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1 Replacing the mid-term reward

with the myopic value function
From the update rule of the mid-term reward described in
the �rst version of the algorithm [1] it follows

∆r̄t = (rt − r̄t)/τ1 ⇒ r̄t+1 = r̄t + αC(rt − r̄t)

where αC = 1/τ1. Replacing this global approximation
of mid-term reward to state-dependent mid-term reward
(i.e., after observing quintuple (s, a, θa , r, s′)) we get

r̄(s) ← r̄(s) + αC(r − r̄(s))

Therefore, using state-speci�c mid-term rewards r̄(s) is
equivalent with using the value function with updates of

V(s) ← V(s) + αC(r + γV(s′) − V(s))

with γ = 0.We used the notation Vm(s) to state themyopic
computation. Equivalently, the state-speci�c long term re-
ward signals ¯̄r(s) are then updated with

¯̄r(s) ← ¯̄r(s) + αV (r̄(s) − ¯̄r(s))

where αV = 1/τ2. Therefore ¯̄r(s) is equivalent with V̄m(s).
The computations of Qm(s, a) and Q̄m(s, a) are done
equivalently.

2 Comparison with the previous
non-state speci�c version of
the active exploration algorithm

Here we compare our algorithm with the previous version
presented in [1, 2] on a parameterized action Markov Deci-
sion Process of 5 states plus a �nal accepting state (Exper-
iment 2, left MDP of Figure 3 in the paper).

The action space is A = Ad × Ap, where Ap =
{a1, a2, a3, a4, a5, a6} and Ap = [−100, 100]; simply
there are 6discrete actions, eachonewith a continuouspa-
rameter.We assume that for every state Si at each timestep
t, there is an optimal action a*Si which leads to the next
state in a deterministic manner (i.e., P(Si+1|Si , a*Si ) = 1)
independently of its parameter θα

*

Si , while all other actions
a ∈ Ad\{a*Si} result in no state change. However, each
optimal discrete action α*Si is characterized by an optimal
value µ*Si as shown in Figure 2 of the main paper, and
choosing a parameter θα

*

Si such that H(θα
*

Si ) ≥ 0 will result
to an increase of the reward signal rt. This occurs when

µ*Si − σ
*√2ln2 ≤ θα

*

Si ≤ µ
*
Si + σ*

√
2ln2

where σ* will be a global parameter for all states and ac-
tions, even though it could also be state-action dependent
as ameasure of speci�city. This inequality speci�es a toler-
ance interval with a �xed width for the parameter value of
each optimal action, however the range may change since
both the optimal action and the optimal parameter value
are non-stationary in the general case.
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Figure 1: Experiment 2 Task 0. The median values of the chosen
parameters for each action of interest at each state is shown, along
with their interquartile range as shaded area. The color of the hori-
zontal dash-dot lines represent the optimal actions while the range
between them represents the tolerance interval. The engagement on
each timestep is shown at the bottom right.

2.1 Global change-points

We �rst perform numerical simulations and measure the
performance on two di�erent tasks using the right MDP
of Figure 3 in the paper for 10000 timesteps (we call this
a hyper-session), where the structure of the MDP or the
environmental reward feedback changes for all states at
the samemoment (global change-point). We �rst simulate
Task 0, a simpli�ed version of Task 1 in the main paper
where the optimal discrete actions are stationary, mean-
ing that a*Si ,t are constant in time, whereas the optimal pa-
rameter values µ*Si ,t abruptly change at timestep t = 5000.
Task 0 permits to compare with Task 1 and analyze what
happens in the non-state-speci�c old version of the ac-
tive exploration algorithm [1] depending on the amount of
change required by the task.

Figure 1 captures the results of Task 0 after 200 hyper-
sessions. The graphs show the median values for the
actions of interest at each state as also the average en-
gagement (bottom right of the �gure) along with their
interquartile range as shaded areas. Even though the al-
gorithm cannot end up in more than one state on the
same timestep, here due to the fact that we present the
values over 200 hyper-sessions the lines seem continu-
ous. Note that the sub-optimal actions are not shown here
for clarity but we later present metrics on the probability
of choosing a correct action. The color of the horizon-
tal dashed-dotted lines represents the optimal action,
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Figure 2: Experiment 2 Task 1. As in Figure 1, the median values
of the chosen parameters for each action of interest at each state is
shown, along with their interquartile range as shaded area. The color
of the horizontal dash-dot lines represent the optimal actions while
the range between them represents the tolerance interval. The en-
gagement on each timestep is shown at the bottom right.

while the range between these lines represents the tol-
erance interval, for which H(θa

*
) ≥ 0 (we keep σ* = 10

for all cases). The optimal actions for each state are
{a*S1 ,t , a

*
S2 ,t , a

*
S3 ,t , a

*
S4 ,t , a

*
S5 ,t} = {a2, a3, a4, a5, a6}

for all timesteps t, while the optimal parameters are
{µ*S1 ,t , µ

*
S2 ,t , µ

*
S3 ,t , µ

*
S4 ,t , µ

*
S5 ,t} = {−50, 50, −50, 50, −50}

for t < 5000, and {µ*S1 ,t , µ
*
S2 ,t , µ

*
S3 ,t , µ

*
S4 ,t , µ

*
S5 ,t} =

{0, −10, 10, 10, 0} for t ≥ 5000. In task 2 the main dif-
ference is that the optimal actions also change so that
{a*S1 ,t , a

*
S2 ,t , a

*
S3 ,t , a

*
S4 ,t , a

*
S5 ,t} = {a1, a4, a3, a2, a5} for

t ≥ 5000. The results for Task 1 are shown in Figure 2 and
can be directly compared to those obtained with the new
state-speci�c active exploration algorithm (Figure 4 in the
main paper).

