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Table S1: List of symbols and notation used in this work

Symbol Description Value

NM Number of dipoles in the wire. 5000
Nc Number of cavity modes used to describe the radiation field inside the cavity. 1001
ΩR Rabi splitting: a measure of the collective light-matter interaction strength. Variable
a Intersite distance. 10 nm
σa Standard deviation of sites positions. 1 nm
EM Dipole excitation energy. Variable
σM Standard deviation of the distribution of dipole excitation energies. Variable
Lz Wire length along z dimension. 0.4 µm
Ly Wire length along y dimension. 0.2 µm
Lx Wire length along x dimension. 50 µm
ϵ Relative static permittivity. 3
ny Cavity quantum number associated with the y dimension. 1
nz Cavity quantum number associated with the z dimension. 1
mx Cavity quantum number associated with the x dimension. ∈ Z
q x-component of the wavevector k 2πmx/Lx.
σx Initial wave packet width. Variable
q̄0 Average initial exciton momentum along x Variable
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1 RMSD for a traveling exciton-polariton

1.1 Preliminary expressions

1.1.1 Wave packet representations

Before we proceed to our main problem, let us establish some intermediate results that will be useful later.

First, consider the wave packet at t = 0 represented in the position basis of NM dipoles

|ψ0⟩ =
NM∑
n=1

cn |n⟩ . (1)

Therefore, the probability of finding the n-th dipole excited is |cn|2. Note that in the main text, we use the

notation |n; 0⟩ to represent the state where the n-th dipole is excited and no photon modes are populated.

For simplicity, we use |n; 0⟩ → |n⟩ here as the photonic degrees of freedom will not appear explicitly in

the following expressions. We can transform |ψ0⟩ into its k-space representation using the resolution of the

identity (in the exciton Hilbert space)
∑

k |k⟩⟨k| = 1E. That is,

|ψ0⟩ =
∑
k

NM∑
n=1

cn ⟨k|n⟩ |k⟩ , (2)

=
∑
k

(
1√
NM

NM∑
n=1

cne
−ikxn

)
|k⟩ , (3)

where we have used ⟨k|n⟩ = e−ikxn√
NM

. Defining

ck =
1√
NM

NM∑
n=1

cne
−ikxn (4)

we have the wave function in k-representation

|ψ0⟩ =
∑
k

ck |k⟩ . (5)

From the expression above, we see that the initial exciton probability distribution in wave number space

is Pk = |ck|2.
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1.1.2 Polariton Eigenstates

In the case where the dipole ensemble is translationally invariant, we can assign each eigenmode to the

upper polariton (UP) branch if its energy is above the dipolar transition energy or lower polariton (LP)

otherwise. The general Hamiltonian for the system can be block diagonalized using the transformation

in Eq. 4. The resulting Hamiltonian is a direct sum of 2 × 2 Hamiltonians where the k wave number is

preserved, that is, there is no mixing of different values of k. Using q for the wave number of the polariton

states we can write

Ĥ |αq⟩ = ℏωαq |αq⟩ , (6)

where α is LP or UP. Moreover, the amplitude of the n-th dipole on the eigenstate |αq⟩ is

⟨n|αq⟩ = −i
√

Παq

NM

eiqxn , (7)

where Παq =
∑NM

n=1 ⟨αq|n⟩ ⟨n|αq⟩ is the total exciton content of the eigenstate |αq⟩. With this result, the

overlap of each eigenstate with the initial wave packet is given by

⟨ψ0|αq⟩ =
NM∑
n=1

c∗n ⟨n|αq⟩ (8)

= −i
√

Παq

(
1√
NM

NM∑
n=1

c∗ne
iqxn

)
. (9)

The term in brackets above is the complex conjugate of Eq. (4). Thus,

⟨ψ0|αq⟩ = −i
√
Παqc

∗
q . (10)

The resolution of the identity in the eigenmode basis is given by

1 =
∑
α

∑
q

|αq⟩ ⟨αq| . (11)
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1.1.3 Continuum limit

In what follows, we will take the thermodynamic limit where L and NM go to infinity at the same rate, so

L/NM is fixed. This will lead to closed-form expressions for excitonic observables in the absence of disorder.

