
A2. a predefined range for the variance, i.e., 𝜎2 ∈ [𝜎2

min
, 𝜎2

max
],

as well as ranges for the higher moments if applicable;

A3. P is chosen from a specific family of distributions such as

Gaussian.

In particular, their reliance on A1/A2 is both algorithmic and

analytical, i.e., these estimators need 𝑅, 𝜎min, 𝜎max together with

𝐷 as the input, and the utility guarantees also depend on these a
priori bounds. The reliance on A3 is only analytical; when we write

A3 in Table 1, the corresponding estimator does not offer utility

guarantees when P is chosen outside the specified family.
2

In this paper, we design universal private estimators under pure

DP for 𝜇, 𝜎2
, and IQR without these assumptions while achieving

the same or better utilities. As shown in Table 1, this is the first

time A1/A2 have been removed under pure-DP. Under (𝜀, 𝛿)-DP, a
number of prior works [1, 6, 12, 14, 42, 45, 46, 49] show how A1/A2

can be removed, using stability based techniques [13, 15, 31, 60, 62],

the propose-test-release framework [30], or the truncated distribu-
tion [19]. However, these techniques fundamentally do not work

under pure DP. More precisely, for the stability based techniques

and the truncated distribution, even the output domain is different

for neighboring datasets. The propose-test-release framework by

nature must have a small probability that the privacy is breached,

thus can only achieve (𝜖, 𝛿)-DP.
As a necessary consequence, the utility guarantees of our estima-

tors depend on the properties of the unknown P, namely, they yield

instance-specific utility bounds. As we shall see below, compared

to existing estimators that aim at optimizing the worst case (i.e.,

minimax bounds), our instance-specific bounds are no worse except

for an ill-behaved P, while could be much better for most realistic

P’s. Finally, all our estimators can be implemented efficiently in

𝑂 (𝑛 log𝑛) time.

Our general approach is as follows. We first study the empirical

problem, in particular, estimating the empirical mean 𝜇 (𝐷) and the

𝜏-th quantile 𝑋𝜏 for any given 𝐷 . These empirical estimators only

work over discrete domains, but we can apply them in the statistical

setting by appropriately discretizing R. To remove A1/A2, we make

our empirical estimators work over an infinite but discrete domain,

namely, Z. To remove A3, we show that the errors achieved by our

empirical estimators are instance-optimal, hence adaptive to an

arbitrary P when applied in the statistical setting. Although our

2
[49] can handle different distribution families but need to manually adjust the algo-

rithm based on the distribution family.

main motivation is in the statistical setting, the instance-optimality

of our empirical estimators is of independent interest.

1.1 Empirical Estimators
Let 𝐷 = {𝑋1, . . . , 𝑋𝑛} be a multiset drawn from Z, and assume

𝑋1 ≤ · · · ≤ 𝑋𝑛 . Estimating 𝜇 (𝐷) and 𝑋𝜏 under DP has been studied

previously, but existing algorithms either do not provide utility

guarantees [3, 4, 50, 55] or only work over a finite domain [𝑁 ] =
{0, 1, . . . , 𝑁 } [7, 38, 53].

To reduce the domain from Z to a finite one, the natural idea is to
use the empirical range R(𝐷) = [𝑋1, 𝑋𝑛] as the domain. However,

doing so violates DP, and we must use a privatized
˜R(𝐷). A good

˜R(𝐷) should be close to R(𝐷) in both location and scale. We thus

approach the problem in two steps. First, we obtain a privatized

radius of 𝐷 , which is defined as rad(𝐷) = max𝑖 |𝑋𝑖 |. We show that

our privatized radius is not too much larger than rad(𝐷) while
covering all but 𝑂 (log log(rad(𝐷))/𝜀) elements

3
in 𝐷 :

Theorem 1.1 (Theorem 2.1, informal). There exists an 𝜀-DP
mechanism such that for any 𝐷 ∈ Z𝑛 , it returns a r̃ad(𝐷) such that4

r̃ad(𝐷) ≤ 2 · rad(𝐷) and
����𝐷 ∩ [

−r̃ad(𝐷), r̃ad(𝐷)
] ���� =

𝑂

(
1

𝜀 log log (rad(𝐷))
)
.

In the second step, we try to find a rough location of R(𝐷). As
we have bounded most elements into

[
−r̃ad(𝐷), r̃ad(𝐷)

]
, this can

be done by using a finite-domain private median (Appendix B.5).

Then we shift 𝐷 to the median and invoke again our private radius

estimator. This results in a privatized
˜R(𝐷), whose width is not too

much larger than the actual width 𝛾 (𝐷) = 𝑋𝑛 − 𝑋1:

Theorem 1.2 (Theorem 2.2, informal). There exists an 𝜀-DP
mechanism such that for any 𝐷 ∈ Z𝑛 and 𝑛 not too small, it re-

turns a range ˜R(𝐷) such that | ˜R(𝐷) | ≤ 4 · 𝛾 (𝐷), and
���𝐷 ∩ ˜R(𝐷)

��� =
𝑂

(
1

𝜀 log log (𝛾 (𝐷))
)
.

We can now invoke existing finite-domain empirical mean esti-

mators [7, 38, 53] using
˜R(𝐷) as the domain, but it turns out that

using
˜R(𝐷) directly with the clipped mean estimator (Appendix B.6)

yields an even better result:

Theorem 1.3 (Theorem 2.3, informal). There exists an 𝜀-DP
mechanism such that for any 𝐷 ∈ Z𝑛 and 𝑛 not too small, it returns

a 𝜇̃ (𝐷) such that |𝜇̃ (𝐷) − 𝜇 (𝐷) | = 𝑂

(
𝛾 (𝐷)
𝜀𝑛 log log (𝛾 (𝐷))

)
.

3
In this paper, we use 𝑒 as the base of log and define log(𝑥) = 1 for any 𝑥 ≤ 𝑒 , unless

stated otherwise.

4
All results stated in Section 1 hold with constant success probability.
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[38, 62] show that the width 𝛾 (𝐷) is an instance-specific lower

bound. More precisely, any mean estimator under DP (pure or

not) has to incur an error of Ω(𝛾 (𝐷)/𝑛) on 𝐷 or one of its in-
neighbors (see Appendix B.3 for more details), so a result like

Theorem 1.3 can be considered instance-optimal, where the ex-

tra 𝑂 (log log(𝛾 (𝐷))/𝜀) factor is the optimality ratio. In contrast,

the optimality ratio in [38] is 𝑂 (log𝑁 /𝜀)5. Thus, we obtain an im-

provement even in the finite-domain case. Furthermore, we show

that the optimality ratio cannot be better than 𝑂 (log log𝑁 /𝜀) in
the finite-domain case:

Theorem 1.4 (Theorem 2.4). For any 𝜀, any integer 𝑁 ≥ 1, 𝑛 >

log log
2
𝑁 /𝜀, and any 𝜀-DP mechanismM : [𝑁 ]𝑛 → R, there exists

𝐷 ∈ [𝑁 ]𝑛 , such that |M(𝐷) − 𝜇 (𝐷) | ≥ 𝛾 (𝐷)
3𝜀𝑛 log log

2
(𝑁 ).

For quantile estimation, there exists a finite-domain estimator

(Appendix B.5) that achieves a rank error of 𝑂 (log𝑁 /𝜀). Invoking
it with

˜R(𝐷) immediately yields:

Theorem 1.5 (Theorem 2.5, informal). There exists an 𝜀-DP
mechanism such that for any 𝐷 ∈ Z𝑛 , any 1 ≤ 𝜏 ≤ 𝑛, and 𝑛 not too
small, it returns a value 𝑋̃𝜏 such that 𝑋𝜏−𝑡 ≤ 𝑋̃𝜏 ≤ 𝑋𝜏+𝑡 , 6 for some

𝑡 = 𝑂

(
1

𝜀 log (𝛾 (𝐷))
)
.

In the finite-domain case, it is known that the rank error has to be

Ω(log𝑁 /𝜀) for at least one 𝐷 , by a reduction from the interior point
problem [9, 16]. In contrast, our error guarantee is a more instance-

specific one, which is also worst-case optimal in the finite-domain

case.

In addition, it is worth pointing out that sum estimation is equiv-

alent to answering self-join-free aggregation queries in a relational

database under user-level privacy protection [22], which has been

widely researched in database community. In that problem, the state-

of-the-art algorithm [22] achieves the error𝑂 ( rad(𝐷)
𝜀 log(𝑁 ) log log(𝑁 ))

and also requires a domain assumption 𝑁 . Consequently, our result

also yields a significant in that problem.

