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Motivation

Applications of Gaussian Process theory

CO2 concentration forecast

Handwriting recognition

Determining trustworthiness of bank clients

Focussing multiple-mirror telescopes

Generating music playlists

Articulated body tracking:
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Let’s start simple: Regression and Classification

Problem: How to fit a line or curve to some given data?

Regression Classification

Input: Training data {(xn, yn)}N
n=1 and Query {xm}M

m=1

Output: Prediction {ym}M
m=1

x represents source data and y represents target data

Regression: y ∈ R, Classification: y ∈ Class (|Class| <∞)
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Let’s start simple: Regression and Classification

Linear regression and classification

Regression Classification

Chose y as a linear function of x

Example: y = ax + b

Task: Determine parameters a and b

Not suitable in this case → We need something more general!
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Let’s start simple: Regression and Classification

Non-linear regression and classification

Regression Classification

Chose y as a non-linear function of x

Example: y = w0x
0 + w1x

1 + ...+ wnx
n

Task: Determine parameters wi

More suitable, but difficult to determine paramters!
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Let’s start simple: Regression and Classification

How to solve this problem?

Parametric approaches

Polynomials
Piecewise polynomials (Splines)
Neural Networks
Support Vector Machines

Non-parametric approaches

K-nearest neighbors
Gaussian Processes

Can all this be done by
a simple gaussian
distribution?
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Gaussian Processes in a nutshell

What is a Gaussian Process?
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Gaussian Processes in a nutshell

What is a Gaussian Process?

Does it address the production of german 10-Mark notes?

No, probably not ;)
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Gaussian Processes in a nutshell

Definition

Gaussian Process:
A Collection of normally distributed random variables

A Gaussian process is a stochastic process which generates samples
over time {Xt}t∈T such that no matter which finite linear
combination of Xt ones takes, that linear combination will be
normally distributed.

Stochastic Process: A Collection of random variables

Let (Ω,F ,P) be a probability space, (Z ,Z) a space with σ-algebra
and T a set of indices. A stochastic process X is defined as

X : Ω× T → Z , (ω, t) 7→ Xt(ω)

with random variables Xt : Ω → Z for all t ∈ T .
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Gaussian Processes in a nutshell

Definition

Probability Space: Samples, Events, Probability measure

A probability space (Ω,F ,P) is a measure space with a measure P
that satisfies the probability axioms.

The sample space Ω, is a nonempty set of samples ω.

The event space F is a σ-algebra of subsets of Ω. Its
elements are called events, which are sets of outcomes for
which one can ask a probability.

The probability measure P is a function from F to the real
numbers.
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Gaussian Processes in a nutshell

Gaussian distribution vs. Gaussian Process

X ∼ N (µ, σ) X (t) ∼ GP(µ(t), cov(t, t ′))
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Example 1: Brownian Motion

A Gaussian Process example: Brownian Motion

The Brownian Motion (= Wiener Process) is a Gaussian Process

X (t)− X (t ′) ∼ N (0, t − t ′) X (t) ∼ GP(0,min(t, t ′))
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From Gaussian Distributions to Gaussian Processes

Joint distribution of strongly correlated y = (y1, y2)

Zero-mean 2D gaussian distribution

P(y |K ) =
1√

2π|K |
e−

1
2
yT K−1y K =

(
1 0.9

0.9 1

)
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From Gaussian Distributions to Gaussian Processes

Influence of the covariance matrix entries

These are some contour

plots of 2D gaussian

distributions with different

covariance matrices.

Covariance is a measure of

how much two random

variables vary together. 1

means perfect linear

coherence, -1 means perfect

negative linear coherence. If

it is 0 there is no linear

coherence.
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From Gaussian Distributions to Gaussian Processes

Conditional distribution P(y2|y1)

Let us assume that we know the covariance matrix K and y1. The
posteriori distribution P(y2|y1) is a gaussian, too. Our job is now
to determine the mean y2 and the corresponding variance ỹ2!
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From Gaussian Distributions to Gaussian Processes

Determining the mean y2 and the variance ỹ2

P(y2|y1, K) =
P(y1, y2|K)

P(y1|K)
(1)

∝ exp −
1

2

`
y1 y2
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a b
b c
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y2

«ff
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¯
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From Gaussian Distributions to Gaussian Processes

Determining the mean y2 and the variance ỹ2

⇒ Mean y2 = −y1
b
c , variance ỹ2 = 1

c

Annotations on the slide before:

We assume the inverse of the covariance matrix K−1 =

(
a b
b c

)
(1) → (2): Since we’ve selected y1 fix we know that P(y1|K ) is a
constant. We’re interested only in the distribution (with∫

P(y2|y1,K )dy2 = 1), so this constant can be neglect.

(3) → (4): y2
1 a can be factored out since it is an additive

component of the exponent. It is a constant so may also neglect it.