We will assume throughout that all relevant functions (of the dipole position xn = na and wavenumber

q) are sufficiently slowly varying at the scale of the spatial lattice constant xn+1 − xn = ∆x = a and

reciprocal lattice spacing ∆q = 2π/L so the continuum limit is well defined. We also assume the wave

packet vanishes sufficiently fast outside a finite closed subset of position or wave number space. Under

these conditions, any sum over discrete functions of the dipole position xn can be replaced by an integral

over all space following

NM∑
n=1

fn → 1

a

∫
f(x)dx, (12)

where f(x) is the continuum representation of fn satisfying f(xn) = fn. Likewise, the continuum limit for

sums of discrete functions of q is obtained from

∑
q

gq →
L

2π

∫
g(q)dq, (13)

where g(q) is the continuum representation of gq.

The continuum limit of the resolution of the identity in the eigenmode basis is given by

1 =
L

2π

∑
α

∫
|αq⟩ ⟨αq| dq (14)

Thus, it is convenient to redefine |αq⟩ following

|αq⟩ →
√

2π

L
|aq⟩ , (15)

so as to recover the identity operator in the standard form

1 =
∑
α

∫
|αq⟩ ⟨αq| dq (16)
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Similar manipulations can be performed for the states living in the matter Hilbert space, e.g.,

1E =

NM∑
n=1

|n⟩ ⟨n| → 1

a

∫
|x⟩ ⟨x| dx, (17)

1E =
∑
q

|q⟩ ⟨q| → L

2π

∫
|q⟩ ⟨q| dq. (18)

These identities suggest redefining the matter states in the continuum limit following

|n⟩ →
√
a |x⟩ , (19)

|q⟩ →
√

2π

L
|q⟩ . (20)

Using these relations, it follows in the continuum limit

⟨k|x⟩ =
√

L

2πa
⟨k|n⟩ = e−ikx

√
2π
, (21)

From these results, we obtain the wave packet representation in position and wave number space analogous

to those of Sec. 1.1.1.

|ψ0⟩ =
∫
c(x) |x⟩ dx, c(x) = ⟨x|ψ0⟩ (22)

|ψ0⟩ =
∫ ∫

c(x) ⟨q|x⟩ |k⟩ dkdx =

∫
c(k) |k⟩ dk, (23)

where the wave vector amplitude in the continuous wave number space is given by

c(k) =
1√
2π

∫
c(x)e−ikxdx. (24)

By performing the analogous transformations to the polariton eigenmodes we obtain

⟨x|αq⟩ = −i
√

Παq

2π
eiqx, (25)

⟨ψ0|αq⟩ = −i
√

Παqc
∗(q). (26)
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1.1.4 Time-evolved wave packet

The wave packet at an arbitrary time |ψt⟩ can be written in terms of the initial state using the time-

evolution operator

|ψt⟩ = e−iĤt/ℏ |ψ0⟩ . (27)

Using the eigenstates discussed in the previous section, in particular Eq. 16, we can resolve the time

evolution as

|ψt⟩ =
∑
α

∫ +∞

−∞
e−iĤt/ℏ |αq⟩ ⟨αq|ψ0⟩ dq . (28)

Using Eq. 6 and 10 we get

|ψt⟩ = i
∑
α

∫ +∞

−∞

√
Παqc(q)e

−iωαqt |αq⟩ dq . (29)

1.2 Exciton mean squared displacement

The exciton mean squared displacement ∆x2E can be written as

∆x2E(t) =
1

PM(t)

∫
| ⟨x|ψt⟩ |2(x− x0)

2dx (30)

PM(t) =

∫
| ⟨x|ψt⟩ |2dx , (31)

where x0 is the center of the initial wave packet. We start by computing PM(t) from the inner product of

|x⟩ with |ψt⟩ (Eq. 29). The result is

⟨x|ψt⟩ =
1√
2π

∑
α

∫ +∞

−∞
Παqc(q)e

−iωαqteiqxdq . (32)

Hence,

PM =

∫
⟨ψt|x⟩ ⟨x|ψt⟩ dx (33)

=
1

2π

∑
α

∑
β

∫ +∞

−∞

∫ +∞

−∞
c∗(q′)c(q)Πβq′Παqe

−i(ωαq−ωβq′ )t

(∫
ei(q−q′)xdx

)
dqdq′ . (34)
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Using 2πδ(q − q′) =
∫

exp[i(q − q′)x]dx, we obtain

PM =
∑
α

∑
β

∫ +∞

−∞
|c(q)|2ΠβqΠαqe

−i(ωαq−ωβq)tdq . (35)

