
LES-tree: A Spatio-temporal Access Method based on Snapshots

and Events ∗

Gilberto A. Gutiérrez
Center for Web Research
University of Chile and
University of B́ıo-B́ıo

Avenida La Castilla S/N
Chillán / Chile

ggutierr@ubiobio.cl

Gonzalo Navarro
Center for Web Research and

Department of Computer Science
University of Chile.

Avenida Blanco encalada 2120
Santiago / Chile

gnavarro@dcc.uchile.cl

M. Andrea Rodŕıguez
Department of Computer Science

University of Concepción
Edmundo Larenas
Concepción / Chile
andrea@udec.cl

October 14, 2008

Abstract

This work presents a new access method (LES-tree)
for spatio-temporal databases that handles discrete
change events over objects’ spatial attributes. The
main characteristic of this structure is that, in
addition to the traditional database snapshots, LES-
tree explicitly stores the events in log structures
associated with space partitions. The definition of
this new access method aims to extend capabilities of
current spatio-temporal access methods to queries on
events, while competing with current structures for
traditional time-slice and time-interval queries. The
paper describes the structure and presents favorable
experimental cost analyses of the structure.

∗This work was partially funded by Millennium Nucleus
Center for Web Research, grant P04-067-F, Mideplan, Chile.
Gilberto Gutiérrez was also funded by research grant 073218
4/R, University of B́ıo-B́ıo, Chile

1 Introduction

Spatio-temporal databases are composed of spatial
objects that change their location or shape at
different time instants [18]. Their objective is to
model and represent the dynamic nature of real-world
applications [10]. Examples of these applications
are transportation, monitoring, environmental, and
multimedia systems. Spatio-temporal applications
have been classified into three categories depending
on the type of data they manage [12]:

a) Applications that deal with continuous changes,
such as the movement of a car on a highway.

b) Applications that involve objects that change
their location in space by modifying their shape
or by a movement in a discrete manner. An
example is the change in the administrative
boundary of a city over time.

1

c) Applications that integrate both previous
behaviors. This type of applications appears in
the environmental area where it is necessary to
model objects’ movement and objects’ geometric
changes over time.

Extending window/range queries in spatial
databases, the most studied types of queries in
spatio-temporal databases are time-slice and time-
interval queries [16]. Time-slice queries retrieve
all objects that intersect the query window at
a particular time instant. Time-interval queries
extend the idea of time-slice queries by considering
consecutive time instants. These queries focus on
the coordinate- or snapshot-based representations
of objects’ movement. In addition to this type of
representation, recent studies have emphasized the
relevance of handling events, encouraging research
in the integration of coordinate- and event-based
representation [23, 3, 2]. Event representation
enables to manage relationships between events,
querying about objects’ states, and querying when
and why changes on objects occur.

There exist various spatio-temporal access meth-
ods that are adequate for applications that handle
discrete changes of spatial objects. Some are RT-
tree [24], HR-tree (Historical R-tree) [10, 11], 3D R-
tree [21], HR+-tree [14], MV3R-tree [15] and OLQ
(Overlapping Linear Quadtree) [22], among others.
These structures are designed to answer time-slice
and time-interval queries about the history of the
spatial attributes of objects. In addition, several of
these existing spatio-temporal access methods also
handle spatial changes of objects [10, 15, 21], but
they use data about these changes with the purpose
of updating the underlying data structure. They do
not keep data about changes as records of events
occurred over objects and, therefore, they cannot
efficiently answer queries about events occurred in
a time interval.

This work aims to define a new access method
that can efficiently answer time-slice queries, time-
interval queries, and queries on events. To the best
of our knowledge, only the preliminary work in [5]
indexes events to process traditional time-slice and
time-interval queries. In this work, we also address

event-based queries that retrieve objects satisfying
an event predicate within a spatio-temporal window.
For example, retrieve all objects that entered or
crossed a given spatial window within a time interval.
These queries are easily extended to spatio-temporal
pattern queries [7], where we may want to retrieve
objects that follow certain patterns of events in a
particular sequence.

Our new access method, LES-tree, is based on
producing snapshots after a certain number of
changes occurred over objects, and on storing the
events that produce these changes in a data structure
called a log. Consequently, LES-tree enables the
representation of (1) temporal snapshots and (2)
events on objects, as advocated in [23]. This approach
has been briefly discussed in others studies [8, 9],
but it has been discarded a priori by arguing that
it is not easy to know how many events determine
a new snapshot and that extra time is required
for query processing. We show in this paper that
this is not a serious drawback. The number of
snapshots represents a trade-off between space and
answer time, since a larger number of snapshots
decreases the answer time of a query while increasing
the storage space. Inversely, a smaller number of
snapshots decreases the space while increasing the
answer time; and then, the frequency of snapshots
can be adjusted depending on the type of applications
and the change frequency of objects. For example,
there may be applications where it is not of interest
to query about objects’ states over some period of
time. Our data structures for snapshots and changes
are independent, and so are the improvements that
can be obtained in either structure. Furthermore,
integration of existing spatial access methods for
handling snapshots into this approach can be easily
achieved.

The idea of snapshots and logs has also been used
with the purpose of maintaining materialized views
in a database [4]. In this context, a log is created
over the master table, from which the initial view
is created. Then, the refreshed view is the result of
applying the changes stored in the log. These logs are
eliminated after the actualization of the view, since
only the last state of the database is requested. The
logs in our proposal, in contrast, are a part of the

2

indexing structure, remain over time, and can derive
different temporal states of the database.

A preliminary proposal of an access method with
these characteristics is the SEST-Index [5]. The
idea of SEST-Index consists in maintaining the
snapshots of the database for certain time instants
(by using an R-tree) and having a global log to store
the events occurred between consecutive snapshots.
The log is stored in time-order and allows us to
reconstruct whatever the state of the database was
between two consecutive snapshots. Although this
structure presents some good properties for time-slice
and event queries, it has serious storage cost and
scalability problems, and its performance decreases
drastically as the number of events increases.

This paper extends and complements substantially
the proposal described in [5]. Instead of taking
snapshots at the (global) database granularity, it
considers snapshots at the region granularity (leaf
snapshots). These regions correspond to the
space partitions derived from the R-tree structure
associated with a global snapshot. The main
contributions of this work are:

i) It presents a new spatio-temporal access method
based on snapshots and events. This new
access method considers snapshots with region
granularity. These regions are modified by the
use of global snapshots along time.

ii) It presents algorithms not only for time-slice,
time-interval, but also for event queries.

iii) It experimentally compares the proposed data
structure against MVR-tree [15, 16], MV3R-tree
[15], and the preliminary proposal SEST-Index
published in [5] for the different times of queries.
To the best of our knowledge, MVR-tree and
its improved varient MV3R-tree are structures
that outperform previous spatio-temporal access
methods in terms of time and space requirements
for time-slice and time-interval queries. Results
indicate that our spatio-temporal access method
has better performance than SEST-Index and
competes closely, or even overcomes, MVR-tree,
including its improved variant .

The organization of the paper is as follows. Section
2 reviews current spatio-temporal access methods for
applications that handle discrete changes. Section 3
describes the proposed access method in terms of its
data structure and operations. Section 4 describes
and evaluates a cost model for LES-tree. Section 5
gives experimental evaluations with respect to SEST-
Index and MVR-tree. Conclusions and future work
are given in Section 6.

2 Spatio-temporal access meth-

ods

This section describes the main spatio-temporal
access methods available for applications of category
(b) (see Section 1) that have been designed to
answer time-slice and time-interval queries. We
focus on the MVR-tree/MV3R-tree and SEST-Index
structures, against which we compare the new
proposed structure. A classification of the existing
spatio-temporal access methods is the following: (a)
Methods that treat time as another dimension. (b)
Methods that incorporate the temporal information
in the nodes of the structure without considering
time as another dimension. (c) Methods based
on overlapping structures. (d) Methods based on
multiversioning of the structure. (e) Methods based
on snapshots and events.

The 3D R-tree [21] considers time as another axis
along with the spatial coordinates. In a three-
dimensional space, two line segments ((xi, yi, ti),
, (xi, yi, tj)) and ((xj , yj , tj), (xj , yj , tk)) model an
object that initially remains at (xi, yi) during the
time interval [ti, tj), and then it locates at (xj , yj)
during the time interval [tj , tk). Such line segments
can be indexed by a 3D R-tree. This idea works well
if all the final limits of the time intervals are known
in advance. The 3D R-tree structure is efficient in
space and in processing time-interval queries. It is,
however, inefficient for processing time-slice queries
[16].

RT-tree [24] is a structure where the temporal
information is kept in the nodes of the R-tree.
This is an extension to the data content of a

3

traditional R-tree. In this type of structure, the
temporal information plays a secondary role because
the search is guided by the spatial information. Thus,
queries with temporal conditions cannot be efficiently
processed [10].

HR-tree [11, 10] and MR-tree [24] are based on
the concept of overlapping. The basic idea is that,
given two trees, the most recent tree corresponds to
an evolution of the older tree, and subtrees can be
shared between both trees. The major advantage of
the HR-tree is its efficiency in processing time-slice
queries. Its major disadvantage is the excessive space
that it requires to store the structure. For example,
if only one object of each leaf node moves at instant
ti, the tree is completely duplicated at instant ti+1.

