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Abstract. Many public-key cryptosystems and identi�cation schemes

based on error-correcting codes have been proposed as an alternative

to the common cryptographic algorithms based on number theory. They

rely on the NP-hardness of �nding a �xed-weight word in a coset of a lin-

ear binary code. We here improve the previous attacks on these systems;

this notably enables us to reduce the work factor involved in breaking

McEliece's cryptosystem since our algorithm requires 2

64:2

operations

that is 2

7

times less than Lee-Brickell's attack.

Keywords: Error-correcting codes, Minimum weight codewords, Markov

chains, McEliece's cryptosystem, Cryptanalysis.

1 Introduction

Since the concept of public-key cryptography appeared in 1977, searching for

secure public-key cryptosystems and identi�cation schemes has been one of the

most active areas in the �eld of cryptology. Seventeen years after the fundamen-

tal paper of Di�e and Hellman, public-key cryptography has however become

dangerously dependent on the di�culty of two problems: integer factoring and

discrete logarithm. Studying other hard problems which could be applied to

public-key cryptography seems therefore essential in order to anticipate an im-

portant progress in factoring methods. The class of public-key cryptosystems or

identi�cation schemes based on algebraic error-correcting codes is an alternative

to the common algorithms based on number theory. It relies on the NP-hardness

of �nding a codeword of a given weight in a linear binary code. Each algorithm

which is able to decode any linear code, or equivalently to �nd short codewords, is

consequently an attack against these systems. Improving this type of algorithms

is then interesting in order to see whether the existing systems like McEliece's

?
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cryptosystem resist such attacks, and also in order to delimit the parameters

which could be insecure.

We carry out in this purpose two kinds of improvements to the existing al-

gorithms for �nding short codewords in any linear code. On one hand a very

precise analysis of their complexity shows that their performances strongly de-

pend on some parameters; a more general approach and the optimization of these

parameters enable us to sizeable reduce their running-time.

On the other hand, as we have noticed that all these algorithms make many

independent Gaussian eliminations, we propose replacing this time-consuming

procedure by a faster iterative one. Using Markov chains theory we give the

average number of operations required by the modi�ed algorithms; that leads

us to a new optimization of the parameters which is in accordance with the

simulations we made. Our successive improvements notably enable us to attack

McEliece's cryptosystem with 2

64:2

elementary operations, that is 2

7

times less

than the previous best known attack [9]. Although this work factor is still too

high, that makes it possible to determine the insecure parameters of the codes

used for cryptographic purposes; for instance, our algorithm is able to decode

any [512; 256]-random linear binary code up to half its minimum distance.

The �rst part of this paper presents some well-known cryptographic systems

relying on error-correcting codes; the following one describes the classical algo-

rithms to �nd short codewords in a linear code. Part III shows how they can be

improved by optimizing their parameters. The general improvement of all the

algorithms and the corresponding complexity are exposed in part IV. The last

part then applies these new attacks to the cryptosystems de�ned in part I.

PartI

Some systems based on

error-correcting codes

We here describe three well-known cryptographic systems based on error-correcting

codes: McEliece's and Niederreiter's cryptosystems and Stern's identi�cation

scheme.

Notations As usual in coding theory we write the vectors in GF (2)

n

as words

x = x

1

: : :x

n

over GF (2). The transpose of matrix A (resp. vector x) is denoted

by A

t

(resp. x

t

).

2 McEliece's public-key cryptosystem

This cryptosystem is one of the �rst that has used error-correcting codes. It

employs an [n; k]-linear code over GF (2), C, with an error-correcting capability

of t errors, for which an e�cient decoding algorithm is known. The original
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description of McEliece [13] uses Goppa codes but the larger class of alternant

codes is also convenient.

{ private key: it consists of the three matrices G, S and P , where G is an

(n; k) generator matrix of this code, S is an arbitrary (k; k) invertible matrix

and P is an arbitrary (n; n) permutation matrix.

{ public key: it is composed by the (n; k) matrix G

0

de�ned by G

0

= SGP

and the error-correcting capability, t. G

0

is then a generator matrix for an

equivalent [n; k]-linear code for which no decoding algorithm is known.

{ encryption: the cipher-text corresponding to a k-bit message vector m is

y = mG

0

+ e, where e is an n-bit error of weight at most t which is randomly

chosen by the sender.