The double sum over α and β produces four terms. Those are

PM =

∫ +∞

−∞
|c(q)|2

(
Π2

LPq +Π2
UPq +ΠLPqΠUPqe

−i(ωLPq−ωUPq)t +ΠLPqΠUPqe
−i(ωUPq−ωLPq)t

)
dq (36)

=

∫ +∞

−∞
|c(q)|2

(
Π2

LPq +Π2
UPq + 2ΠLPqΠUPq cos [(ωUPq − ωLPq)t]

)
dq . (37)

As described in the main text, we measure the exciton spread velocity (v0) by using a linear fit over the

initial 500 fs. This process averages out the oscillating terms observed above. From now on, we ignore the

time-dependent fluctuations of PM(t) and work with the more relevant time-averaged exciton content

P̄M =

∫ +∞

−∞
|c(q)|2

(
Π2

LPq +Π2
UPq

)
dq . (38)

Next, we analyze the remaining part of ∆x2E. For the sake of simplicity and without loss of generality

we assume x0 = 0. We can use the results from Eq. 32 to write

PM∆x2E(t) =

∫
| ⟨x|ψt⟩ |2x2dx (39)

=
1

2π

∑
α

∑
β

∫ +∞

−∞

∫ +∞

−∞
c∗(q′)c(q)Πβq′Παqe

−i(ωαq−ωβq′ )t

(∫
x2ei(q−q′)xdx

)
dqdq′ . (40)

Rearranging the integrals and using the substitution x2ei(q−q′)x = −∂2

∂q2
ei(q−q′)x, we obtain

PM∆x2E(t) = − 1

2π

∑
α

∑
β

∫ +∞

−∞
c(q)Παqe

−iωαqt

(∫ +∞

−∞
c∗(q′)Πβq′e

iωβq′ t
∂2

∂q2

(∫
ei(q−q′)xdx

)
dq′
)
dq (41)

= −
∑
α

∑
β

∫ +∞

−∞
c(q)Παqe

−iωαqt

(∫ +∞

−∞
c∗(q′)Πβq′e

iωβq′ t
∂2

∂q2
δ(q − q′)dq′

)
dq (42)

Using the smoothness and compact support assumptions specified in our discussion of the continuum limit,

it follows that

∫ +∞

−∞
f(q′)

∂2

∂q2
δ(q − q′)dq′ =

∫ +∞

−∞

∂2f(q′)

∂q2
δ(q − q′)dq′ =

∂2f(q)

∂q2
. (43)
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Therefore, we can reduce Eq. 42 to the form

PM∆x2E(t) = −
∑
α

∑
β

∫ +∞

−∞
c(q)Παqe

−iωαqt
∂2

∂q2
[
c∗(q)Πβqe

iωβqt
]
dq . (44)

To proceed, we evaluate the second derivative with respect to q

e−iωβqt
∂2

∂q2
[
c∗(q)Πβqe

iωβqt
]
= e−iωβqt

∂

∂q

[
∂c∗(q)Πβq

∂q
eiωβqt +−i∂ωβq

∂q
tc∗(q)Πβqe

iωβqt

]
=
∂2

∂q2
[c∗(q)Πβq]− 2it

∂ωβq

∂q

∂

∂q
[c∗(q)Πβq]− tc∗(q)Πβq

[
i
∂2ωβq

∂q2
+ t

(
∂ωβq

∂q

)2
]
.

(45)

To obtain a more compact expression, we define

∆βα(q) = ωβq − ωαq, (46)

γαq = c(q)Παq, (47)

γ∗βq = c∗(q)Πβq, (48)

vβqg =
∂ωβq

∂q
. (49)

Using these definitions and plugging Eq. 45 into Eq. 44 we get

PM∆x2E(t) = −
∑
α

∑
β

∫ +∞

−∞

(
∂2γ∗βq
∂q2

− it
∂vβqg
∂q

γ∗βq − 2ivβqg t
∂ γ∗βq
∂q

− (vβqg t)
2γ∗βq

)
γαqe

i∆βα(q)tdq (50)

Since our goal is to obtain the term of
√
∆x2E proportional to t, we will ignore the cross LP-UP oscillating

terms where β ̸= α (note this is consistent with our neglect of oscillations in the previous treatment of

