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Abstract 

 

Machine learning is growing exponentially, and its applications are gaining more traction in the sports analysis community 

in recent years. The application of machine learning methods on spatiotemporal data in sports like football is getting 

attention from football clubs, academics, and amateur analysts and is the focus of this survey. This survey analyses and 

identifies current trends in research papers and literature to determine current and future applications in football analytics 

using spatiotemporal data. 
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1. Introduction 

 

Sports analytics in sports clubs has been evolving ever since "Moneyball" [1] showed how applied statistics could be 

used to select less know but valuable baseball players. While many sports, including football, have had rich data for 

decades until recently, spatiotemporal data was unavailable, and the advancement of technical capabilities enabled the 

evolution of available data. While so-called match sheet data certainly has its' value and is mainly understood by experts 

and laymen alike, spatiotemporal data opens new possibilities for clubs and scouts. Unfortunately, football clubs focus 

primarily on video analysis, which is highly time-consuming and introduces bias. Spatiotemporal event data helps in 

answering many practical questions of much interest in football clubs like: 

• Calculate the probability of scoring a goal from a given situation? 

• How to evaluate a particular pass? 

• What are common tactics opponents use? 

• Which players have similar playing styles? 

 

This paper analyses and identifies current trends in research papers and literature to determine current and future 

applications in sports analytics using machine learning and spatiotemporal data. The goal of this research was to research 

the current state of data types, data availability, and research methods and applications of machine learning in sports 

analytics, focusing on applied research in football. Before the literature overview was conducted, we proposed the 

following research questions: 
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• Research question 1: How to categorize current research in machine learning in football analytics 

• Research question 2: What are common methods of machine learning in football analytics 

• Research question 3: What are possible further research directions 

 

To answer our research questions, we've conducted a comprehensive literature overview using the Systematic 

Literature Review approach [2] to gather recent literature. The main goal was to classify recent research and analyse then 

categorize it by applying the content analysis method. The result of the analysis showed that the literature could be 

classified broadly as applying machine learning to spatiotemporal data in football to: 

• Evaluate individual players 

• Evaluate passes/actions 

• Evaluate and classify teams 

• Game result prediction 

 

This paper is organized as follows: first, we introduce the domain of sports analytics and systemize the types of data 

and their availability; second, we provide an overview of recent research in the field of machine learning and 

spatiotemporal data in football; finally, we give a conclusion of the current state and suggest further research directions 

possible. 

 

2. Data types and availability 

 

Data suitable for football (soccer in the USA) analytics can be divided into three categories:  

• Match sheet data 

• Event data 

• Tracking data 

 

All types of data are obtained from specialized companies or websites. For example, service providers like FBref [3] 

usually provide match sheet data without fees, while event and tracking data are only available under a proprietary license. 

Some existing open datasets of event data are provided by providers like Wyscout [4] and Statsbomb [5]. Tracking data 

providers include Opta [6], Signality [7], SecondSpectrum [8], Metrica [9], and others. 

Match sheet data provides a high-level statistic of the game, player, or club. In general, this data is freely accessible, 

and some websites even encourage the public to "scrape" the data from them. Many sources like FBref [3] provide 

additional statistical data, such as adding Expected Goals and Expected Assists. Still, this kind of data doesn't help answer 

complex questions club stakeholders might have. Event data is a sparser type of data, like tracking data; it is generated 

from video by human annotators and consists of current player and ball positions. Data points occur after a particular 

event like a pass, goal, foul or other. 

Although this data also is usually not freely available, some available datasets are appropriate for research. The most 

significant difference between event and tracking data is that tracking data tracks the position of all players on the pitch. 

In contrast, event data only records the event, disregarding other players' positions. Pappalardo describes the biggest 

available dataset to date in [10]. Data covers the seven most significant European leagues, World Cup 2018. and European 

cup 2016. Event data consists of events like pass, foul, and others with subtypes like cross-pass.   

Tracking (spatiotemporal) data represents a type of data that consists of both time and space with unique properties 

regarding the modeling of spatio-temporal relations [11]. For example, in sports, there are usually 10-30 data points per 

second (10-30Hz) representing players' current positions on the pitch plus the ball. Tracking data can be obtained in 

multiple ways – static cameras, commercial video broadcasts, and GPS devices. However, due to its high commercial 

value, it is challenging for researchers to obtain this data type. Therefore, this data type is usually reserved for analysts in 

clubs with access to their league data. Khaustov and Mozgovoy [12] propose "a rule-based algorithm for identifying 

several basic types of events in soccer, including ball possession, successful and unsuccessful passes, and shots on goal." 

Direct potential benefits of applying their algorithm to tracking data could enhance additional event information usually 

unavailable as part of tracking data., p. 