{ decryption: the decryption procedure consists in computing yP

�1

= mSG+

eP

�1

and using a fast decoding algorithm for C to recover mS. The message

is then found by m = (mS)S

�1

.

The parameters originally suggested by McEliece are: n = 1024, k = 524 and

t = 50.

3 Niederreiter's public-key cryptosystem

This is a knapsack-type cryptosystem which uses an [n; k]-linear code overGF (q),

C, with an error-correcting capability of t errors and an e�cient decoding algo-

rithm [14].

{ private key: it consists of the three matrices H, M and P , where H is an

(n�k; n) parity check matrix of C, M is an arbitrary (n�k; n�k) invertible

matrix and P is an arbitrary (n; n) permutation matrix.

{ public key: it is composed by the (n � k; n) matrix H

0

de�ned by H

0

=

MHP .

{ encryption: the cipher-text corresponding to an n-bit message vector e of

weight less than or equal to t is the syndrome s = eH

0t

.

{ decryption: the decryption procedure consists in computing s(M

�1

)

t

=

eP

t

H

t

and using a fast decoding algorithm for C to recover eP

t

. The message

is then found by e = (eP

t

)(P

�1

)

t

.

This cryptosystem is said to be of knapsack-type because the encryption consists

in picking t columns from H

0

and computing a weighted sum of these vectors.

It is shown in [11] that McEliece's and Niederreiter's cryptosystems are equiv-

alent from the security point of view when set up for corresponding choices of

parameters.

Niederreiter initiallymentioned two example systems: one using the [104,24,32]

binary concatenated code obtained by concatenation of the [8,4,4] binary ex-

tended Hamming code with a [13,6] punctured Reed-Solomon code over GF (16)

of minimum distance 8, and the other using a [30,12,19] Reed-Solomon code

over GF (31). Both of these examples have been proved insecure by Brickell and

Odlyzko [3].

3



Note 1. McEliece's and Niederreiter's cryptosystems therefore rely on the follow-

ing principle: the secret key is a code C which is easy to decode, and the public

key is a generator or parity-check matrix of a permutation equivalent code. The

invertible matrix S has no cryptographic function; it only assures for McEliece's

system that the public matrix is not systematic otherwise most of the bits of the

plain-text would be revealed.

Then an eligible class of codes for these systems has to verify the following

properties:

1. for given length, dimension and minimal distance this class is large enough

to avoid any enumeration.

2. an e�cient decoding algorithm is known for this class.

3. a generator or parity-check matrix of a permutation equivalent code gives no

information about the structure of the secret code, that means the decoding

algorithm requires some parameters of the code besides a generator matrix

G

0

.

For example generalized Reed-Solomon codes are not convenient because

their structure can be recovered using Sidelnikov-Shestakov algorithm [17]; con-

catened codes which were initially suggested by Niederreiter are not appropriated

either [16]. But the class of Goppa codes is well suited to such systems insofar

as there actually exists no algorithm which is able to compute the characteristic

parameters of a Goppa code from one of its generator matrix.

In the case the used class of codes veri�es the above properties the equivalent

code de�ned by the public key presents no particular structure; recovering the

plain-text from a cipher-text then amounts to decoding any linear code.

4 Stern's public-key identi�cation scheme

Stern has presented at Crypto'93 [19] a public-key identi�cation scheme which

relies on the di�culty of �nding a small-weight codeword of given syndrome.

This scheme uses an [n; k]-random linear code over GF (2). All users share a

�xed parity check matrix H for this code and an integer w slightly below the

expected value for the minimal distance of a random linear code.

Each user receives a secret key s which is an n-bit vector of weight w. His

public key is then the syndrome sH

t

. Any user can identify himself to another

one by proving he knows s without revealing it thanks to an interactive zero-

knowledge protocol.

Minimal parameters proposed by Stern are n = 512, k = 256 and w = 56.
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PartII

Classical attack algorithms

5 Principle

These three cryptographic systems rely on the same problem: recovering the

plain-text from the cipher-text (or �nding a secret key from the public one for

Stern's identi�cation scheme) is equivalent to �nding a �xed-weight word in a

coset of a linear code C, where the only information we have about C is one of

its generator or parity-check matrices.

For McEliece's cryptosystem this clearly corresponds to the general problem

of minimal distance decoding which is an NP-complete problem [2]: recovering

the plain-text is equivalent to recovering the error-vector e which is the shortest

word in the coset C(y) containing the cipher-text.