PM). It follows in this case that

PM∆x2E(t) = −
∑
α

∫ +∞

−∞

[(
∂2

∂q2
γ∗αq

)
γαq − it

(
∂

∂q
vαqg

)
|γαq|2 − 2itvαqg

(
∂

∂q
γ∗αq

)
γαq − (vαqg t)

2|γαq|2
]
dq

(51)

Note from the above expression that the time-independent contribution gives the exciton spread at t = 0
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i.e.,

PM∆x2E(0) = −
∑
α

∫ +∞

−∞

(
∂2

∂q2
γ∗αq

)
γαqdq. (52)

It can be shown with integration by parts that the O(t) term in Eq. 51 is given by

itvαqg

(
∂

∂q
γαq

)
γ∗αq − itvαqg

(
∂

∂q
γ∗αq

)
γαq = −2vαqg t× Im

[
γ∗αq

∂

∂q
γαq

]
(53)

Hence, it can be seen that if γαq = cqΠαq is real this term vanishes. In the case of Gaussian wave packets

in the continuum limit, we have

c(q) =
1√
2π

∫ +∞

−∞
c(x)e−iqxdx =

1

2πσx

∫ +∞

−∞
e−

(x−x0)
2

2σx ei(q̄0−q)xdx (54)

1

2πσx

∫ +∞

−∞
e−

(x−x0)
2

2σx [cos (q̄0 − q)x+ i sin (q̄0 − q)x]dx . (55)

Due to parity considerations, the sine part of this expression vanishes and c(q) must be real. Consequently,

Eq. 53 is zero for Gaussian wave packets.

It follows that the ballistic spread velocity v0 for a Gaussian wave packet is given by

v20 =
∆x2E(t)−∆x2E(0)

t2
=

1

PM

∫ +∞

−∞
|c(q)|2

[(
vLPg (q)ΠLPq

)2
+
(
vUP
g (q)ΠUPq

)2]
dq . (56)

Defining an effective group velocity as veffαq = vαg (q)Παq and disregarding the (here constant) prefactor PM

we arrive at the following final estimate for the observed ballistic exciton spread velocity

v20 ≈
∫ +∞

−∞
|c(q)|2

[
(veffLPq)

2 + (veffUPq)
2
]
dq . (57)

S13



2 Exciton migration probability

In this section, we obtain insight into the exciton migration probability defined in the main text as

χ(t) = 1− 1

PM(t)

∑
n∈I

| ⟨n|ψ(t)⟩ |2, (58)

where I is the integer interval [nmin, nmax] containing the indices of the dipoles comprising 99% of the

initial wave packet probability. For the sake of simplicity, we ignore PM(t) below since both at very early

times t→ 0 and late times t→ ∞, PM(t) is approximately constant. Let Pn(t) denote the time-dependent

probability to to detect an exciton at the nth site and {|A⟩ , |B⟩ , ...} correspond to the set of eigenstates of

H with eigenvalues EA = ℏωA, etc. It follows that we can write the probability Pn(t) to detect an exciton

at the nth site at time t is given by

Pn(t) = | ⟨n|ψ(t)⟩ |2 =

∣∣∣∣∣∑
A

⟨n|A⟩ ⟨A|ψ0⟩ e−iωAt

∣∣∣∣∣
2

=

∣∣∣∣∣∑
A

∑
m1

AnA
∗
m1
cm1e

−iωAt

∣∣∣∣∣
2

=
∑
A,B

∑
m1,m2

AnA
∗
m1
B∗

nBm2cm1c
∗
m2
e−i(ωA−ωB)t. (59)

where An corresponds to the probability amplitude to detect an exciton at site |n⟩ when the system is in

eigenstate |A⟩, and cn = ⟨n|ψ0⟩ as in the previous section. We can decompose Pn(t) into

Pn(t) = Pn +∆Pn(t), (60)

where Pn corresponds to the time-independent asymptotic part and ∆Pn(t) is the time-fluctuating contri-

bution to Pn(t). Each of these terms is given explicitly by

Pn =
∑
A

∑
m1,m2

|An|2A∗
m1
Am2cm1c

∗
m2
, (61)