MVR-tree [15, 14, 16] is a structure based on
handling multiple versions. It is an extension of
MVB-tree [1], where the time-varying attribute is
spatial. Similar to the MVB-tree, each entry in the
MVR-tree is of the form 〈S, ts, te, pointer〉, where
S corresponds to a MBR. An entry is alive at
time instant t if ts ≤ t < te and dead otherwise.
MVR-tree imposes constraints on the number of
entries stored in its nodes. A constraint ensures
that there exist either zero or at least b · pversion

alive entries in any non-leaf node at a time instant
t, where pversion is a parameter of the tree and b

is the capacity of a node. This condition groups
alive entries at time instants for processing time-
slice queries. Other constraints (namely, strong
version overflow and strong version underflow) ensure
a good space usage in the algorithms for insertion and
deletion [15, 14, 16]. Like the MVB-tree, an MVR-
tree has multiple R-trees (logical trees) that organize
the spatial information for non-overlapping temporal
windows. This structure outperforms the HR-tree in
space and time when processing short time-interval
queries. A modification of MVR-tree called MV3R-
tree [15] improves the performance of MVR-tree for
long time-interval queries by adding an auxiliary 3D
R-tree for processing these queries. With the purpose
of maintaining the storage within reasonable limits,
both indices must share the same leaf pages, which
makes the insertion algorithm rather complex.

A disadvantage of the MVR-tree is the insertion
of artificial entries at the leaf nodes as it does not

guarantee that the real lifespan of an object is stored
in only one node. For example, if an object O1

was at position S1 in a time interval [1, 20), the
insertion algorithm of MVR-tree may create two
entries 〈S1, 1, 8〉 and 〈S1, 8, 20〉 in two different nodes,
making it more difficult to obtain the exact instant
when the object O1 arrives or leaves the position S1.

SEST-Index [5] is a structure that maintains
snapshots for some time instants and stores the
events that occur between consecutive snapshots.
One of the main disadvantages of SEST-Index is the
rapid growth of its size (storage use) as the number
of changes increases. This disadvantage is explained
because each snapshot duplicates all the objects,
including those that have undergone no modification
between consecutive snapshots. A solution to this
problem was proposed in [5], but it has two important
limitations: (i) the objects must be points and (ii)
the region where the changes occur must be fixed.
The proposal in this paper follows some of the ideas
of SEST-Index, but it overcomes the two previous
limitations and achieves good space usage, without
compromising time efficiency.

3 LES-tree: A Spatio-temporal

Access Method Based on

Snapshots and Events

Similar to SEST-Index [5], LES-tree maintains
snapshots for some time instants and stores the
events that occur between consecutive snapshots.
One of the main disadvantages of SEST-Index is
the rapid growth of its size (storage use) as the
number of changes increases. This disadvantage
is explained because each snapshot duplicates all
the objects, including those that have undergone
no modification between consecutive snapshots. A
solution to this problem was proposed in [5], but
it has two important limitations: (i) the objects
must be points and (ii) the region where the changes
occur must be fixed. LES-tree overcomes these two
limitations and achieves good space usage, without
compromising time efficiency.

LES-tree considers two types of snapshots, which

4

handle different space granularity. The first type
of snapshots (global snapshot) corresponds to an R-
tree (spatial indexing structure) including all objects
existing at a particular time instant. The second type
of snapshots (leaf snapshot) forms part of the logs
assigned to leaves of the global snapshots. These logs
store a sequence of events and several leaf snapshots
along time. When the number of events stored in a
log after a last leaf snapshot exceeds a threshold, a
new leaf snapshot is created and stored in the log.

Figure 1 shows the general schema of the LES-tree
with the two types of snapshots. The objective of
global snapshots is to maintain the performance of
the query processing along time, since the insertions
of events that produce the growing areas of leaves
provoke deterioration in the selectivity of the leaf
snapshots.

We refer as LES-treel to the structure composed
of one global snapshot and its corresponding
logs. Consequently, a LES-tree corresponds to a
sequence of LES-treel generated from consecutive
non-overlapping time intervals of different lengths.
These lengths of time intervals are determined
automatically by LES-tree and can be adjusted to
improve the performance of the indexing structure.
In this section we will describe in detail the data
structure, the dynamic of the global snapshots, and
the update and search algorithms.

3.1 LES-tree structure

The structure of LES-tree considers an array S (see
Figure 1) with an entry of type 〈ts, pLES-treel〉 for
each global snapshot, where ts corresponds to the
time instant in which the R-tree was created and
pLES-treel is the reference to the corresponding
LES-treel.

LES-treel (see Figure 2), consists of an R-tree [6]
and a set of logs assigned to the regions of leaves
in the R-tree. Here a log (leaf) is a structure that
stores leaf snapshots and events. In this structure,
the movement of an object is not inserted directly in
the R-tree, producing the classical node splitting of
the R-tree, but they are inserted as events in a log
of an R-tree’s leaf. Figure 2 presents a region A and
its corresponding log with three objects at instant

t0. At instant t1, region A has grown to include a
fourth object, what is reflected on the corresponding
leaf snapshot. The changes that occurred between t0
and t1 are stored as events in the log associated with
A.

In LES-treel, areas of both the regions to which
the logs are assigned and the MBRs of non-leaf nodes
in the R-tree are always growing along time. Due to
this situation, the overlapping areas of non-leaf nodes
in the R-tree increase and the efficiency of query
processing degrades (see Figure 2), a problem that
Section 3.2 addresses.

The LES-treel considers an R-tree [6], where the
leaves are logs and these logs are linked lists of blocks.
A log has two types of entries: event or change entries
and leaf snapshot entries (the first entry is always
a leaf snapshot). The entries in the log follow a
temporal order.

An event entry is a tuple with the structure
〈t,Geometry,Oid,Op〉, where t corresponds to the
time when the change occurred, and Oid is the object
identifier. Geometry corresponds to the spatial
component of the object, which depends on the
geometry type (i.e., point, line, polygon or MBR)
and dimension (2D or 3D). Finally, Op indicates the
type of operation (i.e., type of event or change).

This work considers only two types of events:
move in (i.e, an object moves to a new location) and
move out (i.e., an object leaves its current location).
Thus an object creation is modeled as a move in,
an object deletion as a move out, and an object
movement as a move out followed by a move in.
The structure that stores move out entries could only
include attributes t and Oid. This decreases the
storage cost of the structure, at the price of increasing
the time cost for processing queries on events (but
not the classical time-slice and time-interval queries).
Later, in Section 5, we will analyze how much space
(and also time) can be saved if the structure only
supports time-slice and time-interval queries.

The second type of entry, a leaf snapshot entry,
stores the snapshot of a leaf node, with one entry
per each object alive at the time instant when the
snapshot was created.

Like SEST-Index [5], each LES-treel also uses a
parameter d, equal for all logs in the structure,

5

S

...... ...

time

leaf snapshot

global snapshot

R−tree

t0

changes/events

logs

tn tmLES−treel

LES−tree

Figure 1: General outline of LES-tree

which represents the amount of memory, measured in
the number of blocks, used to store events between
consecutive leaf snapshots.

3.2 Dynamic regions

A potential problem of LES-treel is that the query
selectivity can deteriorate when regions grow due to
the arrival of new events that are stored in their logs.
Remind that inserting an entry of type move in can
expand the area of MBRs, from the leaves (logs) to
the root of the tree, whereas a move out does not
reduce the area of their corresponding MBR. As a
consequence of this ever growing area of MBRs, the
time cost of a spatio-temporal query (Q, t) submitted
at instant t1 ≥ ts is lower than the time cost of the
same query submitted at instant t2, with t2 > t1.

To measure this effect, we define a density measure
associated with the current R-tree. This measure
realDen is defined by Eq. (1), where M is the set
of MBRs located at the leaves of the R-tree, and
TotalArea is the workspace area. realDen describes
how compactly the leaf MBRs cover the space, so
a lower realDen value implies that the database
points are covered by smaller MBRs. The value of
realDen affects the query performance, since the
larger the MBRs are, the larger is the number of
logs that must be processed to solve a query. The

value of realDen usually grows with move in events,
as MBRs grow and the workspace tends to stay the
same. This explains why a query submitted at instant
t1 costs less than a query submitted at instant t2,
with t2 > t1.

realDen =

∑

i∈M Areai

TotalArea
(1)

To solve the problem of selectivity for dynamic
regions, LES-tree uses global snapshots which are
created when the insertions of new events produces
values of realDen (Eq. (1)) larger than a given
threshold.

3.3 Operations and algorithms

3.3.1 Updating the structure

The update of LES-tree considers two algorithms.
The first one (Algorithm 1) updates the LES-treel

with the arrival of new events since the time instant in
which the global snapshots was created. The second
algorithm (Algorithm 2) creates the global snapshots.