We come down to the same problem for both Niederreiter's and Stern's sys-

tems: it is su�cient to apply a Gaussian elimination on the public parity-check

matrix in order to obtain a standard-formmatrixBH = (ZjI

n�k

); �nding a word

of weight w and given syndrome s then amounts to �nding a word of weight w

in the coset containing the n-bit vector y = (0jsB

t

) since the syndrome of y is

s.

Of course, every algorithm that can �nd the shortest word of a linear code

is also a potential general algorithm to decode, as the matrix

� =

0

B

B

@

^

G

m

^

G+ e

1

C

C

A

is a generator matrix of an [n; k+ 1; w]-linear code of shortest codeword e.

6 General minimal distance decoding algorithms

from now on we consider a linear code C over GF (2) of length n and dimension

k, a generator matrix G for this code and an n-bit vector y. We try then to

recover a word e of weight w in the coset C(y).

6.1 McEliece's algorithm

This attack was evoked by McEliece himself in his original paper [13]. One

iteration of the algorithm is as follows:

1. Randomly permute the columns of the generator matrix.

2. Apply a Gaussian elimination on the rows of the matrix to obtain the form

~

G = ( I

k

j A ) ; where the corresponding permuted cipher text is denoted

by y = ( c

1

+ e

1

j c

2

+ e

2

) :
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3. Guess that the error e

1

is null by checking whether the weight of error e

2

is w. In this case y + c

1

~

G is in coset C(y) and its weight is w.

Note 2. C. Adams and H. Meijer have shown [1] that the best parameters for

McEliece's cryptosystem to counter this attack are

n = 1024; k = 654; t = 37

6.2 Lee-Brickell's improvement

Lee and Brickell have pointed out that the most time-consuming procedure in the

previous attack was the Gaussian elimination whereas the cost of the veri�cation

was negligible. Hence they have modi�ed it in order to reduce the number of

Gaussian elimination by raising the cost of step 3. In their attack, the last step

consists in checking whether the weight of the partial error e

1

is less than or

equal to a �xed parameter p. The original McEliece's algorithm corresponds to

p = 0 and they have heuristically proposed the value p = 2 to minimize the

running-time of their algorithm [9].

6.3 Leon's algorithm

The algorithm proposed by J.S. Leon [10] is a probabilistic algorithm that tries

to �nd short codewords. It introduces two parameters � and p. This algorithm

uses a generator matrix and it searches the zero-bits of minimumweight words.

More precisely each iteration runs as follows:

1. Choose a random selection S of k+ � columns of the matrix, which are put

by permutations to the right end of the matrix.

2. Apply a Gaussian elimination so that the resulting matrix has the form

~

G =

�

B j Z j I

e

D j 0 j 0

�

;

where B is an (n� k� �; e) matrix, Z is a (k+ �� e; e) matrix and D is an

(n� k � �; k � e) one for some e � k + �.

3. Look for the linear combinations that lead to codewordsm such that w(mj

S

) �

p. This can be achieved by considering the single matrix Z. In the case of

w(mj

S

) � p, compute the corresponding n-bit word and verify if its weight is

less than the weight of the previously shortest obtained word. When e 6= 0,

this test must also be performed for the codewords that includeD-codewords.

The parameters generally used for this algorithm [10, 6] are p = 2, � = 2.
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6.4 Stern's algorithm

This third algorithm [18], obtained independently from the above one, attacks

the code by using a parity-check matrix H. It introduces two parameters p and

`.

1. The �rst step of the algorithm is similar to Leon's algorithm: choose a ran-

dom selection S of n� k columns of the matrix, which are put by permuta-

tions to the right end of the matrix. The degenerative cases are eliminated

in order to obtain a matrix of the form:

~

H

1

= (Q j I

n�k

) :

2. Randomly split the columns of matrix Q in two subsets in order to obtain,

after permutations, a matrix of the form:

~

H

2

= (X j Y j I

n�k

) :

3. Randomly choose ` rows of the matrix and perform permutations on rows

in order to obtain a matrix of the form:

~

H

3

=

�

X

`

Y

`

X

n�k�`

Y

n�k�`

�

�

�

�

J

�

�

4. For each group P

X

of p columns of X

`

, compute their sum �

`

(P

X

), and do

the same for each P

Y

. If �

`

(P

X

) = �

`

(P

Y

), select these 2p columns P

X

[P

Y

and compute the sum V of the n� k� ` other rows of these columns. If the

weight of V is w � 2p, then it is possible to build a codeword of weight w.