∆Pn(t) =
∑
A

∑
B ̸=A

∑
m1,m2

AnA
∗
m1
B∗

nBm2cm1c
∗
m2
e−i(ωA−ωB)t. (62)
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Given the definition of χ(t) in Eq. 58, it follows that we may also define an asymptotic time-independent

part contribution χ and an oscillatory contribution ∆χ(t) such that χ(t) = χ+∆χ(t) given by

χ ≈ 1−
∑
A

∑
n∈I

∑
m1,m2

|An|2A∗
m1
Am2cm1c

∗
m2
, (63)

∆χ(t) ≈ −
∑
A

∑
B ̸=A

∑
n∈I

∑
m1,m2

AnA
∗
m1
B∗

nBm2cm1c
∗
m2
e−i(ωA−ωB)t, (64)

where the approximate character of the identities emphasizes our neglect of PM(t) in the definition of χ(t).

We examine χ and ∆χ(t) next starting with the time-independent term which we rewrite as

χ = 1−
∑
A

∑
n∈I

|An|4|cn|2 −
∑
A

∑
n∈I

∑
m̸=n

|An|2|Am|2|cm|2

−
∑
A

∑
n∈I

∑
m ̸=n

|An|2 (A∗
nAmcnc

∗
m + A∗

mAncmc
∗
n)−

∑
A

∑
n∈I

∑
m1 ̸=n

∑
m2 ̸=m1,n

|An|2A∗
m1
Am2cm1c

∗
m2
. (65)

The fluctuating term can be written likewise as

∆χ(t) =−
∑
A

∑
B ̸=A

∑
n∈I

|An|2|Bn|2|cn|2cos[(ωA − ωB)t]

−
∑
A

∑
B ̸=A

∑
n∈I

∑
m ̸=n

(
AnA

∗
mB

∗
nBm|cm|2 + |An|2B∗

nBmcnc
∗
m + AnA

∗
m|Bn|2cmc∗n

)
e−i(ωA−ωB)t

−
∑
A

∑
B ̸=A

∑
n∈I

∑
m1 ̸=n

∑
m2 ̸=m1,n

AnA
∗
m1
B∗

nBm2cm1c
∗
m2
e−i(ωA−ωB)t. (66)

Note that

d

dt
χ(t) =

d

dt
∆χ(t), (67)

and d∆χ(t)/dt→ 0 as t→ 0+. Therefore, the early growth of χ(t) is characterized by

G = lim
t→0+

1

2

d2

dt2
∆χ(t). (68)

Strong disorder limit. To simplify, we perform the disorder average of χ which we denote by χ (our

notation for disorder average of a quantity f in this section is given by f). Under sufficiently strong disorder

(σM ≫ ΩR), we expect A∗
m1
Am2 ≈ |Am1 |2δm1,m2 for any eigenmode A, and therefore the disorder-averaged
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exciton migration probability components satisfy

χ ≈ 1−
∑
A

∑
n∈I

|An|4|cn|2 −
∑
A

∑
n∈I

∑
m ̸=n

|An|2 |Am|2|cm|2, (69)

∆χ(t) ≈ −
∑
A

∑
B ̸=A

∑
n∈I

|An|2|Bn|2|cn|2cos [(ωA − ωB)t] . (70)

From the last equation, we directly quantify the early growth of the migration probability from

G ≈ 1

2

∑
A

∑
B ̸=A

∑
n∈I

|An|2|Bn|2|cn|2(ωA − ωB)
2. (71)

Weak disorder limit. In the weak disorder case,

G =
1

2

∑
A

∑
B ̸=A

∑
n∈I

∑
m1,m2

AnA
∗
m1
B∗

nBm2cm1c
∗
m2

(ωA − ωB)
2 (72)

Assuming only modes with qσx ≪ 1 contribute significantly, we can take the long wavelength limit and

ignore the phase difference of eigenmode amplitudes in distinct sites, thus considerably simplifying G

G ≈ 1

2NI

∑
A

∑
B ̸=A

∑
n∈I

∑
m1,m2

|An|2|Bn|2(ωA − ωB)
2, (73)

where we made the replacement cm1c
∗
m2

≈ 1/NI and NI is the number of elements of I.
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3 Wave packets at long propagation times

Fig. S1 shows the shape of wave packets at 1, 2, and 3 ps. We observe that, except when σM/ΩR = 5%,

the wave packet remains localized around its initial region. Therefore, the asymptotic behavior seen in

Figure 3 (main text) can be attributed to Anderson localization of the excitonic wave packet.