Updating LES-treel. This algorithms updates
the structure upon changes that occur at each time
instant. Let us assume that the changes to be
processed are stored in a list. When an object moves,

6

t2

A

A

t1

 I

t0

R1

changes/events changes/events changes/events

internal nodes

leaf nodes

leaf snapshot leaf snapshot
leaf snapshotlog

Figure 2: General outline of LES-treel

two events, move out and move in, are created. The
event move in includes attribute values t, Geometry

and Oid of the incoming object. For each move in

event, we choose the corresponding log where the
event should be inserted according to the classical
R-tree insertion policy [6] (called chooseleaf() in
Algorithm 1).

Although the data input for a move out event only
contains the attribute values t and Oid, the event
entry in the log must store the Geometry of the
object (the geometry of the corresponding move in
event) to enable the efficient process of event-based
queries. In addition, this move out event should
be stored in the same log than the corresponding
move in event to reduce the process of time-instant or
time-interval queries. As the R-tree shape may have
changed (MBRs may have expanded) since the last
move in event, chooseleaf() may choose a different
log, even if we have the same geometry for move in
and move out events. A solution to both problems is
to keep a hash table (〈Oid, block〉), with block being
the reference to the current block in the log where
the last move in event of the object was stored. The
procedure to find the leaf using the hash table is
called choosepreviousleaf() in Algorithm 1.

Both move in and move out events are inserted
as event entries after the last leaf snapshot that
was stored in the corresponding log. If, just before

insertion, the number of changes exceeds parameter
d, a new snapshot is created. Note that even though
the number of changes may exceed the capacity of
the log (parameter d), all changes occurred at the
same time instant in the region assigned to a log
are stored as event entries between two consecutive
leaf snapshot. The insertion of a move in event may
require updating the MBRs of the leaf as well as of
the ancestor nodes whose MBRs must now include
the Geometry of the arriving object.

Creating global snapshots. We propose to
use the density value realDen to determine the
time instant when a new global snapshot should
be created. The process of creating a new
global snapshot is described in Algorithm 2.
Unlike InsertChanges(), UpdateLES-tree() requires
to process together all changes occurred at the same
time instant. This guarantees that those changes
will not be split between different global snapshots.
However, the algorithm can be easily modified to
handle sets of changes that span different consecutive
time intervals and still enforce the non-splitting
property.

The algorithm keeps two R-trees. The first one
is the last global snapshot that was created (R in
the Algorithm 2), and the second one keeps the
last position of alive objects in time (newR-tree in

7

1: UpdateLES-treel(Changes C, LES-treel L, Integer
d) {C is the list of changes with non decreasing times and
d is the capacity of a log to store event entries between
leaf snapshots}

2: Let R the R-tree of LES-treel L

3: for each c ∈ C do
4: if c.Op = move in then
5: b = chooseleaf(R, c.Geometry)
6: else
7: b = choosepreviousleaf(R, c.Oid, c.Geometry).
8: end if
9: Let L be the list of events occurred in b after the last

leaf snapshot.
10: Let l be the number of changes stored in L.
11: if l > d ∧ c.t 6= L[l].t then
12: Create a new leaf snapshot S in b

13: Create a new empty list L and assign it to S

14: end if
15: Insert c at the end of L

16: if c.Op = move in then
17: Update the MBRs of all R-tree nodes in the path

followed by chooseleaf() to reach b.
18: end if

19: end for

Algorithm 1: Algorithm to update the structure

algorithm 2). The arriving events update both R-
trees, but in different way. While InsertChange()
updates the first R-tree (the global snapshot) with
the arrival of new events, the classical insertion and
elimination algorithms of the original R-tree updates
the second R-tree. The cost of storing this second R-
tree tends to be constant and marginal with respect
to the total storage cost of the structure. This
is particular true in cases with a large number of
objects that move along several time instants, and
for which the storage of several global snapshots and
logs largely exceeds the space used by a single R-tree.

Algorithm 2 checks that the value of realDen

after inserting new change events does not exceed
the threshold ls · lastDensity, where lastDensity is
the density of the last global snapshot and ls ≥ 1
is a parameter of the structure. When the value
of realDen exceeds the threshold, a new R-tree is
created. Let newDensity be the density of the R-tree
just created. The algorithm for updating LES-tree
ensures newDensity < li · realDen before actually
creating the new R-tree; otherwise, the improvement
is not worth the extra space. Here, li ≤ 1 is another

parameter of the algorithm.

1: UpdateLES-tree(array S, float lastDensity,
Changes C, float ls, float li, Integer d, R-tree newR-
tree)
{S is the array of entries to existing global snapshots,
lastDensity corresponds to the value of realDen of the
last R-tree in S, Cis a list with changes that occurred at
the last time instant, ls and li are fractions of lastDensity

}
2: Let E be the last entry of array S and L = E.LES-treel

3: UpdateLES-treel(C, L, d) {Insert changes in the L using
Algorithm 1}

4: UpdatenewR-tree(C, newR-tree) {Updates newR-tree

with changes in C list}
5: Let newDensity be the new value of realDen for L.R-tree

after inserting the changes
6: if newDensity > ls · lastDensity then
7: Let tmpDensity the value of realDen for newR-tree

8: if tmpDensity < li · newDensity then
9: Create a new LES-treel NL from the newR-tree

10: E1 = 〈t, NL〉
11: Add entry E1 to S

12: newR-tree = Duplicate(newR-tree)
13: end if

14: end if

Algorithm 2: Algorithm that controls the creation
of global snapshots

3.3.2 Time-slice queries

To process a time-slice query (Q, t), the first step is to
find the entry i in the array S such that Si.LES-treel

includes time t and is the last entry such that Si.ts ≤
t. Then, the algorithm recovers all leaves of the global
snapshot associated with Si.LES-treel that intersect
with Q. Next, for the log of each leaf, the process
obtains the corresponding leaf snapshot according to
the time instant t of the query. This snapshot is
the one built for the latest time instant tr such that
tr ≤ t. The spatial objects stored in the selected
leaf snapshot that intersect the query window form
an initial answer. Finally, this answer is updated
with the changes stored in the event entries of the
log within the time interval (tr, t] (Algorithm 3). The
whole answer is the union of the results obtained from
each involved leaf.

8

1: time-sliceQuery(Rectangle Q, Time t, array S)
2: Find the last entry i in S such that Si.ts ≤ t

3: Let R be the R-tree of Si.LES-treel.
4: B = SearchRtree(Q, R) {B is the set of leaves (logs) that

intersect Q}
5: G = ∅ {G is the set of objects that belong to the answer}
6: for each log b ∈ B do
7: Let tr be the time of the latest leaf snapshot in b such

that tr ≤ t

8: Let A be the set of all objects in the leaf snapshot
created at time instant tr in log b and that intersect
Q

9: for each event entry c ∈ b such that tr < c.t ≤ t do
10: if c.Geometry intersects Q then
11: if c.Op = move in then
12: A = A ∪ {c.Oid}
13: else
14: A = A − {c.Oid}
15: end if
16: end if
17: end for
18: G = G ∪ A

19: end for

20: return G

Algorithm 3: Algorithm to process a time-slice
query

3.3.3 Time-Interval queries

Two procedures process time-interval queries
(Q, [ti, tf]). The first one (see Algorithm 4) aims
to transform (Q, [ti, tf]) into a set of time-interval
sub-queries (Q, t1, t2), whose time intervals [t1, t2] are
non-overlapping sub-intervals of [ti, tf]. The limits
of an interval are defined such that the sub-query
covers the time interval between consecutive global
snapshots, with the exception that the initial instant
of the first time interval must be ti, and the final
instant of the last time interval must be tf . The
answer of the query (Q, [ti, tf]) is obtained by the
algorithm 5 as the union of the answers of each of
the sub-queries.

The second procedure (see Algorithm 5) processes
each of the time-interval (Q, [t1, t2]). This algorithm
starts by finding the set of spatial objects that
intersect the query window (Q) at the initial instant
t1. This is equivalent to a time-slice query at instant
t1. Then, objects are updated based on the changes
occurred within the interval (t1, t2] (Algorithm 5).

1: IntervalQuery(Rectangle Q, Time ti, tf , array S)
2: ANS = ∅ {Answer set}
3: Find the last entry i in S such that Si.ts ≤ ti
4: t1 = Si.ts
5: while t1 < tf do
6: if i is the last entry in S then
7: t2 = tf
8: else
9: t2 = min(Si+1.ts, tf)

10: end if
11: ANS = ANS ∪ SubIntervalQuery(Q, Time t1, t2,

Si.pLES-treel)
12: t1 = t2
13: i = i + 1
14: end while

15: return ANS

Algorithm 4: Algorithm to process a time-interval
query

3.3.4 Event queries

One of the novelties of the LES-tree structure is its
capability for processing not only time-slice and time-
interval, but also queries on events. For example,
given a region Q and an instant t, an event query may
be to find the number of objects that moved in or out
from region Q at instant t. These types of queries are
possible and useful, for example, in applications that
aim to analyze the pattern of objects’ movements [23,
3].

Processing event queries with LES-tree (see
Algorithm 6) is simple and efficient, since the
structure explicitly stores the changes over objects’
geometry. Algorithms for these types of queries
are similar to those for time-slice and time-interval
queries.