1.2 Statistical Mean Estimation
Next, wemove onto the statistical setting, where𝐷 is an i.i.d. sample

drawn from some arbitrary, unknown P. Before we can apply our

infinite-domain empirical mean estimator (Theorem 1.3), we have

to discretize R. Since the sampling error is already 𝑂 (𝜎/
√
𝑛), a

bucket size of 𝑏 ≤ 𝜎/𝑛 would suffice. However, 𝜎 is not known;

actually, estimating 𝜎 is another mean estimation problem. Under

assumption A2, prior work [17, 41, 43, 45] simply used 𝑏 = 𝜎min/𝑛
as the bucket size. Without any assumptions, we seek to find a

privatized lower bound of 𝜎 and use that as the bucket size. After

that, we can apply Theorem 1.3, but this leads to sub-optimal errors

in the statistical setting. The reason is that in the empirical setting,

we wish to minimize the number of points outside
˜R(𝐷), which

translates into the optimality ratio. When 𝐷 is an i.i.d. sample, the

points in 𝐷 are more well-behaved and we can use a smaller
˜R(𝐷)

to clip 𝐷 more aggressively. Our idea is thus to find
˜R(𝐷 ′) on a

sub-sample 𝐷 ′ of 𝐷 and apply the clipped mean estimator. It turns

5
The optimality ratio stated in [38] is𝑂 (

√
log𝑁 /𝜌) , which holds under 𝜌-CDP; for

pure DP, it is𝑂 (log𝑁 /𝜀)
6
Define 𝑋𝑖 = 𝑋𝑛 for 𝑖 > 𝑛 and 𝑋𝑖 = 𝑋1 for 𝑖 < 1.

out |𝐷 ′ | = 𝜀𝑛 is the right sub-sample size, which yields our main

result on a universal private mean estimator:

Theorem 1.6 (Theorem 3.5, informal). There exists an 𝜀-DP
mechanism such that for any P, given 𝐷 ∼ P𝑛 , if

𝑛 > Ω

(
1

𝜀
log log

1

𝜑 (1/16) +
1

𝜀
log log (IQR) + 1

𝜀
log

|𝜇 | + 𝜎 + 𝛾 (𝜀𝑛)
𝜑 (1/16)

)
,

(2)

then it returns a 𝜇̃ such that

|𝜇 − 𝜇̃ | =𝑂
(

min

𝜉≥10·𝛾 (𝜀𝑛)+2𝜎

(��E[
𝑋 < 𝜇 − 𝜉

]
+ E

[
𝑋 > 𝜇 + 𝜉

] ��
+ 𝜉

𝜀𝑛
log log

𝛾 (𝜀𝑛)
𝜑 (1/16)

)
+ 𝜎
√
𝑛

)
. (3)

The formal definitions of 𝜑 (1/16), 𝛾 (𝜀𝑛), E [𝑋 < 𝜇 − 𝜉], and
E [𝑋 > 𝜇 + 𝜉] are given inAppendix B.1. Roughly speaking,𝜑 (1/16)
is the minimum width of any interval with a probability mass 1/16,

which is strictly positive for any continuous distribution P. This
term is required due to the searching for a proper bucket size. For

all well-behaved P, 𝜑 (1/16) = Θ(𝜎), but it may get arbitrarily

small (e.g., when 𝑓 has a very narrow and high peak), which we call

ill-behaved. Nevertheless, we would like to stress that (1) our algo-

rithm does not need to know 𝜑 (1/16) a priori (the analysis needs it
a posteriori); (2) our dependency on 1/𝜑 (1/16) will be logarithmic

or even log log; and (3) we did not try to optimize the constant 1/16.

𝛾 (𝜀𝑛) is a constant-probability bound on𝛾 (𝐷 ′) = 𝑋 ′𝜀𝑛−𝑋 ′1 when𝐷
′

is a random sample of size 𝜀𝑛 drawn from P, while E [𝑋 < 𝜇 − 𝜉]
and E [𝑋 > 𝜇 + 𝜉] are the contributions to 𝜇 from the regions out-

side [𝜇 − 𝜉, 𝜇 + 𝜉], which correspond to (part of) the bias in 𝜇̃. The

last term in the min{. . . } of (3) is the DP noise (both bias and

variance). Importantly, the achieved error is the best bias-variance

trade-off over all possible 𝜉 > 10 · 𝛾 (𝜀) + 2𝜎 . The last term in (3) is

the sampling error, which exists even in the non-private setting, so

it does not depend on 𝜀.

Most prior works in the statistical setting state their results in

terms of sample complexity, namely, what is the required sample

size 𝑛 for achieving error 𝛼 . Our lower bound requirement (2) on

𝑛 easily translates into a term in the sample complexity, but it is

cumbersome to rewrite (3) due to the use of 𝛾 (𝜀𝑛) and the min𝜉 .

To facilitate the comparison, below we relax 𝛾 (𝜀𝑛) appropriately
and consider some fixed 𝜉 . This will result in simpler (but possibly

looser) versions of Theorem 1.6 in terms of the sample complexity.

We may also use the 𝑂̃ notation to suppress polylogarithmic factors

in 𝑛, 1

𝛼 , log |𝜇 |, log𝜎, log
1

𝜑 (1/16) , log𝑅, log
𝜎max

𝜎min

.

Gaussian distributions. If P is a Gaussian, then 𝜑 (1/16) = Θ(𝜎)
and 𝛾 (𝜀𝑛) = 𝑂̃

(
𝜎
√

log(𝜀𝑛)
)
. We fix 𝜉 = 𝑐 · 𝜎

√
log(𝜀𝑛) for some

large constant 𝑐 . Then Theorem 1.6 simplifies into:

Theorem 1.7 (Theorem 3.6). For any Gaussian P and any 𝛼 > 0,
the 𝜀-DPmechanism fromTheorem 1.6 takes𝑛 = 𝑂̃

(
1

𝜀 log
|𝜇 |
𝜎 +

𝜎2

𝛼2
+ 𝜎

𝜀𝛼

)
samples and returns a 𝜇̃ such that |𝜇̃ − 𝜇 | ≤ 𝛼 .

For Gaussian mean, [45] and [11, 41] gave two 𝜀-DP mechanisms

under A1/A2. Their sample complexities are𝑛 = 𝑂̃

(
1

𝜀 log
𝑅

𝜎min

+ 𝜎2

𝛼2
+ 𝜎

𝜀𝛼

)
and 𝑛 = 𝑂̃

(
1

𝜀 log
𝑅
𝜎 +

1

𝜀 log
𝜎max

𝜎min

+ 𝜎2

𝛼2
+ 𝜎

𝜀𝛼

)
, respectively, both in-

ferior to Theorem 1.7.
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[45] show that Ω
(

1

𝜀 log
𝑅
𝜎 +

𝜎2

𝛼2
+ 𝜎

𝜀𝛼

)
samples are necessary.

In fact, what they have proved is a worst-case lower bound, i.e.,

for any 𝑅, 𝜎 , and any 𝜀-DP mechanismM, there exists a Gauss-

ian distribution P with |𝜇P | ≤ 𝑅, 𝜎P = 𝜎 such thatM requires

Ω
(

1

𝜀 log
𝑅
𝜎 +

𝜎2

𝛼2
+ 𝜎

𝜀𝛼

)
samples to estimate 𝜇P within an error of

𝛼 . Our mechanism indeed requires this many samples on a P with

|𝜇P | = 𝑅, 𝜎P = 𝜎 , thus no contradiction.

Heavy-tailed distributions. Next, we consider the case where P
has a finite 𝑘th central moment 𝜇𝑘 for some 𝑘 ≥ 2. In this case,

we have 𝛾 (𝜀𝑛) < 𝑂

(
(𝜀𝑛𝜇𝑘 )1/𝑘

)
. Fixing 𝜉 = 𝑐 · (𝜀𝑛𝜇𝑘 )1/𝑘 for some

large 𝑐 , we can show that Theorem 1.6 simplifies to:

Theorem 1.8 (Theorem 3.9). For any P with 𝑘-th central moment
𝜇𝑘 for some 𝑘 ≥ 2, and any 𝛼 > 0, the 𝜀-DP mechanism in Theorem
1.6 takes

𝑛 = 𝑂̃
©­«1

𝜀
log

|𝜇 | + (𝜀𝜇𝑘 )1/𝑘
𝜑 (1/16) + 𝜎2

𝛼2
+

𝜇
1/(𝑘−1)
𝑘

𝜀𝛼𝑘/(𝑘−1)
ª®¬ (4)

samples and returns a 𝜇̃ such that |𝜇̃ − 𝜇 | ≤ 𝛼 .

As our universal estimator does not need to know 𝑘 and 𝜇𝑘 ,

Theorem 1.8 actually holds for any (𝑘, 𝜇𝑘 ), and the bound should

really be the infimum over all 𝑘 . In particular, if P is Gaussian, for

which 𝜇𝑘 ≤ 𝜎𝑘 (𝑘−1)!! for all𝑘 , Theorem 1.8 essentially degenerates

into Theorem 1.7 by setting 𝑘 to a large constant. Anyhow, we

would still state Theorem 1.8 for a single 𝑘 for ease of comparison

with prior work. Also note that, as 𝑘 gets smaller, the privacy term

𝜇
1/(𝑘−1)
𝑘

𝜀𝛼𝑘/(𝑘−1) becomes more significant compared with the sampling

error
𝜎2

𝛼2
. This is intuitive: As P more spreads out, the individual

values in the sample becomemore important, hence a higher cost for

privacy. For 𝑘 = 2, the privacy term would dominate the sampling

error for all 𝜀 ≤ 1.