Figure S1: Average exciton wave packet profiles at different time delays and relative disorder strength
(σM/ΩR) of 5%, 20%, and 100% for (a), (b) and (c), respectively. In all cases, ΩR = 0.1 eV and the wave
packet initial width and mean quasimomentum are σx = 120 nm and q̄0 = 0. Probabilities are grouped in
bins containing 50 dipoles spanning 0.5 µm. PM , RMSD, and χ are defined in Equations (74),(38), and
(76), respectively. Each profile is obtained from the average of 100 disorder realizations.

Fig. S2 shows the probability of finding an excitation on a site near the edges of the quantum wire. Since

we have employed periodic boundary conditions, the exciton wave packet will go around the wire (which

can be thought of more precisely as a ring) and start interfering with itself, creating finite-size artifacts.

Moreover, the computation of RMSD also becomes ambiguous once the wave packet travels around. Hence,

to guarantee that our results are not plagued with these artifacts, we monitor the probability of detecting

the exciton at the most distant sites with respect to the initial excitation spot. From Fig. S2, we see that

this probability remains small under enough disorder (σM/ΩR ≥ 0.2). In the femtosecond window, even the

small disorder simulation (σM/ΩR = 0.05) has a small excitation probability at the edges. These results

are important to ensure that the RMSD asymptote seen in Fig. 3b (main text) is truly disorder-induced

localization and not finite-size effects.
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Figure S2: Probability of finding the exciton near the boundary of the wire. This value is computed by
summing the excitation probability of (a) 100 and (b) 500 sites closest to the region of the wire where
periodic boundary conditions are enforced (x = 0 and x = 50 µm). In all cases, ΩR = 0.1 eV and the wave
packet initial width and mean quasimomentum are σx = 120 nm and q̄0 = 0. Each data point is obtained
from the average of 100 disorder realizations.
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4 Wave packets under DET

In Figs. S3, S4, and S5 we show snapshots of the exciton wave packet at different time steps where we can

see the different in the wave packet shape under disorder enhanced transport (DET). In Figs. S3-S5(a) we

see that under very strong disorder (σM/ΩR > 1) the wave packet decays more quickly in space, but has

a more delocalized tail. This decolalization is captured in the RMSD but not in the migration probability

(χ) as seen in S3-S5(b).

Figure S3: Wave packet properties at t = 500 fs: (a) Decay as a function of distance at different relative
disorder strengths. (b) RMSD and migration probabilities at a fixed time step at different disorder
strengths. In all cases, ΩR = 0.1 eV and σx = 120 nm. Other parameters are fixed as in the main text.

‘

Figure S4: Wave packet properties at t = 1000 fs: (a) Decay as a function of distance at different relative
disorder strengths. (b) RMSD and migration probabilities at a fixed time step at different disorder
strengths. In all cases, ΩR = 0.1 eV and σx = 120 nm. Other parameters are fixed as in the main text.
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Figure S5: Wave packet properties at t = 2000 fs: (a) Decay as a function of distance at different relative
disorder strengths. (b) RMSD and migration probabilities at a fixed time step at different disorder
strengths. In all cases, ΩR = 0.1 eV and σx = 120 nm. Other parameters are fixed as in the main text.
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5 Propagation Profiles

Figs. S6-S9 shows the time evolution of the RMSD and migration probability (χ) defined in the main text

and repeated below for reference

RMSD(t) =

[
1

PM(t)

NM∑
n

| ⟨n; 0|ψ(t)⟩ |2(xn − x0)
2

]1/2
, (74)

PM(t) =

NM∑
n

| ⟨n; 0|ψ(t)⟩ |2 . (75)

χ(t) = 1− 1

PM(t)

nmax∑
n=nmin

| ⟨n; 0|ψ(t)⟩ |2 . (76)