 

3. Research 

 

The research questions in the introduction are self-evident, bearing in mind that the research is broadly interested in 

the state-of-art machine learning applications in spatiotemporal data analysis in football. Systematic Literature Review 

guidelines [2] are used to answer these questions. In that sense, a literature search was conducted extensively in the IEEE 

Xplore Digital Library (IEEE), Scopus database, Web of Science database (WoS), ScienceDirect, and Google Scholar. 

Furthermore, due to the specificity of the research topic, search terms include a specific combination of targeted keywords, 

e.g., "Machine learning" AND "spatiotemporal" AND "football" OR "soccer" and many others. In the next step, we 

created a table where we classified all the research papers by data type used (event or tracking), machine learning method, 

practical application, and broad categories that could group relevant papers. Some research papers were included in more 

than one category. 
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The research categories that were most apparent from the literature overview of 45 most recent or most important 

research papers with a corresponding number of papers are as follows: 

• Evaluate individual players (13) 

• Evaluate passes/actions (12) 

• Evaluate and classify teams (11) 

• Game result prediction (8) 

 

4. Results 

 

After the literature overview it became evident that the application of machine learning models to football analysis 

varies from so-called classical methods like a k-nearest neighbours to complex neural networks.  One of the most 

compelling papers which provide football-applicable CNN architecture [13] is “Soccermap” [14] shown in Figure 1 

 

 
 

Fig. 1. Soccermap CNN, [14] 

 

This architecture demonstrates that it is possible to apply modern machine learning approaches to tracking data with 

practical applications in football. By changing only, the output function, this network can calculate the probability surfaces 

of potential passes, estimate the pass-selection likelihood, and predict the expected value of the pass. In Table 1, we've 

organized the most recent and influential research in machine learning in football, mainly focusing on spatiotemporal 

data. Correspondingly, we provide an overview of data types, methods, practical applications, and identified tasks. 

 

Reference 

 

Data 

 

Method Application Task 

Cintia et al. [15] Event k-means, autoencoder 
capturing and analysing the playing style of 

players, teams, and coaches in an automatic way 

Evaluate and classify 

teams 

Fernández et al. 
[16] 

Tracking Markov decision process 

ability to evaluate the impact of observed and 

potential actions, both visually and analytically, 

expected possession value 

Evaluate passes/actions 

Hyeonah et al. [17] Event 
Convolutional Autoencoder 

 
characterizing player’s styles 

 
Evaluate passes/actions 

 

Kim et al [18] Tracking CNN, embeddings Detecting players and their styles 
Evaluate individual 

players 

Lee and Jung [19] 
Match 
sheet 

DNN predicting soccer tactics 
Evaluate and classify 

teams 

Malamatinos et al. 

[20] 

Match 

sheet 

k-Nearest Neighbour (k-NN), 

LogitBoost (LB), Support 
Vector Machine (SVM), 

Random Forest (RF), and 

CatBoost (CB) 

 Game result prediction 
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Kim et al. [21] Tracking graph based CPD 

distinguishes tactically intended formation and 

role changes from temporary changes in soccer 

matches 

Evaluate and classify 

teams 

Clijmans et al. [22] Event Markov model analysing playing style 
Evaluate and classify 

teams 

Goes et al. [23] Tracking KMeans Classify attacks as successful  Evaluate passes/actions 

Fernàndez et al. 
[14] 

Tracking CNN 
probability surfaces of potential passes, the 

expected value of a pass 
Evaluate passes/actions 

 

Goes et al. [24] Tracking KMeans  

defenders create space for 

attackers are strongly dependent on those 
attacks’ 

success 

Evaluate passes/actions 
 

Raabe et al. [25] Event Graph neural networks Analysing tactical patterns 
Evaluate and classify 

teams 

Verstraete et al. 
[26] 

 
CPD (canonical polyadic 

decomposition) [27] 
 

Evaluate individual 

players 

 

Nunez and 

Dagnino [28] 
 

pitch control, expected 
possession 

value and expected goals in a 

weighted function 

Google Research 

Football competition [29] 
- 

Liu et al. [30] Event 
Deep Reinforcement 

Learning, LSTM 
developed a new metric called GIM, to evaluate 

teams 

Evaluate and classify 

teams 

 

Decroos et al.[31] Event 
non-negative 

matrix factorization [32] 
identifying 

players with a similar style 
Evaluate individual 

players 

Beal et al. [33]  Event 

walks 

within graphs, mixed integer 
programming 

forming teams with 
Evaluate individual 

players 

Pappalardo et al. 