For heavy-tailed distributions, the previous 𝜀-mechanism [44]

requires A1/A2 (for A2, their assumption is that 𝜇𝑘 ≤ 𝜇𝑘 ≤ 𝑅𝑘 for

given 𝑘, 𝜇𝑘 ). Their sample complexity is

𝑛 = 𝑂̃
©­«1

𝜀
log

𝑅

𝜇
1/𝑘
𝑘

+ 𝜎2

𝛼2
+

𝜇
1/(𝑘−1)
𝑘

𝜀𝛼𝑘/(𝑘−1)
ª®¬ (5)

The sampling error term
𝜎2

𝛼2
in (5) is the same as the one in (4). For

the privacy term (the last term) in (5) to match that in (4), they will

need 𝜇𝑘 to be a constant-factor approximation of 𝜇𝑘 , which is not

known how to obtain in a DP fashion. In fact, if 𝜇
2𝑘 = ∞, there is no

way to obtain such a 𝜇𝑘 even in the non-private setting other than

by assumption. Assuming such a 𝜇𝑘 = 𝑂 (𝜇𝑘 ) is given, it remains

to compare 𝑂

(
log
|𝜇 |+(𝜀𝜇𝑘 )1/𝑘
𝜑 (1/16)

)
and 𝑂

(
log

𝑅

𝜇
1/𝑘
𝑘

)
= 𝑂

(
log

𝑅

𝜇
1/𝑘
𝑘

)
.

Since |𝜇 | ≤ 𝑅, 𝜇
1/𝑘
𝑘
≤ 𝑅, the former is always better unless P is

ill-behaved: log
1

𝜑 (1/16) = 𝜔

(
log

1

𝜇
1/𝑘
𝑘

)
, i.e., 𝜑 (1/16) is more than

polynomially smaller than 𝜇
1/𝑘
𝑘

. [44] also prove that Ω

(
𝜇

1/(𝑘−1)
𝑘

𝜀𝛼𝑘/(𝑘−1)

)
samples are necessary. Similar to the argument in the Gaussian case,

this lower bound is worst-case. It does not imply that this many

samples are needed for every P, or that the 𝜇𝑘 ≤ 𝜇𝑘 assumption is

needed a priori.

Arbitrary distributions. If P only has finite 𝜇2 = 𝜎2
, this corre-

sponds to the most difficult distributions. Note that in this case, the

sample complexity of [44] becomes

𝑛 = 𝑂̃

(
1

𝜀
log

𝑅

𝜎max

+ 𝜎2

𝛼2
+
𝜎2

max

𝜀𝛼2

)
= 𝑂̃

(
1

𝜀
log

𝑅

𝜎max

+
𝜎2

max

𝜀𝛼2

)
(6)

For this problem, [17] proposed a different mean estimator under

A1/A2 with the sample complexity

𝑛 = 𝑂̃

(
1

𝜀
log

𝑅

𝜎min

+ 𝜎2

𝜀2𝛼2
+ 𝜎2

𝜀𝛼2
log

𝑅

𝜎min

)
.7 (7)

These two results do not dominate each other. If the given 𝜎max

is a constant-factor approximation of 𝜎 , then (6) is better than (7);

otherwise, (6) can be arbitrarily worse than (7). Note that again

there is no way to obtain a good 𝜎max other than by assumption

for a P with 𝜇4 = ∞.
Meanwhile, our algorithm is better than both [44] and [17] except

for ill-behaved P. Setting 𝑘 = 2, (4) becomes

𝑛 = 𝑂̃

(
1

𝜀
log

|𝜇 | +
√
𝜀𝜎

𝜑 (1/16) +
𝜎2

𝜀𝛼2

)
. (8)

We have already compared with [44] above for a general 𝑘 . For the

comparison with [17], in addition to achieving pure DP, we see

that the second term in (8) is strictly better than the last two terms

in (7). The first term in (8) is also better than that in (7) in most

reasonable cases, unless P is ill-behaved (𝜑 (1/16) ≪ 𝜎) or a very

small 𝑅 is given (which would make the mean estimation problem

meaningless).

1.3 Statistical Variance Estimation
For variance estimation, we first use the standard technique of ran-

domly pairing up the elements in 𝐷 . For each pair (𝑋,𝑋 ′), compute

𝑍 = (𝑋 −𝑋 ′)2, and let 𝐻 = {𝑍1, 𝑍2, · · · , 𝑍𝑛/2} be the resulting 𝑍 ’s.
Since E[𝑍 ] = 2𝜎2

, the problem boils down to estimating E[𝑍 ]. As
our mean estimator is universal, we can apply it directly without

worrying about the distribution of 𝑍 . In fact, the algorithm is even

simpler, since the range of 𝑍 is zero-centered thus easier to find.

The following is our main result on universal variance estimation:

Theorem 1.9 (Theorem 5.2 in our full version paper [25],

informal). There exists an 𝜀-DP mechanism such that for any P,
given 𝐷 ∼ P𝑛 , if

𝑛 > Ω

(
1

𝜀
log log

1

𝜑 (1/16) +
1

𝜀
log log (IQR)

)
,

then it returns a 𝜎̃2 such that

|𝜎2 − 𝜎̃2 |

=𝑂

(
min

𝜉≥5·𝛾 (𝜀𝑛)2+2𝜎2

(��E[
𝑍 > 2𝜎2 + 𝜉

] �� + 𝜉

𝜀𝑛
log log

𝛾 (𝜀𝑛)
𝜑 (1/16)

)
+

√
𝜇4

𝑛

)
.

Going through similar exercises, we obtain simplified results in

terms of the sample complexity for specific distributions.

7
The result in [17] is claimed under CDP, which leads to a result under pure-DP by

changing a distribution of noise.
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Gaussian distributions. For Gaussian distributions, we have 𝜇4 =

𝑂 (𝜎4), and the simplified result is:

Theorem 1.10 (Theorem 5.3 in our full version paper [25]).

For any Gaussian P, and any 𝛼 > 0, the 𝜀-DP mechanism from
Theorem 1.9 takes

𝑛 = 𝑂̃

(
1

𝜀
max

{
log log𝜎, log log

1

𝜎

}
+ 𝜎4

𝛼2
+ 𝜎2

𝜀𝛼

)
(9)

samples and returns a 𝜎̃2 such that |𝜎̃2 − 𝜎2 | ≤ 𝛼 .

The last two terms are the same as for Gaussian mean estimation

(Theorem 1.7), except that 𝜎 is replaced by 𝜎2
. The first term is more

interesting, where we are able to reduce a log term to a log log. This

is exactly due to the simplification mentioned above: finding the

width of the range enclosing E[𝑍 ] is exponentially easier than

finding its location. Meanwhile, since the error in 𝜎̃2
is relative

to 𝜎2
itself (in contrast, the error in 𝜇̃ is relative to 𝜎), we have to

prepare for the case where 𝜎 is very small, hence the log log
1

𝜎 term

in (9).

There are two existing Gaussian variance estimators that do not

dominate each other. [45] under A1/A2 achieve a sample complexity

of

𝑛 = 𝑂̃

(
1

𝜀
log

𝑅

𝜎min

+ 1

𝜀
log log

𝜎max

𝜎min

+ 𝜎4

𝛼2
+ 𝜎4

𝜀𝛼2

)
, (10)

while [11, 41] under A2 achieve sample complexity

𝑛 = 𝑂̃

(
1

𝜀
log

𝜎max

𝜎min

+ 𝜎4

𝛼2
+ 𝜎2

𝜀𝛼

)
. (11)

These two results are incomparable: (11) has an (almost) quadrat-

ically better privacy term (the last term) than (10), but its depen-

dency on
𝜎max

𝜎min

is exponentially worse. On the other hand, (9) is

better than both, unless A2 already gives a tight range for 𝜎 . In

fact, if we are also given 𝜎min, we can scale the data by
1

𝜎min

, and (9)

would further simplify to 𝑛 = 𝑂̃

(
1

𝜀 log log
𝜎

𝜎min

+ 𝜎4

𝛼2
+ 𝜎2

𝜀𝛼

)
, which

is always better than both (10) and (11).

Heavy-tailed distributions. Theorem 1.9 can be simplified into

the following bound in terms of the central moments:

Theorem 1.11 (Theorem 5.5 in our full version paper [25]).

For any P, and any 𝛼 > 0, the 𝜀-DP mechanism in Theorem 1.9 takes

𝑛 = 𝑂̃

(
𝜇4

𝛼2
+ inf𝑘≥4

𝜇
2/(𝑘−2)
𝑘

𝜀𝛼𝑘/(𝑘−2)

)
samples and returns a 𝜎̃2 such that

|𝜎̃2 − 𝜎2 | ≤ 𝛼 .

This is the first private variance estimator for heavy-tailed dis-

tributions.

1.4 IQR Estimation
Our IQR estimator is very simple: Discretize R using an appropriate

bucket size return 𝑋̃
3𝑛/4 − 𝑋̃𝑛/4 using Theorem 1.5. We show that

it achieves the following sample complexity:

Theorem 1.12 (Theorem 6.2 in our full version paper [25]).

There exists an 𝜀-DP mechanism such that for any P and any 𝛼 > 0,
it takes

𝑛 =𝑂̃

(
1

𝜀
log

|𝜇 | + 𝜎 + 𝛾 (𝑛)
𝜑 (1/16) + 1

𝜀𝛼 · 𝜃 (𝛼/4) log

𝛾 (𝑛)
𝜑 (1/16)

+ 1

(𝛼 · 𝜃 (𝛼/4))2
+ IQR

𝛼

)
(12)

samples and returns an ĨQR such that |ĨQR − IQR| ≤ 𝛼 .