(5) → (6): We expand the term by an additive constant y2
1

b2

c2

which is allowed for the reasons above.
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From Gaussian Distributions to Gaussian Processes

A new representation for our example

Let K be

(
1 0.9

0.9 1

)
and assume y1 = 1.0

Then we get K−1 =

(
5.26 −4.74
−4.74 5.26

)
=

(
a b
b c

)
. Now we are

able to calculate the mean and variance of P(y2|y1,K ), following
the equations above: y2 = −y1

b
c = 0.9 ỹ2 = 1

c = 0.19
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From Gaussian Distributions to Gaussian Processes

Extending our approach to vectors (−→y1 and −→y2 )

Up to now we’ve found a representation for our 2 scalars y1 and y2

where y1 was the known input data and y2 was the requested
output data which we represented by its mean and variance!

How can we extend this approach to cover multi-dimensional
vectors −→y1 and −→y2?

Therefore let us now assume K−1 as

(
A B

BT C

)
with A ∈ Rn×n,

B ∈ Rn×m and C ∈ Rm×m. Let further be y1 ∈ Rn and y2 ∈ Rm.

By generalizing the equations above we get ...
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From Gaussian Distributions to Gaussian Processes

Extending our approach to vectors (−→y1 and −→y2 )

P(y2|y1, K) =
P(y1, y2|K)

P(y1|K)
(9)
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From Gaussian Distributions to Gaussian Processes

Extending our approach to vectors (−→y1 and −→y2 )

= exp − 1

2

{
(y2 − (−C−1BT y1))C (y2 − (−C−1BT y1))

}
= exp − 1

2

{
(y2 − y2)Ỹ2(y2 − y2)

}
(17)

with mean y2 = −C−1BT y1 and variance Ỹ2 = C−1.
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From Gaussian Distributions to Gaussian Processes

Extending our approach to vectors (−→y1 and −→y2 )

Let now K be

0BBB@
1.0 0.9 0.7 0.4 0.2
0.9 1.0 0.9 0.7 0.4
0.7 0.9 1.0 0.9 0.7
0.4 0.7 0.9 1.0 0.9
0.2 0.4 0.7 0.9 1.0

1CCCA and assume y1 =

0@−1.0
0

0.5

1A.

Using the equations above we get y2 =
`
0.43 0.1

´T
and fY2 =

„
0.04 0.09
0.09 0.24

«
:
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From Gaussian Distributions to Gaussian Processes

Extending our approach to vectors (−→y1 and −→y2 )

Now, doesn’t this look like non-linear regression?
But where did the 5x5 covariance matrix come from?
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From Gaussian Distributions to Gaussian Processes

How the covariance matrix was made

How to build an appropriate covariance matrix?

Assumptions

We assume that points which are lying close together are strongly
correlated. So we assign them a covariance close to 1. Points far
from each other are only weakly correlated. Thus we assign them a
covariance close to 0.

Such a covariance function can be defined by using a RBF:

Cov(yi , yj) = σ2
f e

− 1
2l2

(xi−xj )
2

+ σ2
νδij

σ2
ν : noise

l : horizontal lengthscale

σ2
f : vertical lengthscale
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From Gaussian Distributions to Gaussian Processes

The Radial Basis Function (RBF) kernel

Cov(yi , yj) = σ2
f e

− 1
2l2

(xi−xj )
2

+ σ2
νδij

The hyperparameters σ2
ν , l and σ2

f can be set manually or they can
be found by maximizing the marginal likelihood p(y |x , σ2

ν , l , σ
2
f ).
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Example 2: Solving the Regression problem

A GP regression example

A regression curve plot by the ”Gaussian Process Regression
Applet” using 11 data points. One can observe that uncertainty
goes down when multiple data points are aggregated together.
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Gaussian Process Latent Variable Models

Our goal: Non-linear dimensionality reduction
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Gaussian Process Latent Variable Models

A graphical formulation of dimensionality reduction

At each time step t we express our observations y as a
combination of basis functions ψ of latent variables x .

yt =
∑

j

bjψj(xt) + δt (e.g . ψj(x) = x)
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Gaussian Process Latent Variable Models

A formulation of linear dimensionality reduction

Let Ỹ = [ỹ1...ỹN ] be a set of D-dimensional data variables and
let X̃ = [x̃1...x̃N ] be a set of L-dimensional latent variables.