[34] 
Event 

Linear Support Vector 

Classifier  

role-aware player performance 

evaluation 

Evaluate individual 

players 

Groll et al. [35] Event 
random forests and Poisson 

ranking 
 Game result prediction 

Goes et al. [36] Tracking 
Principal 

component analysis [37] 
evaluating pass value 

Evaluate passes/actions 

 

Dick et al. [38] Tracking 
deep reinforcement 

learning  
valuations of multiple players 

positioning 
Evaluate individual 

players 

Yam [39] Tracking 
deep reinforcement 

learning 

valuations of multiple players 

positioning 

Evaluate individual 

players 

Decroos et al. [40] Event 
Generalized 

Additive Model [41] 
improvement 

to VAEP model [42] 
Evaluate passes/actions 

 

Bransen et al. [43] Event 

distance-weighted k-nearest 

neighbours 
search 

a new metric that aims to measure players' 

contribution in creating goal-scoring chances 

Evaluate individual 

players 

Zambom-Ferraresi 

et al. [44] 
Tracking 

Bayesian 

model averaging [45] 

discover determinants of 

sports performance 

Evaluate passes/actions 

 

Steiner et al. [46] Tracking binary logistic regressions 
estimate the 

effects of contextual features on passing 

decisions 

Evaluate passes/actions 

 

Pappalardo et al. 

[47] 
Tracking 

OLS regression 

and logit classification 

finds team ranking 

in the future season by using data from previous 
seasons 

Evaluate and classify 

teams 

McHale et al. [48] Tracking 

probability 

of a successful pass and 
network centrality 

measures 

help trainers and scouts identify vital players in 

either opposition teams when recruiting new 

talents 

Evaluate individual 
players 

Giancola et al. [49] - CNN, ResNet-152 
detecting events 

in football broadcast videos 
- 

Decroos 

20/12/2022 

23:23:00et al. [49] 

Event clustering discover tactics of football teams 
Evaluate and classify 

teams 

Decroos et al. [42] Event 
Clustering, exponential-

decay-based 

find top performing players 

in a league or a particular match 

Evaluate individual 

players 

Steiner 20/12/2022 

23:23:00et al. [46] 
Event regression model whom the player is most likely to pass the ball 

Evaluate passes/actions 

 

Horton et al. [50] Tracking 

computational 

geometry features fed into 

different classifiers 
(MLR, SVM, RUSBoost 

classify the quality of passes in football 
Evaluate passes/actions 

 

Brooks et al. [51] Event 
L2-regularized Support 

Vector 

Machine (SVM) model 

rank players based on the value of their passes 

Evaluate individual 

players / Evaluate 

passes/actions 
 

Brooks et al. [52] Event KNN 
create a unique team 

identification 

Evaluate and classify 

teams 
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McHale et al. [53] Event mixed-effects model 

model for 

identifying the ability of football players to score 

goals 

Evaluate individual 

players 

Bialkowski et al. 
[54] 

Tracking 

minimum entropy data 

partitioning and expectation-

maximization (EM) algorithm 

analysing both individual 
players and teams 

Evaluate and classify 

teams / Evaluate 

individual players 

Bialkowski et al. 
[55] 

Tracking LDA/ k-NN 
identifying teams from spatiotemporal tracking 

data 
Evaluate and classify 

teams 

Tewari et al. [56]  
XGboost, SVM, Logistic 

regression 
- Game result prediction 

Baboota et al. [57]  

Gaussian naive 

Bayes, SVM, Random forest, 

and gradient boosting 

 Game result prediction 

Razali et al. [58]  Bayesian networks  Game result prediction 

Danisik et al. [59]  LSTM regression model  Game result prediction 

Cho et al. [60]  gradient boosting  Game result prediction 

Ulmer et al. [61]  

Naive Bayes, Hidden 

Markov Model, Multinomial 
Naive Bayes, RBF 

SVM, Random forest, Linear 

SVM, 
One vs. All SGD 

 Game result prediction 

 

Table 1. Literature overview, Source: authors contribution 

 

5. Conclusion 

 

This review aimed to evaluate the current state of machine learning in sports analytics, particularly interested in 

applications on data analytics in football. While the field might seem like a niche category, the number of research papers 

and non-academic content was pretty significant, so we've decided to focus on the most recent studies most representative 

of the current state-of-the-affairs. Besides many possible research directions from the literature, this review detects four 

main research tasks. These tasks are:  

• players evaluation  

• passes and actions evaluation  

• team evaluation 

• game result prediction 

 

It is no surprise that most tasks have practical applications that are of interest to football club stakeholders. Such 

claims include scouting, which stems from player evaluation, overall team formation improvement by combining player 

evaluation and team evaluation, and team success expectations by combining all four tasks are just a few of many. The 

coaching staff has many benefits, including tactical preparations of matches from passes/actions evaluation, players 

evaluation, and opposing team evaluation. In addition, game result predictions are also of interest to sports betting as in 

academic research.  

On the other hand, conducted results show that methods in this area span from so-called classical machine learning to 

deep learning, which has been the dominant method in recent times. Also, data types are closely related to the method 

used; in that sense, CNN models have shown the most promising research direction. We intentionally omit the area of 

simulation environments methods from this survey because it is the emerging approach to addressing problems. Among 

them, we would like to point out possible research directions in simulated multi-agent environments like Google Research 

Football as a method for coping with defined tasks.  
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