Here, 𝜃 (𝛼) is the average value of 𝑓 (𝑥) in an interval of width

𝛼 near 𝐹−1 (1/4) and 𝐹−1 (3/4) (formal definition given in our full

version paper [25]). The previous IQR estimator [30] only satisfies

(𝜀, 𝛿)-DP. Their sample complexity is
8

𝑛 = 𝑂̃

(
1(

𝜃 (2𝑛−1/3)
)
6
+ 1

IQR
3
+ 1

𝛼3
+ exp

(
IQR

𝜀𝛼

))
. (13)

To simplify the comparison between (12) and (13), we consider

a well-behaved P where 𝜃 (𝛼) = Ω(1/IQR) (e.g., for Gaussians, we
have 𝜃 (𝛼) = Θ(1/IQR) = Θ(1/𝜎) for all 𝛼 ≤ IQR) and ignore the

logarithmic terms. Then (12) simplifies to 𝑂̃

(
IQR

𝜀𝛼 +
IQR

2

𝛼2

)
while

(13) becomes 𝑂̃

(
1

IQR
3
+ IQR

6 + 1

𝛼3
+ exp

(
IQR

𝜀𝛼

))
. Note that their

sampling error IQR
6 + 1

𝛼2
≥ (IQR

6)1/3 · ( 1

𝛼3
)2/3 =

IQR
2

𝛼2
, while

their privacy term exp

(
IQR

𝜀𝛼

)
is exponentially worse than ours. In

particular, we get the right convergence rate 𝛼 ∝ 1/(𝜀𝑛) for the
privacy noise, which agrees with that for 𝜇 and 𝜎2

. On the other

hand, their rate is 𝛼 ∝ 1/(𝜀 log𝑛).

1.5 Open Problems
The first open problem, obviously, is to extend our result to high

dimensions. The challenge here is to achieve the optimal depen-

dency on 𝑑 (see Appendix A for more details). Another interesting

direction is that, since the utility guarantees of our estimators de-

pend on the parameters of P to be estimated, we cannot output

confidence intervals. One possible solution is to derive privatized

upper bounds of these parameters, but it may be challenging to

make these upper bounds as tight as possible.

1.6 Organization
The paper is organized as follows. The formal definitions of certain

concepts introduced above are given in Appendix B, together with

some building blocks for our algorithm. In Section 2, we present

our estimators in the empirical setting. In Section 3, we describe

our universal mean estimator; estimators for variance and IQR are

deferred to our full version paper [25]. Additional discussion of

related work is also given in Appendix A.

2 EMPIRICAL ESTIMATORS
In this section, we design 𝜀-DPmechanisms for estimating 𝜇 (𝐷) and
𝑋𝜏 , where𝐷 is taken from Z. We will first obtain

˜R(𝐷), a privatized
R(𝐷), and then invoke INV and the clipped mean estimator. It turns

out that the instance optimality ratio crucially depends on how well

˜R(𝐷) approximates R(𝐷). The extension to the continuous domain

is given in our full version paper [25].

8
[30] defines 𝜃 ( ·) as the minimum value of 𝑓 (𝑥) in a small interval near 𝐹−1 (1/4)
and 𝐹−1 (3/4) , but their proof still works even if it is defined as the average value,

which makes the result stronger.
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2.1 Estimate Radius
Before estimating R(𝐷), we first estimate rad(𝐷). We will show

how to obtain a r̃ad(𝐷) such that r̃ad(𝐷) ≤ 2 · rad(𝐷) while
[−r̃ad(𝐷), r̃ad(𝐷)] covers all but 𝑂 (log log(rad(𝐷))) elements of

𝐷 .

Let Count(𝐷, 𝑥) = |𝐷 ∩ [−𝑥, 𝑥] |. It is easy to see that Count(·, 𝑥)
has the global sensitivity 1 for any 𝑥 , while rad(𝐷) is exactly the

smallest 𝑥 such that Count(𝐷, 𝑥) ≥ 𝑛. Thus, a natural idea is to feed

the query sequence Count(𝐷, 𝑥) for 𝑥 = 0, 1, 2, 4, 8, . . . to SVT with

a threshold of 𝑇 = 𝑛. However, doing so suffers from the “late stop”

problem, i.e., SVTmay stop at a r̃ad(𝐷) that is too large due to the ex-
ponential growth rate of 𝑥 . On the other hand, reducing the growth

rate increases the length of the query sequence, degrading the util-

ity of SVT. Inspired by Lemma B.9, we use 𝑇 = 𝑛 − 6 log(2/𝛽)/𝜀
so that SVT will stop at the “right” place. The details are shown in

Algorithm 8.

Algorithm 1: InfiniteDomainRadius.
Input: 𝐷 , 𝜀, 𝛽

1 𝑇 = 𝑛 − 6

𝜀 log(2/𝛽);
2 𝑖 = SVT

(
𝑇, 𝜀,Count(𝐷, 0),Count(𝐷, 20),Count(𝐷, 21), . . .

)
;

3 if 𝑖 = 1 then
4 r̃ad(𝐷) = 0;

5 else
6 r̃ad(𝐷) = 2

𝑖−2
;

7 end
8 return r̃ad(𝐷);

The privacy of InfiniteDomainRadius follows from that of the

SVT and the post-processing property of DP. We analyze its utility

below:

Theorem 2.1. For any 𝐷 ∈ Z𝑛 , with probability at least 1 − 𝛽 ,
InfiniteDomainRadius returns a r̃ad(𝐷) such that r̃ad(𝐷) ≤ 2 ·
rad(𝐷) and����𝐷 ∩ [

−r̃ad(𝐷), r̃ad(𝐷)
] ���� = 𝑂

(
1

𝜀
log (log (rad(𝐷)) /𝛽)

)
.

For the space limit, all proofs are moved to our full version

paper [25].

2.2 Estimate Range
To find a good privatized range

˜R(𝐷), we first search for an 𝑋̃

that is very likely located inside R(𝐷), which can be done using

INV to find a privatized median over a finite domain, as most data

have been covered in [−r̃ad(𝐷), r̃ad(𝐷)]. Next, we shift 𝐷 to be

centered around 𝑋̃ , and run InfiniteDomainRadius again. The

detailed algorithm is shown in Algorithm 7.

The privacy of InfiniteDomainRange follows from basic com-

position. Its utility is summarized by the following theorem:

Theorem 2.2. Given 𝜀, 𝛽 , for any 𝐷 ∈ Z𝑛 , if

𝑛 >
𝑐1

𝜀
log (rad(𝐷)/𝛽) ,

Algorithm 2: InfiniteDomainRange.
Input: 𝐷 , 𝜀 , 𝛽

1 r̃ad(𝐷) = InfiniteDomainRadius(𝐷, 𝜀
8
,
𝛽

3
) ;

2 𝐷′ = Clip

(
𝐷, [−r̃ad(𝐷), r̃ad(𝐷) ]

)
;

3 𝑋̃ =

FiniteDomainQuantile
(
𝐷′, 𝑛

2
,Z ∩

[
−r̃ad(𝐷), r̃ad(𝐷)

]
, 𝜀

8
,
𝛽

3

)
;

4 𝐷′′ = 𝐷 − 𝑋̃ ;

5 r̃ad(𝐷′′) = InfiniteDomainRadius(𝐷′′, 3𝜀
4
,
𝛽

3
) ;

6 ˜R(𝐷) = [𝑋̃ − r̃ad(𝐷′′), 𝑋̃ + r̃ad(𝐷′′) ];
7 return ˜R(𝐷) ;

Algorithm 3: InfiniteDomainMean.
Input: 𝐷 , 𝜀, 𝛽

1 ˜R(𝐷) = InfiniteDomainRange(𝐷, 4𝜀
5
,
𝛽
2
);

2 𝜇̃ (𝐷) = ClippedMean(𝐷, ˜R(𝐷)) + Lap

(
5| ˜R(𝐷) |/(𝜀𝑛)

)
;

3 return 𝜇̃ (𝐷);

where 𝑐1 is a universal constant, then with probability at least 1 − 𝛽 ,
InfiniteDomainRange returns a range ˜R(𝐷) such that

| ˜R(𝐷) | ≤ 4 · 𝛾 (𝐷),

and ���𝐷 ∩ ˜R(𝐷)
��� = 𝑂

(
1

𝜀
log (log (𝛾 (𝐷)) /𝛽)

)
.

2.3 Mean Estimation
With a good

˜R(𝐷), we can now do mean estimation over an infinite

domain. The algorithm is shown in Algorithm 3. Its privacy follows

from basic composition, while its utility guarantee is as follows:

Theorem 2.3. Given 𝜀, 𝛽 , for any 𝐷 ∈ Z𝑛 , if

𝑛 >
𝑐1

𝜀
log (rad(𝐷)/𝛽) ,

where 𝑐1 is a universal constant, then with probability at least 1 − 𝛽 ,
InfiniteDomainMean returns a 𝜇̃ (𝐷) such that

|𝜇̃ (𝐷) − 𝜇 (𝐷) | = 𝑂

(
𝛾 (𝐷)
𝜀𝑛

log (log (𝛾 (𝐷)) /𝛽)
)
.