We now formulate a mapping from latent to data space by

Ỹ = B̃X̃ + ∆̃ (ỹn = B̃x̃n + δ̃n)

where BT is a design matrix (representing the linear mapping) and
∆T the noise term. The dual problem is

Y = XB + ∆ (yd = Xbd + δd)

where XT = X̃ and xd represents the dth column of X .
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Gaussian Process Latent Variable Models

Marginalizing over the parameters B

We now marginalize over the parameters B:

P(Y |X ,∆) =
D∏

d=1

p(yd |X , δd) (18)

=
D∏

d=1

∫
RL

p(yd |X , bd , δd)p(bd)dbd (19)

Bayesian methodology requires us to select suitable priors:

bd ∼ N (0, I ) δd ∼ N (0, β−1I )
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Gaussian Process Latent Variable Models

Calculating the mean and variance of yd |X , δd

Marginalizing with Gaussian priors yields a Gaussian distribution.
We only need to calculate the mean and variance of yd |X , δd .

Mean(yd) = yd = E {Xbd + δd}
= XE {bd}+ E {δd} = 0

Cov(yd) = E
{

(yd − yd)(yd − yd)T
}

= E
{

ydyT
d

}
= E

{
(Xbd + δd)(Xbd + δd)T

}
= XE

{
bdbT

d

}
XT + E

{
δdδ

T
d

}
= XXT + β−1I

⇒ yd |X , δd ∼ N (0,XXT + β−1I )
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Gaussian Process Latent Variable Models

Maximizing the log-likelihood L

With this result we can calculate the log-likelihood

L = log p(Y |X ,∆) = log
D∏

d=1

p(yd |X , δd) =
D∑

d=1

log p(yd |X , δd)

= const − D

2
log |K | − 1

2
tr(K−1YY T )

where K = XXT + β−1I . It can be shown that this likelihood is
maximized by X = UZV T with U containing the first L

eigenvectors, Z is a L× L diagonal matrix with zll = (λl − 1
β )−

1
2

and V being an arbitrary L× L rotation matrix. With a richer
non-linear kernel K gradient based optimization has to be used.
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Gaussian Process Latent Variable Models

Scaled Gaussian Process Latent Variable Models

Accounting for the different scales in each dimension a weight
matrix W = diag(w1, ...,wD) is introduced. This yields

p(Y |M) =
|W |N√

(2π)ND |K |D
exp(−1

2
tr(K−1YW 2Y T ))

where M =
{
{xn}N

n=1 , {βi}3
i=1 , {wd}D

d=1

}
are model parameters

and a Radial Basis Function (RBF) is used as kernel:

k(xi , xj) = β1exp(−β2

2
‖xi − xj‖2) +

δ(xi , xj)

β3
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Gaussian Process Latent Variable Models

Putting it all together: Maximizing the posterior

The posterior density over the model M is:

p(M|Y ) ∝ p(Y |M)p(M) = p(Y |M)p(X )p(β)p(W )

By specifying the priors

p(X ) =
N∏

n=1

N (xn|0, I ) p(β) ∝
3∏

i=1

1

βi
p(W ) ∝ 1

the log posterior gets (k(xi , xj) = β1exp(−β2
2 ‖xi − xj‖2) +

δ(xi ,xj )
β3

)

L = −
D

2
log |K | −

1

2
tr(K−1YW 2Y T )−

1

2

NX
n=1

‖xn‖2 −
3X

i=1

log(βi ) + Nlog |W |

which we maximize to learn the model M = {X , β}.
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Example: Inverse kinematic

An example: Style-based inverse kinematic (Grochow)

Learned GPLVMs using a Walk, a jump shot and a baseball pitch!
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Gaussian Process Dynamical Models

GPLVMs vs. GPDMs

When switching from GPLVM to GPDM we take the dynamics
(expressed by time t) into account:

GPLVM GPDM

xt =
∑

i aiφj(xt−1) + δx ,t

yt =
∑

j bjψj(xt) + δt yt =
∑

j bjψj(xt) + δy ,t
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Gaussian Process Dynamical Models

Modeling the GPDM mapping and dynamics

The GPDM dynamics prior and kernel (Xout = (x2, ..., xN)T ):

p(X |α) =
p(x1)√

(2π)(N−1)L|KX |L
exp(−1

2
tr(K−1

X XoutX
T
out))

k(xi , xj) = α1exp(−α2

2
‖xi − xj‖2) + α3x

T
i xj +

δ(xi , xj)

α4

The GPDM mapping prior and kernel (same as in SGPLVM):

p(Y |X , β,W ) =
|W |N√

(2π)ND |KY |D
exp(−1

2
tr(K−1

Y YW 2Y T ))

k(xi , xj) = β1exp(−β2

2
‖xi − xj‖2) +

δ(xi , xj)

β3
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Gaussian Process Dynamical Models

Putting it all together: Maximizing the posterior

The posterior density over this new model is:

p(X , α, β,W |Y ) ∝ p(Y |X , β,W )p(X |α)p(α)p(β)p(W )

By specifying the priors

p(α) ∝
4∏

i=1

1

αi
p(β) ∝

3∏
i=1

1

βi
p(W ) ∝ 1

we get the log posterior (up to an additive constant):

L = −
L

2
log |KX | −

1

2
tr(K−1

X XoutX
T
out)

−
D

2
log |KY | −

1

2
tr(K−1

X YW 2Y T ) + Nlog |W |

−
4X

i=1

log(αi )−
3X

i=1

log(βi )
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Gaussian Process Dynamical Models

Balanced Gaussian Process Dynamical Models (B-GPDMs)

The B-GPDM introduces a factor λ = D
L to balance the influence

of the dynamics and the pose reconstruction by raising the
dynamics density function to the ratio of their dimensions.