4 A LES-tree Cost Model

This section presents a cost model for LES-
tree, which allows us to predict its storage and
time costs for spatio-temporal queries. The cost
model is experimentally validated to demonstrate its
prediction capability.

The cost model of LES-tree assumes that the initial
locations of objects and their subsequent positions
upon movements distribute uniformly and that the
events consist of random changes in objects’ location,

9

1: SubIntervalQuery(Rectangle Q, Time t1, t2, LES-
treel L)

2: Let R be the R-tree of L

3: B = SearchRtree(Q, R) {B is the set of leaves (logs) that
intersect Q}

4: G = ∅ {G is the set of objects that belong to the answer}
5: for each log b ∈ B do
6: Let tr be the time of the latest leaf snapshot in b such

that tr ≤ t

7: Let A be the set of all objects in the leaf snapshot
created at time instant tr in log b and that intersect
Q

8: Update A with the changes stored in b occurred between
(tr, t1] {like a time-slice query}

9: ts = Next(t1) {Next(x) returns the next instant after
x having changes in log b}

10: while ts ≤ t2∧ there exist unprocessed event entries in
log b do

11: for each event entry c ∈ b such that c.t = ts do
12: if c.Geometry intersects Q then
13: if c.Op = move in then
14: A = A ∪ {c.Oid}
15: else
16: A = A − {c.Oid}
17: end if
18: end if
19: end for
20: let G = G ∪ {〈o, ts〉, o ∈ A}
21: ts = Next(ts)
22: end while
23: end for

24: return G

Algorithm 5: Algorithm to process a subquery.

so the number of objects does not change along time.
Figure 3 describes the variables used in the cost
model of LES-tree.

The development of the model follows two steps.
First, a model for LES-treel and then its extension
to a model for LES-tree.

4.1 A cost model for LES-treel

4.1.1 Storage cost of the R-tree

Let N be the number of objects stored in an R-tree
with average fanout f . The height h of an R-tree is
given by the equation h =

⌈

logf N
⌉

[17].

Since the number of entries in a node is on average
f , it is possible to assume that the number of leaf

nodes is N1 =
⌈

N
f

⌉

and that the number of non-leaf

1: EventQuery(Rectangle Q, Time t, array S)
2: Find the last entry i in S such that Si.ts ≤ t

3: Let R be the R-tree of Si.LES-treel.
4: B = SearchRtree(Q, R) {B is the set of regions that

intersect Q}
5: oi = 0 {number of objects that moved into Q at instant

t}
6: oo = 0 {number of objects that moved out of Q at instant

t}
7: for each log b ∈ B do
8: find the first event entry c ∈ b such that c.t = t

9: while c.t = t do
10: if c.Geometry intersects Q then
11: if c.Op = move in then
12: oi = oi + 1
13: else
14: oo = oo + 1
15: end if
16: end if
17: c = NextChange(c) {NextChange(x) returns the

event entry following x in log b}
18: end while
19: end for

20: return (oi, oo)

Algorithm 6: Algorithm to process an event query

nodes at the level immediately superior to the leaves

is N2 =
⌈

N1

f

⌉

. Considering that the root is at level h

and the leaves are at level 1, the average number of

nodes at level j is given by equation Nj =
⌈

N
fj

⌉

[17].

Thus the average number of nodes used (i.e., storage
cost) for an R-tree is determined by Eq. (2).

TN =

h
∑

j=1

⌈

N

f j

⌉

≈ h +

⌊

N · (fh − 1)

fh · (f − 1)

⌋

≈ logf N +
N

f
(2)

4.1.2 Time cost of the R-tree

Based on [20, 17], the number of nodes accessed by
an R-tree (i.e., time cost) in spatial window queries
(q1, . . . , qn) is given by Eq. (3) (see next for Dj).

DAn = 1 +

h
∑

j=1

N

f j
.

n
∏

i=1

(

(

Dj .
f j

N

)

1

n

+ qi

)

(3)

10

Symbol Description

ai Length of the time interval of a query (subquery)
c Changes that fit in a block (one change is equivalent to two operations, one move in plus

one move out)
cc Usage average percentage of a node in an R-tree
D Initial density of the set of objects

DA Average number of nodes in an R-tree accessed for a spatial query
f Average capacity of a node in an R-tree (fanout), f = cc · M
h Height of an R-tree
il Number of time instants that can be stored in a log between consecutive leaf snapshots
l Total number of changes stored between consecutive leaf snapshots

igs Number of time instants between global snapshots, or how long it takes to create a new
global snapshot

M Maximum capacity of a node in an R-tree (maximum number of entries)
M1 Maximum capacity of a node in an R-tree for reaching a given density
N Total number of objects
nl Number of changes stored in a log adjusted to an integer number of time instants
nt Time instants stored in the structure
p Change percentage between time instants (change frequency)
q Width of the query rectangle along a dimension, as a fraction of the total space

TN Total number of blocks used by an R-tree
ls Threshold that determines when a new global snapshot is created

NB Number of logs
DAts Number of blocks accessed in a time-slice query
DAin Number of blocks accessed in a time-interval query

TBtotal Total number of blocks needed to store the LES-treel structure

Figure 3: Definition of variables

Given that our experiments consider 2-dimensional
objects, DA = DA2 is defined by Eq. (4), assuming
a square query window, q = q1 = q2.

DA = 1 +

h
∑

j=1

(

√

Dj + q ·
√

N

f j

)2

(4)

In Eqs. (3) and (4), Dj corresponds to the density
of spatial objects at level j [20, 17]. This is obtained
by Eq. (5), with D0 being the density of the spatial
objects that are indexed in the R-tree.

Dj =

(

1 +

√

Dj−1 − 1√
f

)2

, 1 ≤ j ≤ h (5)

An important property of Eqs.(3) and (4) is that
they depend only on f , N , q and D0 and, therefore,
there is no need to construct the R-tree to estimate
the performance of the query. In this paper we have
used D0 = 0, as we index points. In general, D0 can

be computed by using Eq. (1) (i.e., D0 = realDen),
where M represents the objects to be indexed.

4.1.3 Storage cost of LES-treel

Two values describe the storage cost (number of
blocks) used by the logs of LES-treel: the number
of logs and the storage needed per log. The number
of logs is equal to the number of leaves in the R-tree,

which is expressed by equation NB = N1 =
⌈

N
f

⌉

.

The number of time instants (il) that can be stored
between leaf snapshots is determined by Eq. (6).
In this equation, l is the capacity of the log to
store change entries between two consecutive leaf
snapshots, and p · f represents the average number
of changes that would occur in a region at each time
instant.

il =

⌈

l

p · f

⌉

(6)

11

Using Eq. (6), it is possible to calculate the value
nl (Eq. (7)), such that all events occurred at the
same time instant are stored between the same leaf
snapshots.

nl = p · f · il (7)

With il and nl, the number of blocks used per each
log is given by Eq. (8). In this equation, the first
term of the sum corresponds to the number of leaf
snapshots. This is equal to the number of blocks used
by a leaf snapshot if we assume that the alive objects
fit, on average, in a disk block (as it initially happens
in the R-tree leaves). The second term represents the
number of blocks required, on average, for each log
to store all the changes occurred at all time instants
except those after the last leaf snapshot. The last
term is the number of blocks occupied for storing the
changes occurred after the last leaf snapshot.

TBlog =

⌈

nt

il

⌉

+

(⌈

nt

il

⌉

− 1

)

·
⌈

nl

c

⌉

+

⌈(

nt

il
−
⌊

nt

il

⌋)

· nl

c

⌉

(8)

Finally, the number of blocks used by the LES-treel

is given by Eq. (9).

TBtotal = (TN − NB) + NB · TBlog

≈ logf N + N · nt · p
(

1

l
+

1

c

)

(9)

The latter approximation is meant to give intuition
on the result, and not replace the exact formula. The
experimental validation of the model uses the exact
formula of TBtotal, not the approximation.

4.1.4 Time cost of LES-treel

The time cost of LES-treel can be estimated by
adding the time cost of accessing the R-tree without
leaves and the time cost of processing all logs that
intersect the query window. In the following, Rp-
tree refers to the R-tree without leaf nodes. The leaf
nodes of the Rp-tree contain the MBRs for each of
the leaf nodes in the R-tree.

The number of objects handled by the Rp-tree is
Np = N

f
. Let hp =

⌈

logf Np

⌉

= h − 1 be the height
of the Rp-tree. The number of nodes accessed in the
tree is given by Eq. (10).

DARp−tree = 1 +

hp
∑

j=1

(

√

Dj+1 + q ·
√

Np

f j

)2

= DA −
(

√

D1 + q ·
√

N

f

)2

(10)

In Eq. (10), we use Dj+1 because the objects in the
Rp-tree are the leaves of the R-tree. The number of
logs to be processed in a query depends strongly on
the density formed by the MBRs of the leaves and
query. This number of logs is defined in Eq. (11),

where D1 =

(

1 +
√

D0−1√
f

)2

.

NL =

(

√

D1 + q ·
√

N

f

)2

(11)

Therefore, the number of blocks accessed in a time-
slice query is defined by Eq. (12).