The parameters proposed in [6] for this algorithmare p = 2 or p = 3 according

to the available memory, and ` = ln k.

7 E�ciency of these algorithms

Table 1 gives the work factor of each of these algorithms (i.e. the average number

of elementary operations required to perform it (see section 8) concerning three

di�erent cryptosystems:

1. Stern's public key identi�cation scheme, i.e. searching for a word of weight 56

in a [512; 256] code. The work factors for both Leon's and Stern's algorithms

are therefore given for a [512; 257] code.

2. McEliece's cryptosystem with its original parameters: n = 1024, k = 524

and w = 50. The work factors for both Leon's and Stern's algorithms are

therefore given for a [1024; 525] code.

3. McEliece's cryptosystem with the Adams and Meijer's parameters: n = 1024,

k = 654 and w = 37. The work factors for both Leon's and Stern's algorithms

are therefore given for a [1024; 655] code.
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Cryptosystem Attacks

McEliece Lee Leon Stern

Stern 2

84:9

p = 2

2

74:9

p = 2

� = 2

2

74:9

p = 2

` = 8

2

73:5

McEliece 2

80:7

p = 2

2

71:3

p = 2

� = 2

2

70:7

p = 2

` = 9

2

69:9

Adams 2

83:8

p = 2

2

73:5

p = 2

� = 2

2

73:1

p = 2

` = 9

2

71:9

Table 1. Work factors of classical attacks

These results are obtained from the formulas of appendix A.

PartIII

Improvement of the attacks

8 Generalization

8.1 A more general algorithm

Description: This algorithm was �rst studied in [7] as a variant of Stern's al-

gorithm. We here present this algorithm in its generator matrix form, and we

try to �nd a short codeword. It introduces three parameters p, � and s.

Algorithm A: At each iteration:

1. Randomly choose a set of k columns and perform a Gaussian elimination to

obtain a matrix in standard form.

2. Randomly select � other columns of the matrix to obtain

~

G = (B j Z j I

k

) ;

where B is an (n� k � �; k) matrix and Z is a (�; k) matrix.

3. Look for all linear combinations of at most p rows of Z that give words of

weight less than or equal to s on the k+ � selected columns. Then compute

the corresponding whole codewords and check their weights.

Note 3. Lee-Brickell's algorithm with parameter p then corresponds to � = 0

and s = p and Leon's algorithm corresponds to s = p.
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8.2 Work factor

We call work factor of an algorithm the average number of elementary operations

required to perform it and W

Algo(params)

(n; k; w) will denote it for an algorithm

Algo { depending on its parameters { when it is applied to a code of length n,

dimension k and minimal weight w.

We will denote

�

N

Algo(params)

(n; k; w) the average number of iterations of the

algorithm Algo.

All the previous algorithms apply a Gaussian elimination on a generator

(or parity-check) matrix for the code in order to obtain a systematic matrix

(IjZ), and they try then to �nd short words in a few operations on the reduced

matrix Z. From now on G(n; �) denotes the average number of operations to

perform a Gaussian elimination on the rows of an (n; �)-matrix of rang �, and

J

Algo(�)

(n; k; w) denotes the average number of additional operations performed

at each iteration by the algorithm. Hence we obviously have a relation of the

form

W =

�

N � (G + J) : (1)

8.3 Variants of these algorithms

Dual versions

Principle: For all those algorithms, it is possible to construct a version of same

success probability, but working on the dual code.

Example: If we now consider algorithmA, it deals with a generator matrix of the

code. We can easily obtain a corresponding parity-check matrix. Let us consider

the algorithm where each iteration is as follows:

1. Randomly choose (n� k) columns and performs a Gaussian elimination.

2. Randomly choose � rows of the matrix

~

H =

�

Z

B

�

�

�

�

J

�

�

where B is a (n�k��; k) matrix, Z is a (�; k) matrix and J is the resulting

permutation of the identity I

n�k

.

3. Consider all the linear combinations of at most p columns of Z, and when the

corresponding weight is less than or equal to s, compute the whole codeword

of

~

H.

In the same way Stern's algorithm can be modi�ed for working on a generator

matrix.