−L =
D

L
(
L

2
log |KX |+

1

2
tr(K−1

X XoutX
T
out))

+
D

2
log |KY |+

1

2
tr(K−1

Y YW 2Y T )− Nlog |W |

+
4∑

i=1

log(αi ) +
3∑

i=1

log(βi )

The Model M = {X ,Y , α, β,W } is learned by minimizing −L!
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Articulated body tracking with B-GPDMs

A tracking formulation

Given a model M and an image sequence I1:T we want to estimate
an articulated body state sequence φ1:T .A tracking formulation
with sliding temporal window is (after Urtasun et al.):

p(φt:t+τ |I1:t+τ ,M) ∝ p(It:t+τ |φt:t+τ )p(φt:t+τ |I1:t−1,M)

≈ p(It:t+τ |φt:t+τ )︸ ︷︷ ︸
Image likelihood

p(φt:t+τ |φMAP
1:t−1,M)︸ ︷︷ ︸

Prediction

using the following notations:

state at time t: φt = (gt , yt , xt) with global pose gt

image sequence: I1:T = (I1, ..., IT )

learned GPDM: M = {X , α, β,W }
MAP estimate history: φMAP

1:t−1
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Articulated body tracking with B-GPDMs

Image likelihood

Assuming that image measurements conditioned on states are
independent, we can factorize the image likelihood

p(It:t+τ |φt:t+τ )︸ ︷︷ ︸
Image likelihood

=
t+τ∏
i=t

p(Ii |φi )

=
t+τ∏
i=t

exp(− 1

2σ2
e

J∑
j=1

‖m̂j
t − P(pj(φt))‖2)

using the following notations:

σe : 10 pixels (empirical results)

m̂j
t : 2D tracker image measurement of body point j

P(pj(φt)): projected body point j according to model
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Articulated body tracking with B-GPDMs

Prediction distribution

Since the training set didn’t contain global motion we factor the
prediction density into a prediction over global motion, and one
over poses and latent positions:

p(φt:t+τ |φMAP
1:t−1,M)

= p(gt:t+τ |gMAP
t−2:t−1) p(yt:t+τ , xt:t+τ |xMAP

t−1 ,M)

= p(gt:t+τ |gMAP
t−2:t−1)︸ ︷︷ ︸

Global motion

p(yt:t+τ |xt:t+τ ,M)︸ ︷︷ ︸
Pose mapping

p(xt:t+τ |xMAP
t−1 ,M)︸ ︷︷ ︸

Dynamics

where M = {X , α, β,W } denotes the learned GPDM.
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Articulated body tracking with B-GPDMs

Global motion

For the global rotation ot and translation zt a second-order Markov
model is assumed

p(gj |gj−2:j−1) = exp(−
‖zj − ẑj)‖2

2σ2
z

−
‖oj − ôj)‖2

2σ2
o

)

where the mean prediction is

ẑj = 2zj−1 − zj−2 ôj = 2oj−1 − oj−2

with the initial condition at time t provided by previous MAP
estimates:

gt−2 = gMAP
t−2 gt−1 = gMAP

t−1
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Articulated body tracking with B-GPDMs

Pose mapping and dynamics

Assuming that a pose sequence can be factored into the density
over individual poses we get:

p(yt:t+τ |xt:t+τ ,M) =
t+τ∏
j=t

p(yj |xj ,M)

Second, the dynamics

p(xt:t+τ |xMAP
t−1 ,M)

is annealed because the learned GPDM dynamics often differ from
the video motion.
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Articulated body tracking with B-GPDMs

Tracking results: Feature space and latent space
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Articulated body tracking with B-GPDMs

Thank you for your attention!

Any questions?

N. D. Lawrence. Gaussian Process Latent Variable Models for
Visualization of High Dimensional Data. NIPS, 2003.

David J C MacKay. Introduction to Gaussian Processes. 1997.

C. E. Rasmussen, C. K. I. Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006.

R. Urtasun, D. J.Fleet and P. Fua. Gaussian Process
Dynamical Models for 3D people tracking. CVPR, 2006.

J. M. Wang, D. J. Fleet, A. Hertzmann. Gaussian Process
Dynamical Models. NIPS, 2005.
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