In Appendix B.2 and B.3, we give the definition for inward-

neighborhood optimality and show for the empirical mean 𝜇 (𝐷),
its lower bound L

in-nbr
(𝐷) = Ω(𝛾 (𝐷)/𝑛) for every 𝐷 . This means

InfiniteDomainMean is inward-neighborhood optimal with an

optimality ratio of 𝑐 = 𝑂 (log log(𝛾 (𝐷))/𝜀) for constant 𝛽 . Below,
we show that this 𝑐 is worst-case optimal in the finite-domain

case. In particular, it implies that the optimality ratio cannot be

independent of 𝐷 .

Theorem 2.4. For the empirical mean 𝜇 (𝐷), given any 𝜀, any
integer 𝑁 ≥ 1, and any 𝑛 > log log

2
(𝑁 )/𝜀, for any 𝜀-DP mechanism

M : [𝑁 ]𝑛 → R, there exists 𝐷 ∈ [𝑁 ]𝑛 , such that

Err(M, 𝐷) ≥ 𝛾 (𝐷)
3𝜀𝑛

log log
2
(𝑁 ) .
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Algorithm 4: InfiniteDomainQuantile.
Input: 𝐷 , 𝜏 , 𝜀, 𝛽

1 ˜R(𝐷) = InfiniteDomainRange(𝐷, 4𝜀
5
,
𝛽
2
);

2 𝐷 ′ = Clip

(
𝐷, ˜R(𝐷)

)
;

3 𝑋̃𝜏 = FiniteDomainQuantile
(
𝐷 ′, 𝜏, ˜R(𝐷), 𝜀

5
,
𝛽
2

)
;

4 return 𝑋̃𝜏 ;

2.4 Quantile Estimation
Similarly, to find a privatized quantile over an infinite domain,

we invoke FiniteDomainQuantile with
˜R(𝐷). The algorithm is

shown in Algorithm 4. Its privacy is straightforward, while achiev-

ing 𝑂 (log(rad(𝐷))/𝜀) rank error:

Theorem 2.5. Given 𝜀, 𝛽 , for any 𝐷 ∈ Z𝑛 and any 1 ≤ 𝜏 ≤ 𝑛, if

𝑛 >
𝑐1

𝜀
log (rad(𝐷)/𝛽) ,

where 𝑐1 is a universal constant, then with probability at least 1 − 𝛽 ,
InfiniteDomainQuantile returns a value 𝑋̃𝜏 such that

𝑋𝜏−𝑡 ≤ 𝑋̃𝜏 ≤ 𝑋𝜏+𝑡 ,

where

𝑡 = 𝑂

(
1

𝜀
log (𝛾 (𝐷)/𝛽)

)
.

The rank error of FiniteDomainQuantile is instance-specific,
and worst-case optimal in the finite-domain case, by a reduction

from the interior-point problem. Here, given a dataset 𝐷 ∈ [𝑁 ]𝑛 ,
we want to return any integer inside R(𝐷). It has been shown that

any 𝜀-DP mechanism for the interior point problem requires 𝑛 =

Ω(log(𝑁 )/𝜀) [9, 16]. Given a (finite-domain) quantile mechanism

with rank error 𝑡 , we would be able to solve the interior-point

problem on datasets with 2𝑡 elements by returning the median.

Thus Ω(log(𝑁 )/𝜀) is also a lower bound on the rank error.

3 STATISTICAL MEAN ESTIMATION
In this section, we consider the statistical mean estimation problem,

i.e., given an i.i.d. sample𝐷 ∼ P𝑛 for an arbitrary, unknown P over

R, we wish to estimate 𝜇P . The idea is conceptually simple: We

first discrete R with an appropriate bucket size 𝑏; then we invoke

the empirical mean estimator over Z. For the first step, we find

a lower bound on the IQR, denoted IQR, as the bucket size. For

the second step, it turns out that directly invoking the empirical

mean estimator in Theorem 2.3 results in sub-optimal errors in the

statistical setting; instead, we shall use a tighter range to do the

clipping.

3.1 Estimate a Lower Bound for IQR

Prior work under A2 simply uses 𝑏 = 𝜎min as the bucket size,

which would be dominated by the sampling error. In the absence

of 𝜎min, we seek to obtain a privatized lower bound of IQR, since

IQR ≤ 4𝜎 . Furthermore, recall 𝛾

(
2, 3

4

)
≤ IQR (Appendix B.1), thus

if we randomly draw two values𝑋 ,𝑋 ′ fromP, thenwith probability
at least

1

4
, we have

|𝑋 − 𝑋 ′ | ≤ IQR.

Meanwhile, we do not want a bucket size too small. We thus

relate |𝑋 − 𝑋 ′ | with 𝜑 (·).

Lemma 3.1. For any 𝑋,𝑋 ′ ∈ P, with probability at least 1− 1

8
, we

have 𝜑
(

1

16

)
≤ |𝑋 − 𝑋 ′ |.

To amplify the success probability, we randomly group the el-

ements in 𝐷 into pairs (𝑋,𝑋 ′) and let 𝐺 = {𝑌1, 𝑌2, . . . , 𝑌𝑛′} where
𝑛′ = 𝑛/2 and 𝑌𝑖 = |𝑋 − 𝑋 ′ | for each pair. Again, suppose 𝑌1 ≤
· · · ≤ 𝑌𝑛′ . Then certain quantiles of 𝐺 will satisfy our needs with

probability 1 − 𝛽 . More precisely:

Lemma 3.2. Given 𝛽 , for any 𝐷 ∈ P𝑛 , if 𝑛 > 𝑐1 log(1/𝛽), where
𝑐1 is a universal constant, then with probability at least 1 − 𝛽 , we

have, 𝜑
(

1

16

)
≤ 𝑌 5𝑛′

32

and 𝑌 7𝑛′
32

≤ IQR.

Therefore, we can find a quantile between𝑌 5𝑛′
32

and𝑌 7𝑛′
32

, say𝑌 3𝑛′
16

,

as IQR. However, we cannot use InfiniteDomainQuantile here as
we have not discretizedR yet. To get out of this circular dependency,

we obverse that we do not need a 𝑌̃ 3𝑛′
16

with a small rank error;

instead, a rough constant-factor approximation will do. Thus, the

idea is to run two instances of SVT, one with increasing thresholds

and one with decreasing thresholds, as detailed in Algorithm 10.

Algorithm 5: EstimateIQRLowerBound.
Input: 𝐷 , 𝜀 , 𝛽

1 𝑛′ = 𝑛
2
;

2 Construct𝐺 from 𝐷 ;

3 𝑖 = SVT

(
3𝑛′
16

, 𝜀
2
,Count(𝐺, 20),Count(𝐺, 21),Count(𝐺, 22), . . .

)
;

4 𝑗 =

SVT

(
− 3𝑛′

16
, 𝜀

2
,−Count(𝐺, 20),−Count(𝐺, 2−1),−Count(𝐺, 2−2), . . .

)
;

5 if 𝑖 > 1 then
6 IQR = 2

𝑖−2
;

7 else
8 IQR = 2

−𝑗
;

9 end
10 return IQR;

The privacy of EstimateIQRLowerBound is straightforward; we

analyze its utility below:

Theorem 3.3. Given 𝜀, 𝛽 , for any 𝐷 ∼ P𝑛 , if

𝑛 >
𝑐1

𝜀
log log

1

𝜑 (1/16) +
𝑐2

𝜀
log log (IQR) + 𝑐3

𝜀
log(1/𝛽),

where 𝑐1, 𝑐2, 𝑐3 are universal constants, then with probability at least
1 − 𝛽 , EstimateIQRLowerBound returns an IQR such that,

1

4

· 𝜑
(

1

16

)
≤ IQR ≤ IQR.

3.2 General Algorithm and Error Analysis
We mentioned that directly invoking InfiniteDomainMean over

𝐷 , even with a good bucket size, results sub-optimal errors in the

statistical setting with respect to the dependency on 𝜀. Here we

give an intuitive explanation. Recall that in InfiniteDomainMean,
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we find a privatized range
˜R(𝐷) and use it with the clipped mean

estimator. The error comes from two sources: (1) There are 𝑂̃ (1/𝜀)
clipped outliers, each contributing 𝛾 (𝐷)/𝑛 bias. (2) The Laplace

noise is proportional to | ˜R(𝐷) |/(𝜀𝑛) = 𝑂 (𝛾 (𝐷)/(𝜀𝑛). One should
thus match the two parts of errors for an optimal overall error

bound. In the empirical setting, as 𝐷 is arbitrary, simply using

𝛾 (𝐷)/𝑛 as an upper bound on the bias from clipping each outlier

is already the best one can do. In the statistical setting, however,

since 𝐷 is an i.i.d. sample, this upper bound is too pessimistic.