DAts = DARp−tree + NL ·
(

1 +

⌈

nl

2 · c

⌉)

≈ q2 · N

f
·
(

1 +
l

2 · c

)

(12)

Likewise, the average number of blocks accessed in a
time-interval query is given by Eq. (13).

DAin = DAts + NL ·
⌈

(ai − 1) · p · f
c

⌉

≈ q2 · N

f
·
(

1 +
l
2

+ ai · p · f
c

)

(13)

Again, the approximations for DAts and DAin just
serve to give intuition and do not replace the exact
formulas.

Based on the cost model for time-slice and time-
interval queries, we can derive the cost of processing
queries on events, since these queries also consider
temporal and spatial windows.

12

4.1.5 Experimental validation of the cost

model for LES-treel

In order to evaluate the cost model, several
experimental evaluations were conducted with
synthetic data obtained from GSTD [19]. These
experiments used 23,268 objects (points) and 200
time instants with change frequencies of 1%, 5%,
10%, 15%, 20% and 25%. They also considered
values of the parameter d equal to 2, 4 and 8 blocks,
where l = d · c (we consider c = 21 changes in our
experiments). The value f of the R-tree was set to
34 (68% of the capacity [17] of a node in an R*-tree
that is able to hold 50 entries).

Figures 4, 5 and 6 evaluate the prediction
capability of the cost model for both storage and time
requirements. Figure 4 shows that the storage cost
predicted by the model and the one obtained with the
experiments are similar for all values of d analyzed,
with a relative average error of 15%.

Figures 5 and 6 show that the prediction of the
time cost of the query processing is very good, with
a relative average error of 8%.

4.2 A cost model for LES-tree

This section describes the storage and time costs of
LES-tree. The idea of the global snapshots is to keep
a stable performance of the structure along time,
since the performance decreases as consequence of
the increasing density of the initial R-tree. The cost
model assumes objects uniformly distributed over the
space and the same density of the R-tree in each
global snapshot. Another important consideration is
that, with the purpose of capturing the evolution of
the MBRs’ density, the operations of type move in

are modeled as insertions in an R-tree. Finally, we
assume a constant number of objects along time.

To incorporate the effect of the global snapshots
in the basic model for LES-treel, it is necessary to
estimate how many global snapshots (ngs) should
be created. To do so, we estimate the number of
objects (M1) that must be stored in each leaf node
in order to reach the density threshold D′

1 = ls · D1,
where D1 is the initial density of the R-tree and D′

1 is
the density value that triggers the creation of a new

global snapshot.

Given f = cc · M and Eq. (5), Eq. (14) estimates
the density of the MBRs of the leaves in the R-tree.

D1 =

(

1 +

√
D0 − 1√
cc · M

)2

(14)

Thus, it is possible to obtain M1 by Eq. (15).

(

1 +

√
D0 − 1√
cc · M1

)2

= ls ·
(

1 +

√
D0 − 1√
cc · M

)2

(15)

From Eq. (15), M1 can be expressed by Eq. (16).

M1 =

(√
D0 − 1

)2

cc ·
(√

ls ·
(

1 +
√

D0−1√
cc·M

)

− 1
)2

(16)

As it was mentioned before, the value of M1

indicates how many events should be inserted to
reach density D′

1. With M1, it is possible to obtain
the time interval between global snapshots (igs). To
do so, we obtain the total number objects stored in
the R-tree when the number of objects in the leaf
nodes of the R-tree reaches M1. This is M1 · N

cc·M ,

where N
cc·M is the number of leaves (or logs) in the

original R-tree. Therefore, the number of changes
that should be inserted in the R-tree to reach density
D′

1 is calculated as M1 · N
cc·M − N . The estimated

number of objects inserted in the R-tree in every time

instant is N · p, and therefore, igs =
⌈

M1· N
cc·M

−N

N ·p

⌉

is the number of time instants that are stored in a
log before a new global snapshot is created. This is
simplified to obtain Eq. (17).

igs =

⌈

M1

cc·M − 1

p

⌉

(17)

For example, if cc = 0.68, N = 20, 000, M = 50,
ls = 1.3, p = 0.10 and D0 = 0, the values of M1

and igs are approximately 480 and 132, respectively,
which implies that every 132 time instants we need
to create a new global snapshot.

13

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25

M
B

yt
es

change frequency(%)

Experimental
Model

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20 25

M
B

yt
es

change frequency(%)

Experimental
Model

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25

M
B

yt
es

change frequency(%)

Experimental
Model

d = 2 d = 4 d = 8

Figure 4: Estimation of the storage use for a LES-treel

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80

re
ad

 b
lo

ck
s

length of time interval

Experimental
Model

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50 60 70 80

re
ad

 b
lo

ck
s

length of time interval

Experimental
Model

 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 0 10 20 30 40 50 60 70 80

re
ad

 b
lo

ck
s

length of time interval

Experimental
Model

d = 2 d = 4 d = 8

Figure 5: Estimation of the time cost of queries by LES-treel (10% change frequency and 6% in each
dimension for the query window)

4.2.1 Storage cost of LES-tree

Having igs, the estimation of the storage cost for
LES-tree is simple, since it is enough to consider that
the number of global snapshots is equal to ngs =
⌈ nt

igs
⌉. Each global snapshot should store the changes

occurred along igs time instants. In addition, the last
global snapshot should store the changes occurred
along lt = nt−igs·⌊ nt

igs
⌋ time instants. Using Eq. (9),

and replacing TBlog by TB
igs
log or TBlt

log, we obtain
the storage used by the logs in each global snapshot.
TB

igs
log is obtained from Eq. (8) by replacing nt by igs,

and TBlt
log by replacing nt by lt. Thus, the storage

cost of LES-tree is defined by Eq. (18).

TBGStotal =

⌊

nt

igs

⌋

·
(

(TN − NB) + NB · TB
igs
log

)

+ (TN − NB) + NB · TBlt
log (18)

4.2.2 Time cost of LES-tree

Clearly, the cost model defined by Eq. (12) for time-
slice queries does not change, because to process a
query of this type only needs to access a single LES-
treel. For time-interval queries, we first need to know
the number of global snapshots (i.e., the number
of LES-treel) that the algorithm of a time interval
query should access.The estimated number of global
snapshots that a query with a time interval of ai

intersects is defined by Eq. (19).

ngsi =

⌈

ai

igs

⌉

(19)

The length of the interval ai is transformed into

14

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12

re
ad

 b
lo

ck
s

% of dimension in each axis

Experimental
Model

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12

re
ad

 b
lo

ck
s

% of dimension in each axis

Experimental
Model

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12

re
ad

 b
lo

ck
s

% of dimension in each axis

Experimental
Model

d = 2 d = 4 d = 8

Figure 6: Estimation of the time cost of queries by LES-treel (10% change frequency and time interval length
equal to 10)

a set of ni =
⌊

ai
igs

⌋

intervals of length igs plus

an additional interval of length lr = ai − ni · igs.
Thus, to determine the time cost of LES-tree, a time-
interval query is decomposed into ni queries with
time intervals of length igs and a query with time
interval of length lr. For each R-tree, the density of
leaves’ MBR is at worst D′

1 = ls · D1 and, therefore,
the number of logs that the spatial component of the
query will intersect is given by Eq. (20).

NL =

(

√

D′
1 + q ·

√

N

cc · M

)2

(20)

Finally, replacing ai by igs (to obtain DA
igs
in) or

lr (to obtain DAlr
in) in Eq. (13), we can obtain the

number of blocks accessed by LES-tree in a spatio-
temporal query (Eq. (21)).

DASGin = ni · DA
igs
in + DAlr

in (21)

4.2.3 Experimental validation of the cost

model of LES-tree

In order to evaluate the cost model, new experimental
evaluations were conducted with synthetic data
obtained from GSTD [19]. These experiments used
23,268 objects (points) and 200 time instants with
change frequency of 5% and 10%, and 4 blocks for
parameter d. The experiment considered values of
the threshold (ls) from 1.1 to 1.35. Figure 7 shows

that the prediction of the storage cost is very good,
with a relative average error of 14%. The model
estimates the time cost of query processing with a
relative average error of 14% (see Figures 8 and 9).
Note that in Figure 8 the use of global snapshots
appears to be counterproductive. This is because
we purposely used ls values lower than advisable
in order to obtain a clear difference with respect
to the standard structure. As the distribution is
uniform, a correct parameterization (such as ls =
1.20) would recommend very few global snapshots
and the difference with the standard structure would
be negligible. The use of global snapshots is
advantageous when the data does not distribute
uniformly, as shown in Section 5.2.