In both tasks the algorithm performs exploration on
the �rst timesteps and then manages to approximate the
optimal action-parameter tuple (a*Si , µ

*
Si ) for each state Si

by the end of timestep 5000, as the greater part of the
shaded interquartile regions of uncertainty fall in the tol-
erance interval. To be more precise, Figure 3 captures the
numerically calculated probabilities of choosing the opti-
mal action at each timestep as Pt(a*), the probability of
choosing a parameter value inside the tolerance interval
given that the chosen action is the optimal as Pt(H(θa) ≥
0|a*), as also their product Pt(H(θa) ≥ 0 ∩ a*). At the bot-
tom of the same �gure the exploration level is also dis-
played with τ = 1/β as mean temperature for the softmax-
Boltzmann function.All probabilities beginwith small val-
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Figure 3: Experiment 2 Tasks 0 and 1. Probabilities of choosing the
optimal action at each timestep, as also choosing an optimal parame-
ter inside the tolerance interval for both tasks. At the bottom the tem-
perature 1/β is shown,withhigher values corresponding towhite and
lower values to black.

ues as the exploration level and the uncertainty of actions
are high on the �rst timesteps. Gradually, the exploration
level drops and the actions are learned with Pt(a*) being
close to 1 right before the change-point occurrence, reach-
ing an engagement of 9.2 out of 10 in both tasks. The toler-
ance region is learned with probability close to 0.78 while
a random strategy would give 0.12 for σ* = 10.

After the change-point occurrence the algorithm
presents adaptivity in both tasks. This can be also seen by
observing the probability Pt(a*) and Pt(H(θa) ≥ 0|a*) in
Figure 3. ForTask0, Pt(a*) drops only slightly since the op-
timal actions are already learned. However, the algorithm
does not reach the same levels of performance afterwards.
The temperature rises (as β increases) but thendrops again
as the performance is stabilized. Even though the perfor-
mance is not completely restored, the engagement drops at
�rst but then rises up to high values of over 8 out of 10. For
Task 1, the algorithmalso relearns thenewoptimal actions.
In fact it manages to achieve the same levels of perfor-
mance with approximately the same levels of robustness.
Observing the temperature at the bottom right of Figure 3
we can see that the temperature rises more than in Task
0. However, the performance is completely restored after-
wards. Amain reason for this feature is the larger stimulus
(or “novelty”) resulting from the sudden drop of rewards
rt, which then results in large negative values of r̄t − ¯̄rt
and larger drops in β as a consequence. This large stim-
ulus therefore restores exploration to higher levels (also
observed by the lighter area of the temperature in com-
parison with the temperature in Task 1) and the algorithm
does not su�er from “inertia” by an already learned strat-
egy. Nevertheless, the maximal engagement reached and
the time needed to adapt after the change-point are not as
good as with the new state-speci�c exploration algorithm
(Figure 4 in the main paper).
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Figure 4: Experiment 2 Task 2. All states follow di�erent dynamics
with non-global change-points and continuously changing parame-
ter values. When a change-point occurs in some state, exploration is
in�uenced in all states (shown by the disturbances in all other pa-
rameter values chosen). Additionally, the dynamically changing tol-
erance interval of the optimal action parameter value in state 2 (top
right) cannot be followed. These result in an overall lower engage-
ment, shown at the bottom right.

2.2 Local change-points

Next, we test the algorithm on Task 2, for which states
follow a di�erent dynamics with local change-points as
shown in Figure 4. In state S1 there is a change-point at
timestep t = 3000. The optimal action-parameter tuple for
t < 3000 is {a2, −50} and changes to {a1, 0} for t ≥ 3000.
In state S2 the optimal action is a3, however the optimal
parameter is changing sinusoidally in time. In state S3 a
change-point occurs at timestep t = 7000, where the opti-
mal action-parameter tuple is {a4, −50} for t < 7000 and
{a2, 0} for t ≥ 7000. State S4 is also subject of an abrupt
change, where the optimal tuple is {a5, 50} for t < 5000
and {a4, −10} for t ≥ 5000. State S5 is stationary, with
a6, −50 as an optimal action tuple.

From the results shown in Figure 4, we can see that
the algorithmmanages to adapt to the local change-points
in states S1, S3 and S4. Nevertheless, the algorithm fails to
follow the sinusoidally drifting optimal parameter change
in state S2. Also note that, because the active exploration
is not state-speci�c, any local change-point in a given state
transiently a�ects performance in all other states. This is
particularly obvious in state S5 where no change-point oc-
curs but where a transient mild re-exploration of the con-
tinuous parameter is performed at timesteps t = 3000,
t = 5000 and t = 7000. Overall, the algorithm performs
quite well, with an engagement above 8 most of the time
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and fast adaptations to the local change-points. Neverthe-
less, the performance is not as good as the one reached by
the novel state-speci�c active exploration algorithm as il-
lustrated by Figure 5 of the main paper.
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