The success probability of the dual version of each algorithm is obviously the

same as for the original version. An optimization can therefore be done according

to the expansion rate of the code, since G(n; k) is smaller than G(n; n� k) if the

rate n=k is smaller than 1=2.
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Decoding or �nding short codewords ? All these algorithms have been de-

scribed from a single point of view. Leon's and Stern's algorithms were �rst

designed to �nd short codewords. On the other hand Lee-Brickell's algorithm

tried to decode general linear codes. But all these algorithms can be modi�ed to

perform the other point of view.

As said in section 5, decoding a word y for an [n; k]-code with an error-

correcting capability w is equivalent to searching for a word of weight w in an

[n; k+ 1]-code if we consider the new code de�ned by the generator matrix

�

G

y

�

For instance, Stern's algorithm can be used almost directly for syndrome

decoding and algorithm A with � = 0 and s = p exactly corresponds to Lee-

Brickell's algorithm for �nding short codewords.

Work factor Combining these two variants { Generator or Parity-check matrix

and Decoding or Short codewords { we obtain four di�erent versions for each

algorithm. The D-type algorithms aim at decoding an [n; k]-code with error-

correcting capability w whereas the S-type versions aim at �nding a word of

weight w in an [n; k]-code. We then have the following corresponding forms of

equation 1:

W

Algo

GS

(�)

(n; k; w) =

�

N

Algo

S

(�)

(n; k; w)�

�

G(n; k) + J

Algo

GS

(�)

(n; k)

�

W

Algo

PS

(�)

(n; k; w) =

�

N

Algo

S

(�)

(n; k; w)�

�

G(n; n� k) + J

Algo

PS

(�)

(n; k)

�

W

Algo

GD

(�)

(n; k; w) =

�

N

Algo

D

(�)

(n; k; w)�

�

G(n; k) + D

G

(n; k) + J

Algo

GD

(�)

(n; k)

�

W

Algo

PD

(�)

(n; k; w) =

�

N

Algo

D

(�)

(n; k; w)�

�

G(n; n� k) +D

P

(n; k) + J

Algo

PD

(�)

(n; k)

�

The D expressions are correcting terms which take in account the extra opera-

tions performed during the Gaussian elimination on the codeword (type G) or

the syndrome (type P ) | see below.

9 Optimization of the parameters

9.1 Principle

The above algorithms use some parameters. Their inuence on the performance

of the algorithms is very important. A �rst approach to determine the optimal

parameters of some of these algorithms was given in [6]. Unfortunately, this kind

of asymptotic analysis is not optimal for the useful dimensions. A more practical

approach was given in [7] and consists in a precise estimation of the work factor

of these algorithms.

Since all these algorithms have independent iterations, according to note 13,

we have

�

N

Algo(�)

(n; k; w) =

1

�

Algo(�)

(n; k; w)

: (2)

In appendix A and B we give for each algorithm:

10



{ its type,

{ its success probability �

Algo(�)

(n; k; w),

{ its average number of operations by iteration J

Algo(�)

(n; k),

so that the resulting work factor can be obtained by the formulas given in

section 8.3 assuming that a Gaussian elimination on an (n; �)-matrix performs

about � � �=2 additions of n-bit words, that means:

G(n; �) = n� �� �=2: (3)

In the same way we also have:

D

G

(n; k) = n � k=2;

D

P

(n; k) = (n � k)� (n� k)=2:

9.2 Results

The explicit formulas (see appendix A and B) of the work factors can be used to

�nd the optimal parameters of the attacks. For the cryptanalysis of the previ-

ously described cryptosystems, we have to compare the following work factors:

W

Algo

GD

(�)

(n; k; w);W

Algo

PD

(�)

(n; k; w);W

Algo

GS

(�)

(n; k+1; w);W

Algo

PS

(�)

(n; k+1; w):

This �rst improvement is shown in table 2.

PartIV

An iterative algorithm

As shown in part III each iteration of any of these algorithms �rst performs a

Gaussian elimination on a generator (or parity-check) matrix for the code.

We now propose an iterative algorithm which avoids this time-consuming

procedure.

10 Principle

from now on we will use the following notations:

Let N = f1; � � � ; ng. For any subset I of N , G = (V;W )

I

denotes the de-

composition of a generator matrix G of a code of length n onto I, that means

V = (G

i

)

i2I

and W = (G

j

)

j2NnI

, where G

i

is the ith column of matrix G.