It can be seen that the time to reach a steady state (constant RMSD) decreases as the Rabi splitting is

increased.
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Figure S6: Propagation of exciton wave packets at different disorder strengths measured by (a) migration
probability (Eq. 76) and (b) RMSD (Eq. 74). In all cases, σx = 120 nm and ΩR = 0.05 eV. Results are
averages of 100 disordered realizations. The dotted lines in (b) are linear fits on the early propagation (≤
500 fs) from which slopes are used to measure the initial ballistic velocity (v0). Panels (c) and (d) are
zoomed in versions of (a) and (b), respectively.
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Figure S7: Propagation of exciton wave packets at different disorder strengths measured by (a) migration
probability (Eq. 76) and (b) RMSD (Eq. 74). In all cases, σx = 120 nm and ΩR = 0.1 eV. Results are
averages of 100 disordered realizations. The dotted lines in (b) are linear fits on the early propagation (≤
500 fs) from which slopes are used to measure the initial ballistic velocity (v0). Panels (c) and (d) are
zoomed in versions of (a) and (b), respectively.
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Figure S8: Propagation of exciton wave packets at different disorder strengths measured by (a) migration
probability (Eq. 76) and (b) RMSD (Eq. 74). In all cases, σx = 120 nm and ΩR = 0.2 eV. Results are
averages of 100 disordered realizations. The dotted lines in (b) are linear fits on the early propagation (≤
500 fs) from which slopes are used to measure the initial ballistic velocity (v0). Panels (c) and (d) are
zoomed in versions of (a) and (b), respectively.
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Figure S9: Propagation of exciton wave packets at different disorder strengths measured by (a) migration
probability (Eq. 76) and (b) RMSD (Eq. 74). In all cases, σx = 120 nm and ΩR = 0.3 eV. Results are
averages of 100 disordered realizations. The dotted lines in (b) are linear fits on the early propagation (≤
500 fs) from which slopes are used to measure the initial ballistic velocity (v0). Panels (c) and (d) are
zoomed in versions of (a) and (b), respectively.
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6 Linear Fit Range

In the main text, we have used the first 500 fs of our simulations to compute the ballistic velocity (v0)

using a linear fit. Our criterion to choose an interval for a linear fit was 1) long enough periods such that

complicated initial features are averaged out, and 2) short enough to prevent the consideration of time

steps where Anderson localization starts to appear (around 1 ps). Figs. S10, S11, and S12 show analogs of

Figure 4 (main text) using different time intervals for the linear fit (0.1, 0.3, and 0.7 ps, respectively). The

choice of time interval is not strictly fundamental for a qualitative analysis as we see an overall agreement

for all time intervals. Importantly, The σx dependence discussed in the text is maintained in all cases.

Figure S10: Initial spread velocity (v0) for various systems at different relative disorder strength and Rabi
splitting values for wave packets with a (a) narrow and b broad initial spread values (σx). Each point is
the average of 100 disordered realizations. v0 was computed as the slope of a linear fit of RMSD values in
the initial 100 fs of simulation (see Figure 3) in the main text.
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Figure S11: Initial spread velocity (v0) for various systems at different relative disorder strength and Rabi
splitting values for wave packets with a (a) narrow and b broad initial spread values (σx). Each point is
the average of 100 disordered realizations. v0 was computed as the slope of a linear fit of RMSD values in
the initial 300 fs of simulation (see Figure 3) in the main text.

Figure S12: Initial spread velocity (v0) for various systems at different relative disorder strength and Rabi
splitting values for wave packets with a (a) narrow and b broad initial spread values (σx). Each point is
the average of 100 disordered realizations. v0 was computed as the slope of a linear fit of RMSD values in
the initial 700 fs of simulation (see Figure 3) in the main text.
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7 v0 for detuned cavities

Figure S13 shows v0 (see Figure 3b on the main text for more details about how v0 is obtained) as a

function of detuning for several initial excitons spread values (σx). In particular, the left column panels

(a, c, e, g) display results using a zero average initial momentum (q̄0 = 0) while the right column (b, d,

f, h) shows results for a non-zero quasi-momentum (q̄0 = 0.008 nm−1). Results presented in this figure

numerically verify the predictions from the effective group velocity model (see Figure 8 in the main text).