Therefore, in the statistical setting, we try to use a tighter
˜R(𝐷)

to perform more aggressive clipping. The idea is to sub-sample

𝑚 elements from 𝐷 and obtain a privatized range on the sample

𝐷 ′, denoted ˜R(𝐷 ′). A smaller𝑚 corresponds to more aggressive

clipping, which increases the bias but reduces the noise. The optimal

choice of𝑚 will depend on P, which is not possible for a universal

estimator. Fortunately and somehow amazingly,𝑚 = 𝜀𝑛 turns out

to be a choice that is good enough, and here is the intuition: By

Theorem B.4, the privacy budget on finding
˜R(𝐷 ′) can be amplified

to 𝜀 ′ ≈ 𝜀𝑛/𝑚. Therefore, there are 𝑂̃ (1/𝜀 ′) = 𝑂̃ (𝑚/(𝜀𝑛)) outliers
in 𝐷 ′ outside ˜R(𝐷 ′). However, there is essentially no room for

improvement when the number of outliers in 𝐷 ′ is less than 1, i.e.,

it is sufficient to set𝑚 ≥ 𝜀𝑛. When𝑚 ≥ 𝜀𝑛, the number of outliers

in 𝐷 is roughly 𝑂̃ (𝑚/(𝜀𝑛)) · 𝑛/𝑚 = 𝑂̃ (1/𝜀𝑛), which is fixed, while

a smaller𝑚 reduces | ˜R(𝐷 ′) |.

Algorithm 6: EstimateMean.
Input: 𝐷 , 𝜀, 𝛽

1 IQR = EstimateIQRLowerBound(𝐷, 𝜀
8
,
𝛽
9
);

2 Let 𝐷 ′ be a sample of 𝜀𝑛 values from 𝐷 ;

3 𝜀 ′ = log

(
𝑒𝜀−1

𝜀 + 1

)
;

4 ˜R(𝐷 ′) = InfiniteDomainRange(𝐷 ′, 3𝜀′
4
,
𝛽
9
) with 𝑏 = IQR;

5 𝜇̃ = ClippedMean

(
𝐷, ˜R(𝐷 ′)

)
+ Lap

(
8| ˜R(𝐷 ′) |/(𝜀𝑛)

)
;

6 return 𝜇̃;

With the intuition above, we present our statistical mean estima-

tor, as shown in Algorithm 6. Its privacy follows from Theorem B.4

and basic composition. Before analyzing its error, we first state a

standard result relating P with its truncated version:

Lemma 3.4. Let 𝑋 ∼ P and 𝜉 ≥ 0, and let 𝑋 be the following
random variable:

𝑋 =


𝜇 − 𝜉, if 𝑋 < 𝜇 − 𝜉 ;

𝑋, if 𝜇 − 𝜉 ≤ 𝑋 ≤ 𝜇 + 𝜉 ;

𝜇 + 𝜉, if 𝑋 > 𝜇 + 𝜉 .

Let 𝜇 and 𝜎2 denote the mean and variance of 𝑋 . Then,

𝜎 ≤ 𝜎,

and
𝜇 − 𝜇 = E[𝑋 < 𝜇 − 𝜉] + E[𝑋 > 𝜇 + 𝜉] .

We are now ready to analyze the error of EstimateMean.

Theorem 3.5. Given 𝜀, 𝛽 , for any 𝐷 ∼ P𝑛 , if

𝑛 >
𝑐1

𝜀
log log

1

𝜑 (1/16) +
𝑐2

𝜀
log log (IQR) + 𝑐3

𝜀
log

1

𝛽

+ 𝑐4

𝜀
log

|𝜇 | + 𝜎 + 𝛾 (𝜀𝑛, 𝛽/9)
𝜑 (1/16) ,

where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are universal constants, then with probability
at least 1 − 𝛽 , EstimateMean returns a value 𝜇̃ such that

|𝜇 − 𝜇̃ | =𝑂
(

min

𝜉≥10·𝛾 (𝜀𝑛, 𝛽
9
)+2𝜎

(��E[
𝑋 < 𝜇 − 𝜉

]
+ E

[
𝑋 > 𝜇 + 𝜉

] ��
+ 𝜉

𝜀𝑛
log

( 1

𝛽
log

𝛾 (𝜀𝑛, 𝛽/9)
𝜑 (1/16)

) )
+ 𝜎

√
log(1/𝛽)

𝑛

)
.

We first explain each term in the theorem before presenting its

proof. The first two terms in the requirement of 𝑛 are from finding

the bucket size, and the last one is for estimating
˜R(𝐷 ′). In the

error bound, all the terms in the min𝜉 are due to privacy, while the

last term is the sampling error. We would like to emphasize that

although the requirement on 𝑛 and the error bound depend on P
(they have to), the algorithm does not need any a priori assumptions

on P. Furthermore, some of the dependencies can be improved if

certain assumptions are made on P. For instance, if 𝜎min is given,

then there is no need to find a bucket size and the first two terms

in the requirement on 𝑛 will disappear, while the 𝜑

(
1

16

)
in both

the requirement on 𝑛 and the error bound will be replaced by 𝜎min.

3.3 Error Bounds for Specific Distribution
Families

To facilitate the comparison with prior work, below we derive sim-

plified (and possibly looser) versions of Theorem 3.5 for certain

distribution families. These simplified bounds can be easily rewrit-

ten into the sample complexity results stated in Section 1. We also

set 𝛽 as
1

3
.

Gaussian distributions. For a Gaussian P, we have 𝜑 (𝛽) = Θ(𝜎),
IQR = Θ(𝜎), and 𝛾 (𝜀𝑛, 𝛽/9) = 𝑂

(
𝜎
√

log(𝜀𝑛)
)
by the standard

Gaussian tail bound. In addition, due to its symmetry, E[𝑋 < 𝜇 −
𝜉] + E[𝑋 > 𝜇 + 𝜉] = 0 for any 𝜉 . Fixing 𝜉 = 𝑐𝜎

√
log(𝜀𝑛) for some

large constant 𝑐 , Theorem 3.5 simplifies into:

Theorem 3.6. Given 𝜀, 𝛽 , for any 𝐷 ∼ P𝑛 , where P is a Gaussian
distribution, if

𝑛 >
𝑐1

𝜀
log log𝜎 + 𝑐2

𝜀
log log

1

𝜎
+ 𝑐3

𝜀
log

|𝜇 |
𝜎
,

where 𝑐1, 𝑐2, 𝑐3 are universal constants, then

Err(EstimateMean, 𝐷) =𝑂
(
𝜎
√
𝑛
+ 𝜎

𝜀𝑛
log log log(𝜀𝑛)

√
log(𝜀𝑛)

)
.

Heavy-tailed distributions. Now, we consider the case where P
has a bounded 𝑘-th central moment 𝜇𝑘 . Note that 𝜎 ≤ 𝜇

1/𝑘
𝑘

. In

addition, we can also bound 𝛾 (𝑚, 𝛽) in terms of 𝜇𝑘 :

Lemma 3.7. For any𝑚, 𝛽 , and 𝑘 ≥ 2, 𝛾 (𝑚, 𝛽) ≤ 2

(
𝑚𝜇𝑘
𝛽

)
1/𝑘

.

Plugging these bounds into Theorem 3.5 and setting 𝜉 = 𝑐 ·
(𝜀𝑛𝜇𝑘 )1/𝑘 for some large constant 𝑐 , the requirement on 𝑛 becomes

𝑛 >
𝑐1

𝜀
log log

1

𝜑 (1/16) +
𝑐2

𝜀
log log (IQR) + 𝑐3

𝜀
log

|𝜇 | + (𝜀𝜇𝑘 )1/𝑘
𝜑 (1/16) ,
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and the error bound changes to

Err(EstimateMean, 𝐷)

=𝑂
©­« 𝜎
√
𝑛
+

𝜇
1/𝑘
𝑘

(𝜀𝑛)1−1/𝑘 log log

(𝜀𝑛𝜇𝑘 )1/𝑘
𝜑 (1/16)

+
���E [

𝑋 < 𝜇 − 𝑐 · (𝜀𝑛𝜇𝑘 )1/𝑘
]
+ E

[
𝑋 > 𝜇 + 𝑐 · (𝜀𝑛𝜇𝑘 )1/𝑘

] ���) .
(14)

Now, we further analyze the last term in (14). We first derive a

lemma similar to the one in [44]:

Lemma 3.8. Let P be a distribution with a bounded 𝜇𝑘 . Given 𝜉

and 𝑡 such that 𝜉 ≥ 2 (𝜇𝑘/𝑡)1/(𝑘−1) , we have

|E[𝑋 < 𝜇 − 𝜉] + E[𝑋 > 𝜇 + 𝜉] | ≤ 𝑡 .

By setting 𝜉 = 𝑐 · (𝜀𝑛𝜇𝑘 )1/𝑘 for 𝑐 ≥ 2 and 𝑡 =
𝜇

1/𝑘
𝑘

(𝜀𝑛)1−1/𝑘 , we have���E [
𝑋 < 𝜇 − 𝑐 · (𝜀𝑛𝜇𝑘 )1/𝑘

]
+ E

[
𝑋 > 𝜇 + 𝑐 · (𝜀𝑛𝜇𝑘 )1/𝑘

] ��� ≤ 𝜇
1/𝑘
𝑘

(𝜀𝑛)1−1/𝑘 .