De�nition4. Let I be a k-element subset of N . I is an information window for

G i� M = (V;W )

I

where V is invertible. The complementary set, J = N n I, is

called a redundancy window.
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Cryptosystem Attacks

Lee Leon

Stern

p = 2

2

74:9

p = 3

� = 5

2

73:9

McEliece

p = 2

2

71:3

p = 3

� = 7

2

69:5

Adams

p = 2

2

73:5

p = 3

� = 7

2

71:9

Cryptosystem Attacks

Algo. A

GD

Algo. A

PD

Algo. A

GS

Algo. A

PS

Stern

p = 3

� = 17

s = 7

2

73:5

p = 3

� = 17

s = 7

2

73:5

p = 3

� = 17

s = 7

2

73:5

p = 3

� = 17

s = 7

2

73:5

McEliece

p = 3

� = 11

s = 4

2

69:6

p = 3

� = 11

s = 4

2

69:5

p = 3

� = 11

s = 4

2

69:3

p = 3

� = 11

s = 4

2

69:3

Adams

p = 3

� = 11

s = 4

2

71:9

p = 2

� = 19

s = 6

2

71:1

p = 3

� = 11

s = 4

2

71:7

p = 2

� = 19

s = 6

2

71:2

Cryptosystem Attacks

Stern

GD

Stern

PD

Stern

GS

Stern

PS

Stern

p = 2

` = 13

2

71:6

p = 2

` = 13

2

71:6

p = 2

` = 13

2

71:8

p = 2

` = 13

2

71:8

McEliece

p = 2

` = 17

2

66:2

p = 2

` = 17

2

66:0

p = 2

` = 16

2

66:2

p = 2

` = 16

2

66:1

Adams

p = 2

` = 17

2

68:0

p = 2

` = 18

2

66:8

p = 2

` = 17

2

68:1

p = 2

` = 18

2

66:9

Table 2. Work factors of optimized classical attacks

All the previously described algorithms aim at exploring the set of informa-

tion windows until the initial word will be found. They �rst randomly select an

information window and then they try to �nd short words with a few operations

on the redundancy window.

The commonly used method for exploring this set consists in randomly select-

ing at each step a new information window, I

0

, which is completely independent

from the previous ones. We here propose to choose I

0

by modifying only one el-

ement of the previous information window like the simplex method as proposed

by [15]. This idea was �rst exposed in [20, 5] concerning respectively McEliece's

and Lee-Brickell's algorithm.

12



De�nition5. Two information windows I and I

0

are close i�:

9q 2 I; 9p 2 N n I; such that I

0

= (I n fqg) [ fpg

As any two information windows can be joined by a sequence of close infor-

mation windows, we will use this iterative method in order to �nd one of them

which enables us to recover the initial word.

The following proposition shows how choosing q and p such that I

0

is still an

information window.

Proposition6. Let I be an information window such that M = (V;W )

I

Let be q 2 I, p 2 J and I

0

= (I n fqg)[ fpg.

I

0

is an information window i� z

q;p

= 1, where Z = V

�1

W = (z

i;j

)

i2I;j2J

Proof. Z is de�ned by V Z =W , thus we have:

8j 2 J; G

j

=

X

i2I

z

i;j

G

i

This relation holds for index p: G

p

= z

q;p

G

q

+

P

i2Infqg

z

i;p

G

i

As the columns indexed by I are linearly independent, we have:

G

p

and (G

i

)

i2Infqg

are linearly independent i� z

q;p

= 1.

From now on we index rows of Z with I using

~

G = (I

k

j Z)

I

and we denote

by Z

i

the ith row of Z.

As the studied algorithms deal with the so-called standard-formmatrixV

�1

G =

(I

k

j Z)

I

corresponding to I, we only need a procedure able to obtain the stan-

dard form generator matrix V

0�1

G = (I

k

j Z

0

)

I

0

corresponding to I

0

from the

previous one, V

�1

G. This systematic matrix can be updated in the following

way.