Our model turns also to be useful on nonuniform
data. The reason is that the global snapshot
technique, in some sense, makes the structure behave
over nonuniform data in a way similar to uniform
data. To adapt our model to an arbitrary initial
distribution, we only have to compute the initial
density and global snapshot rate according to the
real data. For the density, instead of using Eq. 14,
we must build the R-tree for the spatial data at
hand, and use the MBRs M of the leaves to
compute D1, as realDen of Eq. (1). For the global
snapshot rate we need to compute M1 for arbitrary
distributions. We replace the analytic formula of
Eq. (16) by a procedure that builds R-trees over
the initial data using increasing node capacities until

15

 0

 5

 10

 15

 20

 25

 30

 1.1 1.15 1.2 1.25 1.3 1.35

M
by

te
s

threshold(%)

Experimental
Model

 0

 10

 20

 30

 40

 50

 60

 1.1 1.15 1.2 1.25 1.3 1.35

M
by

te
s

threshold(%)

Experimental
Model

5% change frecuency 10% change frecuency

Figure 7: Estimation of the storage used for LES-tree

the density reaches a value D′
1 = ls · D1. This is

all the computation we need over the real data (no
simulations over query streams nor change events, for
example). All the rest of the formulas of the model
can be used unaltered once D1 and M1 are obtained.

An experimental validation of our model in a
scenario with non uniform distribution of objects
and global snapshots uses the same data set of the
evaluation of MVR-tree in [16]. Such data set consists
of 23,268 objects (points) that moves with 10% of
change frequency during 199 time instants. We refer
to this data set as NUD (Figure 10).

In Figure 11 we compare the experimental behavior
over the NUD data with our model. It can be
seen that our model, although designed for uniform
distributions, accurately predicts the behavior of the
structure on nonuniform data as well. The space
required is accurately predicted as well: the error is
typically very low (e.g. 3% for ls = 1.3). For very
low ls the space required can get larger (e.g. 20% for
ls = 1.10), but those low ls values are not of use in
practice.

 0

 50

 100

 150

 200

 30 40 50 60 70 80

re
ad

 b
lo

ck
s

length of time interval

Experimental (using ls = 1.30)
Model (using ls = 1.30)

Experimental (using ls = 1.10)
Model (using ls = 1.10)

Figure 11: Estimation of the time cost of LES-tree
for the data set NUD (change frequency = 10%, and
6% in each dimension of the spatial window)

5 Experimental evaluation

This section presents an experimental evaluation
that compares LES-tree with respect to SEST-
Index and MVR-tree. The evaluation considers two
scenarios with the same number of objects (23,268
points) and time instants stored in the database.
While in the first scenario objects initially distribute

16

 0

 50

 100

 150

 200

 250

 30 40 50 60 70 80

re
ad

 b
lo

ck
s

length of time interval

Experimental(using ls = 1.05)
Model(using ls = 1.05)

Experimental(using ls = 1.1)
Model(using ls = 1.1)

Experimental(without global snapshot)
Model(without global snapshot)

 0

 50

 100

 150

 200

 250

 30 40 50 60 70 80

re
ad

 b
lo

ck
s

length of temporal interval

Experimental(using ls = 1.05)
Model(using ls = 1.05)

Experimental(using ls = 1.1)
Model(using ls = 1.1)

Experimental(without global snapshot)
Model(without global snapshot)

(a) 5% change frequency (b) 10% change frequency

Figure 8: Estimation of the efficiency of the queries processed with LES-tree and uniform distribution (spatial
range of the queries made up of 6% of each dimension).

uniformly over the space, in the second scenario
objects present the non-uniform initial distribution
shown in Figure 10.

5.1 Evaluation of LES-tree with uni-

form distribution of objects

All experiments in this section consider a density
threshold value of 30% to create new global
snapshots. With this value, we create only one global
snapshot. A stricter value of this density threshold
(i.e., a value less than 30%) creates unnecessary
global snapshots. As we will see later, the advantage
of using global snapshots is reflected in the evaluation
of LES-tree with data of a non-uniform distribution
of objects (see Figure 10).

A first experimental evaluation compares LES-
tree with SEST-Index and MVR-tree. It compares
storage and time costs of all methods when processing
spatio-temporal queries. After the initial uniform
distribution of objects, objects change their positions
over 200 time instants. The set of objects was
obtained with the spatio-temporal data generator
GSTD [19].

The evaluation uses different lengths of the
logs that store events, that is, different values of

parameter d (see Figure 3) for the structures SEST-
Index and LES-tree. Such lengths are determined in
terms of the number of events that occur in 1, 12
and 24 time instants. For example, if we consider
the number of events that occur at 1 time instant
for 23,268 objects with 10% of change frequency,
the value of d is 1 for LES-tree and 56 for SEST-
Index. Note that by keeping logs that store only the
events occurr at 1 time instant, both LES-tree and
SEST-Index reach the best performance for query
processing, to the price of the largest storage cost.

For SEST-Index, the value d is obtained with the
expression d = p·N ·k

c
, where k represents the number

of time instants (i.e., 1,12 or 24) for which changes are
stored in the logs. Likewise, for LES-tree the value d

is obtained by the equation d = p·f ·k
c

, where d,N, c

and f are defined in Figure 3.

5.1.1 Storage cost

Figure 12 shows the storage cost of MVR-tree, SEST-
Index and LES-tree for different values of change
frequency. In the case of LES-tree and SEST-Index,
as d increases, the storage cost reduces. In Figure 12
we can observe that LES-tree requires approximately
the same storage than MVRT-tree with a parameter d

17

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12

re
ad

 b
lo

ck
s

% of dimension in each axis

Experimental
Model

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12

re
ad

 b
lo

ck
s

% of dimension in each axis

Experimenta
Model

(a) 5% change frequency (b) 10% change frequency

Figure 9: Estimation of the efficiency of the queries processed with LES-tree considering uniform distribution
(length of temporal interval equal to 40 units and ls = 1.1).

(a) (b) (c)

Figure 10: Data of moving objects: (a) instant 1, (b) instant 100 and (c) instant 199

for storing 1 time instant. Remember that, in terms
of storage cost, this is the worst scenario for LES-
tree. LES-tree, however, overcomes MVR-tree with
increasing values of d. For example, if we consider
10% change frequency and values of d equal to 1 and
4, LES-tree requires, approximately, 78% and 65% of
the storage of MVR-tree, respectively. For the same
change frequency and values of d equal to 560 and
1,120, SEST-Index requires less storage than MVR-
tree and LES-tree; however, and as we will show later,
the performance of SEST-Index is worse than the
performance of LES-tree and MVR-tree.

5.1.2 Time-slice and time-interval queries

Figures 13, 14 and 15 show the performance of MVR-
tree, SEST-Index and LES-tree to process spatio-
temporal queries (Q, [ti, tf) that consider different
lengths for time intervals [ti, tf] and different areas for
Q. In Figure 13 we can see that LES-tree overcomes
by far SEST-Index. Note that this figure only shows
the best scenarios of SEST-Index, that is, d = 56
for 10% change frequency and d = 25 for 5% change
frequency, and where its storage is larger than the
storage of LES-tree (for d = 1, d = 2 y d = 4) and
MVR-tree.

The unfavorable performance of the SEST-Index

18

change MVR-tree / LES-tree SEST-Index
frequency MV3R-tree 1 12 24 1 12 24

(%) (Mb) d (Mb) d (Mb) d (Mb) d (Mb) d (Mb) d (Mb)

1 6 / 6.3 1 5 1 5 1 5 6 55 55 10 110 6
5 26 / 26.5 1 19 1 19 2 16 25 59 270 14 540 10
10 46 / 46.8 1 36 2 29 4 24 56 64 560 19 1120 15
15 66 1 55 3 38 6 35 75 68 750 25 1500 20
20 81 1 74 4 47 8 43 102 73 1000 30 2000 25
25 101 1 94 5 56 10 52 126 78 1250 35 2500 30

Figure 12: Storage space for MV-tree, LES-tree and SEST-Index (d is the number of blocks used to store
changes)

with respect to LES-tree is explained by two factors:

i) The SEST-Index duplicates all the objects in
each snapshot including those without changes.
The problem of duplication could, in principle,
be solved by using the overlapping strategy of
HR-tree, but the experimental results showed
that there is a low saving in storage, around
5% – 7%. Instead, LES-tree builds a new global
snapshot only for the leaves that have undergone
several changes.

ii) The SEST-Index groups the changes only in
relation to time, and not in relation to time and
space as does LES-tree. All changes that occur
between consecutive leaf snapshots are stored in
a single log, which may span many disk blocks.
In a query (Q, t), Q is used only for getting the
initial set of objects, but not for filtering the
log blocks in the subsequent processing. Thus,
all events between the time of the leaf snapshot
and the query time t are processed. This can be
alleviated by enforcing short logs (with a small
d), but this exacerbates problem a).

In Figure 13, LES-tree overcomes MVR-tree for all
values of d considering 5% and 10% change frequency.
Even for the worst scenarios of LES-tree to evaluate
queries (d = 2 for 5% frequency and d = 4 for
10% change frequency), the performance of LES-
tree is better than the performance of MVR-tree, a
difference that increases with the length of the query

time interval. Recall that for these scenarios, LES-
tree requires less storage than MVR-tree.