Plugging this bound into (14), we obtain:

Theorem 3.9. Given 𝜀, 𝛽 , for any 𝐷 ∼ P𝑛 and any 𝑘 if

𝑛 >
𝑐1

𝜀
log log

1

𝜑 (1/16) +
𝑐2

𝜀
log log (IQR) + 𝑐3

𝜀
log

|𝜇 | + (𝜀𝜇𝑘 )1/𝑘
𝜑 (1/16) ,

where 𝑐1, 𝑐2, 𝑐3 are universal constants, then

Err(EstimateMean, 𝐷) = 𝑂
©­« 𝜎
√
𝑛
+

𝜇
1/𝑘
𝑘

(𝜀𝑛)1−1/𝑘 log log

(𝜀𝑛𝜇𝑘 )1/𝑘
𝜑 (1/16)
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A OTHER RELATEDWORK
Many works on mean estimators extend to higher dimensions, such

as [1, 6, 11, 12, 14, 18, 37, 38, 41, 42, 44, 46, 49]. Using the idea of

[38] but replacing Gaussian mechanism with Laplace mechanism,

we can extend our pure-DP estimator to the multivariate case. How-

ever, it does not get the optimal privacy term 𝑂̃ (𝑑/(𝜀𝑛)). In fact,

the problem is open even under A1/A2/A3 (assuming multivariate

Gaussians for A3). [44] achieve the optimal 𝑂̃ (𝑑/(𝜀𝑛)) but their
algorithm runs in exponential time; the mechanism in [37] runs in

polynomial time but its privacy error is 𝑂̃ (
√
𝑑/(𝜀𝑛)). Besides, [48]

propose a solution for robust mean estimation under differential

privacy. The mean estimation problem has also been studied in

the local model of DP [27–29, 35, 40], which is also an interesting

direction to look at.

Covariance estimation in high dimensions has also received a

lot of attention. [11, 14, 41] consider multivariate Gaussian distri-

butions and make similar boundedness assumptions like A1/A2.

[1, 6, 42, 46, 49] do not need such assumptions but they relax the

privacy notion to approximate DP. [2, 23] study the covariance for

the data with bounded norms, which is even stronger than A1/A2.

[20, 34, 57, 61] study private PCA or OLS, which can also be used

to estimate covariance. However, they also assume that the data

have bounded norms.

In the empirical setting, worst-case optimality does not make

sense for functions whose global sensitivity is very large or ∞,
which is the case for the empirical mean 𝜇 (𝐷) where 𝐷 is drawn

from an unbounded domain. Instance-optimality is thus more suit-

able, but as pointed out by [7], strict instance-optimality is not

possible, who therefore propose a natural relaxation by consider-

ing a small neighborhood. Nevertheless, for functions like 𝜇 (𝐷),
the neighborhood has to be restricted to avoid degeneration into

worst-case optimality [38], as we explain in Appendix B.3. Besides,

as mentioned in Section 1.1, our empirical estimator can be used to

answer self-join-free aggregation queries in a relational database.

Answering aggregation queries has also been extensively studied

in database community [5, 22, 24, 26, 39, 47, 51, 52, 54, 56, 59]. For

more details, please see [22].

B PRELIMINARIES
B.1 Notation
Given a multiset 𝐷 = {𝑋1, . . . , 𝑋𝑛} ∈ R𝑛 (we reorder 𝐷 such

that 𝑋1 ≤ · · · ≤ 𝑋𝑛), we introduce the following notation: Its

support is supp(𝐷), range is R(𝐷) = [𝑋1, 𝑋𝑛], width is 𝛾 (𝐷) =
𝑋𝑛 − 𝑋1, and radius is rad(𝐷) = max𝑖 |𝑋𝑖 |. It is clear that R(𝐷) ⊆
[−rad(𝐷), rad(𝐷)], hence 𝛾 (𝐷) ≤ 2 · rad(𝐷), but rad(𝐷) can be

arbitrary larger than 𝛾 (𝐷). For any S ⊆ R, let

|𝐷 ∩ S| = |{1 ≤ 𝑖 ≤ 𝑛 | 𝑋𝑖 ∈ 𝐷 ∩ S}| .

Given a continuous probability distribution P overR, in addition
to 𝜇, 𝜎2

, IQR defined in Section 1, we also need the following quanti-

ties: For any 𝑘 ≥ 2, the 𝑘th-central moment is 𝜇𝑘 = E𝑋∼𝑃 [|𝑋 − 𝜇 |𝑘 ].
In particular, 𝜇2 = 𝜎2

. For any 𝛽 ∈ (0, 1), the width of the highest
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density region at level 𝛽 is

𝜑 (𝛽) = inf

{
𝑎2 − 𝑎1

����𝑎1, 𝑎2 ∈ R, 𝑎2 > 𝑎1,

∫ 𝑎2

𝑎1

𝑓 (𝑥) d𝑥 ≥ 𝛽

}
.

We will only need 𝜑 (𝛽) for some constant 𝛽 . Note that 𝜑 (1/2) ≤
IQR ≤ 4𝜎 (the first inequality is by definition and the second is by

Chebyshev’s inequality). For most P, the three quantities are close
(e.g., for a Gaussian P, the three are all within a constant factor

from each other), although the gap can be arbitrarily large for an

ill-behaved P.
For any𝑚 ∈ N and 𝛽 ∈ (0, 1), define the (𝑚, 𝛽)-statistical width

of P as

𝛾 (𝑚, 𝛽) = inf

{
𝜆 ∈ R

���� Pr

𝐷∼P𝑚
[𝛾 (𝐷) ≥ 𝜆] ≤ 𝛽

}
.

Note that

𝛾

(
2,

3

4

)
≤ IQR ≤ 𝛾

(
log 4

3

(2/𝛽), 𝛽
)
.

The first inequality is because for 𝑋 ∼ P, with probability
1

2
, 𝑋 ∈

[𝐹−1 (1/4), 𝐹−1 (3/4)]; the second inequality follows from the fact

that 𝑋 ∈ [−∞, 𝐹−1 (1/4)] and 𝑋 ∈ [𝐹−1 (3/4),∞] each happens

with probability
1

4
, plus a union bound.

For 𝑋 ∈ P and any 𝑥 ∈ R, define

E[𝑋 ≶ 𝑥] := E𝑋∼P [(𝑋 − 𝑥)I(𝑋 ≶ 𝑥)] .

Finally, we introduce the following shorthand: For any 𝑎, 𝑏 ∈ R,
let [𝑎 ± 𝑏] := [𝑎 − 𝑏, 𝑎 + 𝑏]. For interval [𝑙, 𝑟 ] and 𝑏 ∈ R, let
[𝑙, 𝑟 ] ± 𝑏 := [𝑙 − 𝑏, 𝑟 + 𝑏]. Define [𝑁 ] := {0, 1, . . . , 𝑁 }.

B.2 Differential Privacy
The DP definition has already been introduced in Section 1. The

following two properties of DP are well-known:

Lemma B.1 (Post Processing [31]). If M : X𝑛 → Y satis-
fies 𝜀-DP andM ′ : Y → Z is any randomized mechanism, then
M ′(M(𝐷)) satisfies 𝜀-DP.

Lemma B.2 (Basic Composition [31]). IfM1 : X𝑛 → Y satisfies
𝜀1-DP andM2 : X𝑛 ×Y → Z satisfies 𝜀2-DP, thenM2 (𝐷,M1 (𝐷))
satisfies (𝜀1 + 𝜀2)-DP.

For any function 𝑄 , its local sensitivity at 𝐷 is

LS𝑄 (𝐷) = sup

𝐷∼𝐷′
|𝑄 (𝐷) −𝑄 (𝐷 ′) |

and the global sensitivity is

GS𝑄 = sup

𝐷

LS𝑄 (𝐷).

A basic pure DP mechanism is the Laplace mechanism:

Lemma B.3 (Laplace Mechanism). The mechanism

M𝑄 (𝐷) = 𝑄 (𝐷) + Lap(GS𝑄/𝜀)

preserves 𝜀-DP, where Lap(GS𝑄/𝜀) is a random variable drawn from
the Laplace distribution with scale GS𝑄/𝜀.

Below we omit the subscript 𝑄 if the context is clear.

We also need the following result, which shows that privacy can

be amplified by sampling.

Theorem B.4 (Sampling Amplification [8]). Let 𝜂 ∈ (0, 1).
Given an 𝜀-DP mechanismM, define S𝜂 as the operation of sampling
𝜂𝑛 samples from 𝐷 without replacement, thenM(S𝜂 (𝐷)) preserves
(log(1 + 𝜂 (𝑒𝜀 − 1)))-DP.

Note that for small 𝜀, log(1 + 𝜂 (𝑒𝜀 − 1)) ≈ 𝜂𝜀.

B.3 Optimality
The high-probability error of usingM(𝐷) to approximate 𝑄 (𝐷) is
defined as

Err(M, 𝐷, 𝛽) = inf {𝜆 ∈ R | Pr [|M(𝐷) −𝑄 (𝐷) | ≤ 𝜆] ≥ 1 − 𝛽} .

We often take 𝛽 as a constant, say 𝛽 = 1/3; in this case we simply

write Err(M, 𝐷).
The Laplace mechanism is worst-case optimal. However, for any

function 𝑄 with GS = ∞, such as the empirical mean 𝜇 (𝐷) when
𝐷 is taken from an unbounded domain, this optimality notion is

meaningless. For such a 𝑄 , instance-optimality is more appropriate

and much stronger:

Definition B.5 (Instance-optimality). Define the per-instance lower
bound:

Lins (𝐷) = inf

M′
Err(M ′, 𝐷) .