Namely, we see that when q̄0 = 0:

1. Narrow wave packets have higher mobility.

2. Blueshifted cavities have always slower excitons than resonant ones.

3. Redshifted cavities have more mobility excitons if the wave packets are narrow enough.

For q̄0 = 0.008 nm−1 (note that this is near the veffαq peak for the redshifted cavity in Figure 8), we verify

the following predictions:

1. Redshifted cavities have faster excitons than resonant ones.

2. Broader wave packets are more mobile than narrow ones.

3. Blueshifted cavities have always slower excitons than resonant ones.
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Figure S13: Ballistic velocity (v0) as a function of the cavity detuning (δ) for several disorder strengths
(σM/ΩR). Left column panels (a, c, e, g) show results for excitons with zero quasi-momentum (q̄0 = 0)
whereas in the right column panels excitons have q̄0 = 0.008 nm−1. In each panel, a different initial spread
is used (σx).
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Figure S14 shows how v0 and the maximum RMSD depend on the cavity detuning. This is similar

to Figure 7 of the main text, but with more redshifted values to explore whether an extremum exists in

this direction. While we do not observe a peak, we see that both v0 and the maximum RMSD reach an

asymptotic behavior, i.e. further changes in the cavity detuning (towards negative values) do not change

the overall exciton mobility. We highlight that, for very redshifted cavities, the description of the photonic

degrees of freedom becomes poorer as higher energy bands (ny, nz > 1) become more relevant. Therefore,

these results represent the theoretical limit in a single-band cavity system.

Figure S14: Disorder-dependent detuning effects on coherent exciton transport measured by (a) the bal-
listic velocity (v0), and (b) the maximum RMSD over 5 ps. In all cases σx = 240 nm and ΩR = 0.1 eV.
Each data point corresponds to an average over 100 disorder realizations.

S30



8 Strong Coupling Signatures

Figure S15 shows mean energy (and fluctuations) vs maximum value of photonic q for the eigenstates

with more than 10% photonic content obtained from 25 realizations of a system of 1000 dipoles coupled

to 401 photonic modes. As expected, at small and moderate disorder (σM/ΩR ≤ 0.4), two distinct curves

separated by approximately ΩR are observed, corresponding to LP (yellow) and UP (blue) branches of the

quasiparticles emergent from strong light-matter coupling. Figure S15 also shows that further increase of

disorder shrinks the gap between these two branches, and when the relative disorder σM/ΩR approaches

1, it is no longer possible in general to discern the two branches at the resonance wave vector (q = 0).

That is, the characteristic splitting associated with the strong coupling regime is no longer observable.

We ascribe no meaning to the irregularities and breakdown of inversion symmetry at large and moderate

disorder, as these features likely reflect the smallness of the system size and the limited number of disorder

realizations we employed to identify the breakdown of strong coupling (as defined by the gap between LP

and UP at the resonant wave vector q = 0).

Figure S16 presents the change in the exciton content of the wave packet over time where Rabi oscil-

lations can be observed. Under weak disorder (a) clear oscillations with a frequency of approximately 41

fs−1 (which corresponds to the Rabi splitting of 0.1 eV used here) can be verified. Under stronger values

of disorder, shown in Figure S16b, we see that Rabi oscillations are strongly suppressed. When σM/ΩR is

close to one, is no longer possible to identify any oscillation.

The results presented in Figures S15 and S16 are typically employed in criteria for the strong coupling

regime. Despite the absence of dissipation in our model, we see that strong static disorder is capable

of removing the typical signatures of the strong coupling regime. Hence, one may consider that when

the static disorder is comparable to the Rabi splitting (that is, the expected collective coupling value) a

different regime emerges. Nonetheless, our model still predicts coherent transport, therefore we consider

it to be distinct from the weak coupling situation where non-interacting molecules would not exchange

energy.
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Figure S15: Average energy vs photon q with maximum probability for bright modes (total photon content
> 10%) of systems under increasing disorder. Each point represent the mean energy obtained from the
eigenstates with more than 10% photonic content in 25 realizations of the light-matter Hamiltonian with
the specified σM/ΩR and ΩR fixed at 0.1 eV. For the sake of simplicity, we show results for systems
containing NM = 1000 molecules and 401 photonic modes. The graphs show the gradual closing of the
polariton gap (here represented by EUP,q −ELP,q with q = 0) as σM/ΩR increases. Finer features (e.g., the
number of points in the LP and UP belonging to specific intervals of q) are unlikely to be converged due
to the small system size and the number of realizations we employed. However, this lack of convergence is
irrelevant to our analysis of the polariton gap.
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Figure S16: Demonstration of the effect of disorder on Rabi oscillations. The excitonic probability is the
summed probability that any site is in its excited state. In all cases the Rabi splitting is fixed at 0.1 eV
and each point is the average of 100 realizations.
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