Proposition7. Let I and I

0

be two close information windows such that

I

0

= (I n fqg) [ fpg:

Let V

�1

G = (I

k

j Z)

I

and V

0�1

G = (I

k

j Z

0

)

I

0

be the corresponding standard-

form matrices. Then Z

0

is obtained from Z by:

{ Z

0p

= Z

q

{ 8i 2 I

0

nfpg; 8j 2 N n (I

0

[fqg); z

0

i;j

= z

i;j

+z

i;p

z

q;j

and 8i 2 I

0

nfpg z

0

i;q

=

z

i;p

Proof. As I

0

= (I nfqg)[fpg, V

0�1

G is obtained by exchanging the qth and pth

columns of V

�1

G. This can be done by a simple pivoting operation in position

(q; p), i.e. by adding the qth row of matrix V

�1

G to all others rows (V

�1

G)

i

i�

the corresponding element z

i;p

is not equal to 0 (see �gure 1).

13
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Fig. 1. Close information windows

11 Modi�ed algorithms

We now describe the previous algorithms in which the Gaussian elimination has

been replaced by this faster procedure. We only present for both algorithm A

and Stern's algorithm the GS-type versions.

11.1 Algorithm A

GSM

Randomly choose an information window I and apply a Gaussian elimination in

order to obtain a systematic generator matrix

~

G = ( I

k

j Z ).

Then each iteration runs as follows:

1. Randomly choose a �-element subset � of N n I.

2. For all 1 � i � p and for each linear combination � of i rows of matrix G do:

{ compute w(�

j�

).

{ if w(�

j�

) � s� i, then compute w(�

jNn(I[�)

).

if w(�

jNn(I[�)

) + w(�

j�

) � w � i then return �.

3. Randomly choose q 2 I and p 2 N n I.

Replace information window I with (I n fqg) [ fpg by updating matrix Z

according to the preceding proposition.

11.2 Stern's GSM algorithm

Randomly choose an information window I and apply a Gaussian elimination in

order to obtain a systematic generator matrix

~

G = ( I

k

j Z ).

Then each iteration runs as follows:

1. Randomly split information window I in two subsets I

1

and I

2

where jI

1

j =

bk=2c and jI

2

j = dk=2e. We now obtain

~

G

1

=

�

J

�

�

�

�

Z

1

Z

2

�

2. Randomly choose an `-element subset L of N n I.

3. { For each linear combination �

1

of p rows of matrix Z

1

, compute w(�

1jL

).

{ For each linear combination �

2

of p rows of matrix Z

2

, compute w(�

2jL

).

14



{ If �

1jL

= �

2jL

, then compute w((�

1

+ �

2

)

jNn(I[L)

).

If this weight is less than or equal to w � 2p then return(�

1

+ �

2

).

4. Randomly choose q 2 I and p 2 N n I.

Replace information window I with (I n fqg) [ fpg by updating matrix Z

according to the preceding proposition.

12 Theoretical running-time

12.1 Where does the improvement come from?

When the new information window was chosen independently from the previous

ones, the work factor involved in putting the matrix in standard form was given

by equation 3. As this new information window is now close to the previous one,

the same operation can be done by adding the row Z

q

to rows Z

i

whose element

z

i;p

is non-zero. Assuming that the average weight of Z

p

is

�

2

, the work factor

involved in this procedure is

g(n; �) = � � (n� �)�

1

2

:

In the same way, for the D-type algorithms, the correction term becomes for

both types P and G:

d(n; k) = (n� k)=2:

While the number of operations required by each iteration slightly decreases,

the number of iterations for these new algorithms is now higher because the

successive informationwindows are not independent any more. Hence,

�

N

Algo

M

(�)

is not equal to

�

N

Algo(�)

since the estimation 2 resulted from this independence.

Therefore the formulas of section 8.3 must be changed accordingly.

W

Algo

GSM

(�)

(n; k; w) =

�

N

Algo

SM

(�)

(n; k; w)�

�

g(n; k) + J

Algo

GS

(�)

(n; k)

�

W

Algo

PSM

(�)

(n; k; w) =

�

N

Algo

SM

(�)

(n; k; w)�

�

g(n; n� k) + J

Algo

PS

(�)

(n; k)

�

W

Algo

GDM

(�)

(n; k; w) =

�

N

Algo

DM

(�)

(n; k; w)�

�

g(n; k) + d(n; k) + J

Algo

GD

(�)

(n; k)

�

W

Algo

PDM

(�)

(n; k; w) =

�

N

Algo

DM

(�)

(n; k; w)�

�

g(n; n� k) + d(n; k) + J

Algo

PD

(�)

(n; k)

�

12.2 Average number of iterations

The previous modi�ed algorithm can be associated with a discrete-time stochas-

tic process fX

i

g

i2IN

where the random variable X

i

represents the outcome of

the ith iteration of the algorithm. For all considered algorithms, X

i

then corre-

sponds to the distribution of positions of supp(e) among the windows splitting N

at step i. For example, if we consider Lee-Brickell's algorithm,X

i

is the number

of positions of supp(e) contained by the information window at step i.