Figures 14 and 15 show the behavior of MVR-tree,
SEST-Index and LES-tree for time-interval queries
for which the temporal interval lengths were 1 and
4, and the spatial range was made up of 2% –
20% from each dimension. In Figure 14 (time-
slice query) with d = 1, LES-tree overcomes MVR-
tree for all the areas of query window. In this
scenario, both structures use approximately the same
storage. In the same figure, SEST-index overcomes
LES-tree as the area of the query window increases.
For example, in Figure 14-a (5% change frequency),
SEST-Index starts to outperform LES-tree from an
area made up of 14% of each dimension for d = 1.
In contrast, for 10% change frequency, SEST-Index
presents better performance than the performance
of LES-tree starting from areas covering 20% of
each dimension. SEST-Index, however, requires 3
times and twice the space than LES-tree for change
frequency of 5% (d = 24) and 10% (d = 56),
respectively. The experiment also shows that the area
of the queries when SEST-Index outperforms LES-
tree increases as the temporal interval length enlarge.
The latter can be seen in Figure 15 where LES-tree
overcomes easily MVR-tree and SEST-Index for all
areas of query window and values of d = 1 and d = 2
for LES-tree.

There exists a spatio-temporal access method
known as MV3R-tree [15] that corresponds to a

19

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

re
ad

 b
lo

ck
s

length of time interval

MVR-tree
MV3R-tree

SEST-Index(d=25)
LESTR-tree(d=1)
LESTR-tree(d=2)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16 18 20

re
ad

 b
lo

ck
s

length of time interval

MVR-tree
MV3R-tree

SEST-Index(d=25)
LESTR-tree(d=1)
LESTR-tree(d=2)
LESTR-tree(d=4)

(a) 5% change frecuency (b) 10% change frecuency

Figure 13: Blocks read by MVR-tree, SEST-Index and LES-tree for queries with different temporal interval
lengths (10% change frequency and spatial range made up of 6% of the length of each dimension).

variant of MVR-tree. MV3R-tree combines MVR-
tree with a small 3D R-tree1[15]. MVR-tree solves
queries with short temporal intervals, whereas 3D R-
tree solves queries with long temporal intervals. In
[15], MV3R-tree, HR-tree [10, 11], and the original
3D R-tree are compared2[21]. The results show that
the 3D R-tree used by MV3R-tree requires only 3%
of the storage used by MVR-tree (thus MV3R-tree
is only 3% larger than MVR-tree). MV3R-tree uses
1.5 times the storage required by the original 3D
R-tree, and MV3R-tree needs a minimum fraction
of the HR-tree storage. On the other hand, our
experiments show that LES-tree requires, in average,
approximately 75% of the storage used by MVR-
tree, considering all changes occurred in 12 time
instants. Thus, we can state that LES-tree needs
approximately the same storage than 3D R-tree.

With respect to the queries with short temporal
intervals (less than 5% of the total of the temporal
intervals of the database), MV3R-tree uses a MVR-
tree to evaluate them. In our experiments, data

1This 3D R-tree is created considering the leaves of a MVR-
tree; that is, each leaf of the MVR-tree is an object in the 3D
R-tree

2In constrast, this 3D R-tree stores each object instead of
each leaf of the MVR-tree

contains 200 snapshots and, therefore, LES-tree will
outperform the MV3R-tree in the same situations
where we considered temporal intervals less than or
equal to 10 time units. For queries that consider a
temporal interval whose length is larger than 5%,
MVR-tree needs to do approximately between 75%
and 80% of the accesses required by MVR-tree as
is shown in [13]. Assuming that the cost (time) of
MV3R-tree will be 75% of MVR-tree, it is possible
to affirm that LES-tree is always better than MV3R-
tree for queries whose temporal interval is larger than
2 time units (for d = 4 and change frequency of 10%
representing the worst scenario of LES-tree).

It is also possible to conclude that LES-tree is
better than the spatio-temporal access method that
uses the original 3D R-tree, given that the results in
[15] show that 3D R-tree does not outperform MV3R-
tree in none of the analyzed situations. In queries
with long temporal intervals, 3D R-tree experimented
a performance very similar to that of MV3R-tree.

LES-tree is an event-oriented access method that
aims to efficiently process not only time-slice and
time-interval queries, but also queries on events. To
guarantee performance for all queries, the structure
maintains some attributes that can be eliminated
if we are only interested in time-slice or time-

20

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20

re
ad

 b
lo

ck
s

% of the dimension in each axis

MVR-tree
MV3R-tree

SEST-Index(d=25)
LESTR-tree(d=1)
LESTR-tree(d=2)

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20

re
ad

 b
lo

ck
s

% of the dimension in each axis

MVR-tree
MV3R-tree

SEST-Index(d=56)
LESTR-tree(d=1)
LESTR-tree(d=2)
LESTR-tree(d=4)

(a) 5% change frecuency (b)10% change frecuency

Figure 14: Blocks read by MVR-tree, SEST-Index and LES-tree for time-slice queries (temporal interval
length = 1) in different spatial ranges.

interval queries. More specifically, it is possible to
eliminate the Geometry attribute in the move out

type event and still achieve a better performance
in the processing of time-slice and time-interval
queries. We evaluated the performance of LES-tree
considering these modifications in the data structure
(adjusted LES-tree). The results show that for 10%
change frequency and d = 4, LES-tree requires
approximately 67% of the storage required by the
original LES-tree and 70% of the time to process
queries whose query space window covers 6% in each
dimension and whose lengths of time intervals go
from 1 to 20 units.

5.1.3 Queries on events

As we explained above, SEST-Index and LES-tree
also enable to process queries about events that
occurred in time instants or time intervals. The
processing cost of this type of queries with LES-
tree is the same as the one needed for the time-
slice and time-interval queries. For SEST-Index,
however, it is possible to have advantages to process
event queries. We evaluate both structures with 10%
change frequency and parameter d such that both
structures require the same storage. To fulfill this

constraint, d was set to 816 and 4 for SEST-Index
and LES-tree, respectively. In this scenario SEST-
Index overcomes LES-tree when the query window
covers an area formed by more than 11% of each
dimension. SEST-Index, however, presents a poor
performance for time-slice and time-interval queries
with respect to LES-tree. For example, a time-slice
query with LES-tree requires approximately 8% of
the time needed with SEST-Index.

Despite the fact that MVR-tree does not provide
an algorithm to solve queries about events, it may be
possible to process events queries. For example, an
event query can be “find how many objects enter a
region (Q) at a time instant t.” To process this query
with MVR-tree, two time-slice queries are needed:
one at time instant t and the other one at the instant
immediately before t (t′). Objects that enter Q at t

correspond to those that were not found in Q in t′,
but are now found in Q at t. The cost of processing
this query with MVR-tree has the double cost of
processing a time-slice query. Indeed, for the above
query with a region covering 6% of each dimension,
10% change frequency, and d = 4, LES-tree requires
access only 43% of the nodes or blocks accessed by
MVR-tree.

21

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16 18 20

re
ad

 b
lo

ck
s

% of the dimension in each axis

MVR-tree
MV3R-tree

SEST-Index(d=25)
LESTR-tree(d=1)
LESTR-tree(d=2)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16 18 20

re
ad

 b
lo

ck
s

% of the dimension in each axis

MVR-tree
MV3R-tree

SEST-Index(d=56)
LESTR-tree(d=1)
LESTR-tree(d=2)
LESTR-tree(d=4)

(a) 5% change frecuency (b) 10% change frecuency

Figure 15: Blocks read by MVR-tree, SEST-Index and LES-tree for queries in different spatial ranges
(temporal interval length = 4).

5.2 Evaluation of LES-tree with non-

uniform data distribution

This section compares LES-tree with global snap-
shots against MVR-tree by using NUD data set
(defined in Section 4.2.3). To obtain the storage and
time costs of queries, we use the implementation of
MVR-tree and LES-tree, this last with d = 4.

Figure 16 shows the values of density realDen

under five different scenarios: (1) the density
obtained with LES-tree, 23,268 objects (points), and
an initial uniform distribution; (2) the density of
LES-tree with the set of objects NUD without global
snapshots; (3), (4) and (5) densities of LES-tree when
considering the set of objects NUD, li = 1, and
thresholds equal to ls = 1.3, ls = 1.6, and ls = 1.8,
respectively.

The space used by LES-tree when considering
thresholds ls = 1.3, ls = 1.6, and ls = 1.8 was
33Mb, 29Mb, and 28Mb, respectively, against 46
Mb required by MVR-tree and 24 Mb required by
the LES-tree without global snapshots. Figure 16
indicates that, when considering a threshold ls = 1.6,
two global snapshots are created (approximately at
time instants 10 and 50). This produces an important
improvement on the density, reaching values that

are similar to those of scenario (1). Similar results
are obtained with a threshold ls = 1.3. With a
threshold ls = 1.8 in scenario (5), however, the
density continues being larger than in scenario (1),
affecting negatively the time cost of LES-tree.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100 120 140 160 180 200

de
ns

ity

time

(1) Uniform distribution
(2) Non-uniform initial distribution

(3) Using ls = 1.3
(4) Using ls = 1.6
(5) Using ls = 1.8

Figure 16: Density for logs of LES-tree

Figure 17 shows the query performance of MVR-
tree and LES-tree in scenarios (1) to (5) (in addition
to the performance of MVR-tree using NUD data).