Then a DP mechanismM is 𝑐-instance-optimal if

Err(M, 𝐷) ≤ 𝑐 · Lins (𝐷)

for every 𝐷 , where 𝑐 is the optimality ratio, which may depend on

𝐷 .

Unfortunately, Lins (𝐷) = 0 for every 𝐷 due to the trivial DP

mechanismM ′(·) ≡ 𝑄 (𝐷). Thus, instance-optimal DPmechanisms

do not exist unless𝑄 is trivial (i.e.,𝑄 (𝐷) is the same for all𝐷). Thus,

the following natural relaxation has been proposed:

Definition B.6 (Neighborhood-optimality [7, 26]). Define the neigh-
borhood lower bound:

L
nbr
(𝐷) = inf

M′
sup

𝐷′:𝐷′∼𝐷
Err(M ′, 𝐷 ′) .

Then a DP mechanismM is 𝑐-neighborhood-optimal if

Err(M, 𝐷) ≤ 𝑐 · L
nbr
(𝐷),

for every 𝐷 .

[62] show that L
nbr
(𝐷) = Θ(LS(𝐷)) for every 𝐷 . For the em-

pirical mean 𝜇 (𝐷), we have LS(𝐷) = ∞, since one can change an

element in 𝐷 arbitrarily to obtain 𝐷 ′. Thus this relaxation is “too

much”. To fix the issue, the idea is to restrict the neighborhood:

Definition B.7 (Inward-neighborhood-optimality [38]). Define the
inward-neighborhood lower bound:

L
in-nbr

(𝐷) = inf

M′
max

𝐷′:𝐷∼𝐷′,supp(𝐷′) ⊆supp(𝐷)
Err(M ′, 𝐷 ′) .

Then a DP mechanismM is 𝑐-inward-neighborhood-optimal if

Err(M, 𝐷) ≤ 𝑐 · L
in-nbr

(𝐷),

for every 𝐷 .
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Algorithm 7: SVT.

Input: 𝑇 , 𝜀, 𝑄1 (𝐷), 𝑄2 (𝐷), . . .
1 𝑇 ← 𝑇 + Lap(2/𝜀);
2 for 𝑖 ← 1, 2, . . . do
3 𝑄̃𝑖 (𝐷) ← 𝑄𝑖 (𝐷) + Lap(4/𝜀);
4 if 𝑄̃𝑖 (𝐷) > 𝑇 then
5 Break;

6 end
7 end
8 return 𝑖;

Note that the restricted neighborhood is only concerned with

the utility ofM, which still has to meet the standard privacy re-

quirement over all 𝐷 ∼ 𝐷 ′.
For any function 𝑄 , L

in-nbr
(𝐷) is always finite, as 𝐷 can only

have a finite number of inward neighbors (thus sup𝐷′ is replaced

by max𝐷′ ). In particular, for the empirical mean 𝜇 (𝐷), we have

L
in-nbr

(𝐷) = Θ(𝛾 (𝐷)/𝑛) [38].

B.4 The Sparse Vector Technique
The Sparse Vector Technique (SVT) [32] has as input a (possibly

infinite) sequence of queries, 𝑄1, 𝑄2, . . . , where each query has

global sensitivity 1, and a threshold 𝑇 . It aims to find the first

query whose answer is above 𝑇 . The detailed algorithm is given in

Algorithm 8. The SVT has been shown to satisfy 𝜀-DP and enjoy

the following error guarantee, which says that it will not stop until

it gets close to 𝑇 .

Lemma B.8 ([33]). Suppose there exists a 𝑘1 less than the length
of the query sequence such that for all 𝑖 = 1, . . . , 𝑘1, 𝑄𝑖 (𝐷) ≤ 𝑇 −
8

𝜀 log(2𝑘1/𝛽). Then with probability at least 1 − 𝛽 , SVT returns an
𝑖 ≥ 𝑘1 + 1.

However, as will be clear later, we will actually need a com-

plementary result that guarantees that SVT will stop in time. The

following lemma gives such a result. More importantly, it also yields

a utility guarantee on the returned query.

Lemma B.9. If there exists a 𝑘2 such that𝑄𝑘2
(𝐷) ≥ 𝑇 + 6

𝜀 log(2/𝛽),
then with probability at least 1 − 𝛽 , SVT returns an 𝑖 ≤ 𝑘2 such that
𝑄𝑖 (𝐷) ≥ 𝑇 − 6

𝜀 log(2𝑘2/𝛽).

B.5 The Inverse Sensitivity Mechanism
The inverse sensitivity mechanism (INV) [7] answers a query𝑄 with

a discrete output range Y. Given 𝑄 and 𝐷 , it returns a 𝑦 ∈ Y such

that there exists 𝐷 ′ not too far from 𝐷 and 𝑄 (𝐷 ′) = 𝑦. Concretely,

for any 𝐷 and any 𝑦 ∈ Y, define the path length:

len(𝑄,𝐷,𝑦) = min

𝐷′
{𝑑 (𝐷, 𝐷 ′) : 𝑄 (𝐷 ′) = 𝑦},

where 𝑑 (𝐷, 𝐷 ′) is the number of different elements between 𝐷 and

𝐷 ′. INV instantiates the exponential mechanism with len as the

score function:

Pr(INV(𝑄,𝐷) = 𝑦) = exp (−𝜀 · len(𝑄,𝐷,𝑦)/2)∑
𝑦′∈Y exp (−𝜀 · len(𝑄, 𝐷,𝑦′)/2) .

The utility of INV follows from that of the exponential mecha-

nism:

Lemma B.10 ([7]). For any 𝐷 and 𝛽 , with probability at least
1 − 𝛽 , INV returns a 𝑦 such that there exists a 𝐷 ′ with 𝑑 (𝐷,𝐷 ′) ≤
2

𝜀 log( |Y|/𝛽) and 𝑄 (𝐷 ′) = 𝑦.

Algorithm 8: FiniteDomainQuantile.
Input: 𝐷 , 𝜏 , X, 𝜀, 𝛽

1 if 𝜏 ≤ 2

𝜀 log ( |X|/𝛽) then
2 𝜏 ′ = 2

𝜀 log( |X|/𝛽);
3 else if 𝜏 ≥ 𝑛 − 2

𝜀 log( |X|/𝛽) then
4 𝜏 ′ = 𝑛 − 2

𝜀 log ( |X|/𝛽);
5 else
6 𝜏 ′ = 𝜏 ;

7 end
8 Run INV to find the 𝜏 ′-quantile of 𝐷 .

INV can be used to find a privatized quantile 𝑋𝜏 of 𝐷 , if 𝐷 are

taken from a finite ordered domain X, where len(𝑄,𝐷,𝑦) is simply

the number of elements of 𝐷 that are between 𝑋𝜏 and 𝑦. Since

len(𝑄,𝐷,𝑦) only changes when 𝑦 passes some element in 𝐷 , the

exponential mechanism can be implemented in𝑂 (𝑛) time (given 𝐷

sorted) as opposed to 𝑂 ( |Y|). Some care has to be taken if 𝜏 is too

close to 1 or 𝑛, in which case INV may return something arbitrarily

bad. The details are shown in Algorithm 8, which enjoys a rank

error guarantee:

LemmaB.11. Given 𝜀, 𝛽 and a finite ordered domainX, for any𝐷 ∈
X𝑛 and any 1 ≤ 𝜏 ≤ 𝑛, if 𝑛 > 4

𝜀 log( |X|/𝛽), then with probability
at least 1 − 𝛽 , FiniteDomainQuantile returns an 𝑋̃𝜏 such that

𝑋𝜏− 4

𝜀
log( |X |/𝛽) ≤ 𝑋̃𝜏 ≤ 𝑋𝜏+ 4

𝜀
log( |X |/𝛽) .

[7] also propose a continuous version of SVT and [58] uses a

similar idea to estimate a quantile in a bounded real value domain.

However, as the domain is infinite, those algorithms do not have

any utility guarantee in the empirical setting.

B.6 The Clipped Mean Estimator
A standard idea for dealing with an unbounded domain is to clip

all values into a bounded range [𝑙, 𝑟 ]. Define

Clip (𝑋, [𝑙, 𝑟 ]) =


𝑙, if 𝑋 < 𝑙 ;

𝑋, if 𝑙 ≤ 𝑋 ≤ 𝑟 ;

𝑟, if 𝑋 > 𝑟 .

Let

Clip(𝐷, [𝑙, 𝑟 ]) = {Clip (𝑋𝑖 , [𝑙, 𝑟 ]) | 𝑋𝑖 ∈ 𝐷}.
Then the clipped mean estimator is

ClippedMean(𝐷, [𝑙, 𝑟 ]) = 𝜇 (Clip(𝐷, [𝑙, 𝑟 ])).
It is obvious that ClippedMean(·, [𝑙, 𝑟 ]) has global sensitivity

(𝑟−𝑙)/𝑛. Thus, ClippedMean(𝐷, [𝑙, 𝑟 ])+Lap

(
𝑟−𝑙
𝜀𝑛

)
satisfies 𝜀-DP.
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