In this Figure it is possible to observe that with ls=

22

1.3 or ls=1.6, LES-tree, with global snapshots, shows
a similar performance that the LES-tree without
global snapshots, considering objects (23,268 points)
with uniform distribution. Also, LES-tree with ls =
1.3 or ls = 1.6 overcomes MVR-tree in almost all time
intervals evaluated. The advantage of LES-tree over
MVR-tree in this scenario (non uniform distribution)
to process queries increases drastically as the value
of d decreases and we use the adjusted LES-tree as
described before.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

re
ad

 b
lo

ck
s

length of time interval

(1) Uniform distribution
(2) Non-uniform initial distribution

(3) Using ls = 1.3
(4) Using ls = 1.6
(5) Using ls = 1.8
MVR-tree (NUD)

Figure 17: Query performance of LES-tree with
global snapshots and MVR-tree over the set of
objects con distibución uniforme y no uniforme
(NUD)

6 Conclusion and future work

This work proposes a new spatio-temporal access
method, LES-tree, that handles events and snapshots
associated with space partitions. Based on the
experimental results, LES-tree (with parameter d =
4) requires around 64% of the space used by MVR-
tree, the best alternative structure up to date. On
the other hand, LES-tree outperforms the MVR-tree
for time-slice and time-interval queries. Unlike other
proposed spatio-temporal access methods, it is also
possible to process queries about events using LES-
tree with a similar efficiency as the algorithms used to
process time-slice and time-interval queries. In this

paper we also described and validated a cost model
for LES-tree. This model enables to estimate the
storage and the efficiency of the queries processed
with LES-tree (with and without global snapshots),
and with a relative average error of about 15% for
storage and 11% for queries.

Besides traditional time-slice and time-interval, as
well as queries on events, LES-tree could be used for
other types of queries, such as queries that specify
a spatio-temporal pattern as a sequence of distinct
spatial predicates in temporal order [7], called
spatio-temporal pattern queries (STP). LES-tree can
efficiently process STP queries because a log in the
structure keeps the information about the moment in
which an object enters and leaves its assigned space
partition. Algorithms and experimental evaluations
for these type of queries have been left out of the
scope of this paper.

In addition, we are developing a method to obtain
the values of the parameters for LES-tree such that
the structure is optimized with respect to pre-defined
constraints for storage or time cost. We also plan to
include in the cost model the effect of using a buffer
for caching blocks or pages of the structure. Finally,
we are studying new algorithms for joins and nearest-
neighbor queries.

References

[1] Becker, B., Gschwind, S., Ohler, T., Seeger,
B., Widmayer, P.: An asymptotically op-
timal multiversion B-tree. The VLDB
Journal 5(4), 264–275 (1996). DOI
http://dx.doi.org/10.1007/s007780050028

[2] Cole, S.J., Hornsby, K.: Modeling noteworthy
events in a geospatial domain. In: M.A.
Rodŕıguez, I.F. Cruz, M.J. Egenhofer, S. Lev-
ashkin (eds.) GeoSpatial Semantics, First Inter-
national Conference, GeoS, 2005, Mexico City,
Mexico, November 29-30, 2005, Proceedings,
Lecture Notes in Computer Science, vol. 3799,
pp. 77–89. Springer (2005)

[3] Galton, A., Worboys, M.F.: Processes and
events in dynamic geo-networks. In: M.A.

23

Rodŕıguez, I.F. Cruz, M.J. Egenhofer, S. Lev-
ashkin (eds.) GeoSpatial Semantics, First Inter-
national Conference, GeoS, 2005, Mexico City,
Mexico, November 29-30, 2005, Proceedings,
Lecture Notes in Computer Science, vol. 3799,
pp. 45–59. Springer (2005)

[4] Gupta, A., Mumick, I.S.: Maintenance of mate-
rialized views: Problems, techniques and appli-
cations. IEEE Quarterly Bulletin on Data En-
gineering; Special Issue on Materialized Views
and Data Warehousing 18(2), 3–18 (1995). URL
citeseer.ist.psu.edu/gupta95maintenance.html

[5] Gutiérrez, G., Navarro, G., Rodŕıguez, A.,
González, A., Orellana, J.: A spatio-
temporal access method based on snapshots
and events. In: Proceedings of the 13th
ACM International Symposium on Advances in
Geographic Information Systems (GIS’05), pp.
115–124. ACM Press (2005)

[6] Guttman, A.: R-trees: A dynamic index
structure for spatial searching. In: ACM
SIGMOD Conference on Management of Data,
pp. 47–57. ACM (1984)

[7] Hadjieleftheriou, M., Kollios, G., Bakalov, P.,
Tsotras, V.J.: Complex spatio-temporal pattern
queries. In: Proceedings of the 31st international
conference on Very large data bases (VLDB ’05),
pp. 877–888. VLDB Endowment (2005)

[8] Kollios, G., Tsotras, V.J., Gunopulos, D.,
Delis, A., Hadjieleftheriou, M.: Indexing
animated objects using spatio-temporal access
methods. Knowledge and Data Engineer-
ing 13(5), 758–777 (2001). URL cite-
seer.nj.nec.com/494812.html

[9] Kollios, G.N.: Indexing problems in spatiotem-
poral databases. Ph.D. thesis, Polytechnic
University, New York (2000)

[10] Nascimento, M.A., Silva, J.R.O., Theodoridis,
Y.: Access structures for moving points. Tech.
Rep. TR–33, TIME CENTER (1998). URL cite-
seer.nj.nec.com/article/nascimento98access.html

[11] Nascimento, M.A., Silva, J.R.O., Theodoridis,
Y.: Evaluation of access structures for discretely
moving points. In: Proceedings of the
International Workshop on Spatio-Temporal
Database Management (STDBM ’99), pp. 171–
188. Springer-Verlag, London, UK (1999)

[12] Pfoser, D., Tryfona, N.: Requirements,
definitions, and notations for spatio-temporal
application environments. In: Proceedings
of the 6th ACM International Symposium on
Advances in Geographic Information Systems
(GIS’98), pp. 124–130. ACM Press (1998). DOI
http://doi.acm.org/10.1145/288692.288715

[13] Tao, Y., Papadias, D.: MV3R-tree: A spatio-
temporal access method for timestamp and
interval queries. Tech. Rep. HKRUST-CS00-06,
Department of Computer Science, Hong Kong
University of Science Technology, Hon Kong
(2000)

[14] Tao, Y., Papadias, D.: Efficient historical R-
tree. In: SSDBM International Conference on
Scientific and Statical Database Management,
pp. 223–232 (2001)

[15] Tao, Y., Papadias, D.: MV3R-tree: A spatio-
temporal access method for timestamp and
interval queries. In: Proceedings of the
27th International Conference on Very Large
Data Bases, pp. 431–440. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2001)

[16] Tao, Y., Papadias, D., Zhang, J.: Cost
models for overlapping and multiversion
structures. ACM Trans. Database
Syst. 27(3), 299–342 (2002). DOI
http://doi.acm.org/10.1145/581751.581754

[17] Theodoridis, Y., Sellis, T.: A model for
the prediction of R-tree performance. In:
Proceedings of the fifteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of
database systems (PODS ’96), pp. 161–171.
ACM Press, New York, NY, USA (1996). DOI
http://doi.acm.org/10.1145/237661.237705

24

[18] Theodoridis, Y., Sellis, T.K., Papadopoulos,
A., Manolopoulos, Y.: Specifications
for efficient indexing in spatiotemporal
databases. In: IEEE Proceedings
of the 10th International Conference
on Scientific and Statistical Database
Management, pp. 123–132 (1998). URL cite-
seer.nj.nec.com/theodoridis98specifications.html

[19] Theodoridis, Y., Silva, J.R.O., Nascimento,
M.A.: On the generation of spatiotemporal
datasets. In: Proceedings of the 6th Inter-
national Symposium on Advances in Spatial
Databases (SSD ’99), pp. 147–164. Springer-
Verlag (1999)

[20] Theodoridis, Y., Stefanakis, E., Sellis, T.:
Efficient cost models for spatial queries using
R-Trees. IEEE Transactions on Knowledge and
Data Engineering 12(1), 19–32 (2000). DOI
http://dx.doi.org/10.1109/69.842247

[21] Theodoridis, Y., Vazirgiannis, M., Sellis,
T.K.: Spatio-temporal indexing for large
multimedia applications. In: Proceedings of the
1996 International Conference on Multimedia
Computing and Systems (ICMCS ’96), pp. 441–
448. IEEE Computer Society, Washington, DC,
USA (1996)

[22] Tzouramanis, T., Vassilakopoulos, M.,
Manolopoulos, Y.: Overlapping linear
quadtrees and spatio-temporal query
processing. The Computer Journal
43(4), 325–343 (2000). URL cite-
seer.nj.nec.com/tzouramanis00overlapping.html

[23] Worbys, M.: Event-oriented approaches to
geographic phenomena. International Journal
of Geographical Information Science 19(1), 1–
28 (2005)

[24] Xu, X., Han, J., Lu, W.: RT-tree: An
improved R-tree index structure for spatio-
temporal database. In: 4th International
Symposium on Spatial Data Handling, pp. 1040–
1049 (1990)

25