We note that the state space E is �nite

The ith iteration of the algorithm is then described by the probability dis-

tribution �

i

:

8u 2 E ; �

i

(u) = Pr[X

i

= u];

and we have

P

u2E

�

i

(u) = 1.

15



De�nition8. The stochastic process fX

i

g

i2IN

is a Markov chain i� for all i and

for all (u

0

; u

1

; � � � ; u

i

) 2 E ;

P r[X

i

= u

i

=X

i�1

= u

i�1

; X

i�2

= u

i�2

; � � � ; X

0

= u

0

] = Pr[X

i

= u

i

=X

i�1

= u

i�1

]:

De�nition9. Every matrix (P

u;v

)

(u;v)2E

2 of real elements such that

P

u;v

� 0

X

v2E

P

u;v

= 1 for all u 2 E

is called Markovian.

De�nition10. A Markov chain fX

i

g

i2IN

is said to be stationary (or homoge-

neous in time) i� there exists a Markovian matrix P such that for all i and

8(u; v) 2 E ;

P r[X

i

= u=X

i�1

= v] = P

v;u

:

A stationary Markov chain fX

i

g

i2IN

is then completely determined by its

starting distribution �

0

and by its transition matrix P .

The state space can be split in two subsets S and F where S contains the

recurrent states and F the transient states. We now assume that fX

i

g

i2IN

is

a transient chain, that means that each recurrent state is a success state or

equivalently that it is an absorbing state; then F corresponds to the failure

states.

Proposition11 [8]. If fX

i

g

i2IN

is a transient chain with transition matrix P ,

and Q is the sub-stochastic matrix corresponding to transitions among the tran-

sient states, i.e. Q = (P

u;v

)

u 2 F

v 2 F

then (Id � Q) has an inverse R called the

fundamental matrix of the chain and

R =

1

X

m=0

Q

m

= (Id� Q)

�1

:

Proposition12. The expectation

�

N of the number of iterations required until

X

n

reaches a success state is given by:

�

N =

X

u2F

�

0

(u)

X

v2F

R

u;v

where R is the corresponding fundamental matrix.

Proof.

�

N =

X

n�0

nPr[N = n]

=

X

n�1

Pr[N � n]

=

X

n�0

Pr[X

n

2 F ]:

16



As the initial probability distribution is vector �

0

, we have:

�

N =

X

n�0

X

u2F

Pr[X

n

2 F=X

0

= u]�

0

(u)

Let Q = (P

u;v

)

u 2 F

v 2 F

then we have

Pr[X

i

2 F=X

0

= u] =

X

v2F

(Q

i

)

u;v

:

Thanks to the preceding proposition we �nally obtain

�

N =

X

u2F

�

0

(u)

X

v2F

R

u;v

Note 13. If fX

i

g

i2IN

corresponds to an algorithm whose iterations are indepen-

dent, with a �xed success probability � for each iteration, then the average

number of iteration is

�

N =

X

n�1

Pr[N � n]

=

X

n�0

(1� �)

n

=

1

�

12.3 Results

This general result can easily be adapted to any of our algorithms as shown in

appendix C. Using the implicit formulas of the work factors, we can �nd the

optimal parameters of the attacks. This �nal improvement is shown in table 3.

PartV

Experimental results

In order to check the correctness of our optimizations, we have made a great

number of simulations for a small binary problem: decoding a [256; 128] random

linear code whose minimal distance is obtained by Gilbert-Varshamov's bound,

i.e. recovering an error vector of weight 14. Table 4 gives the experimental results

obtained with Leon's algorithm. For each set of parameters, 1000 computations

have been made. The computer was a Sun Sparc 10 with two SuperSPARC 50

MHz running under Solaris 2.3.
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Cryptosystem Attacks

Lee Leon

Stern

p = 1

2

74:3

p = 2

� = 6

2

72:4

McEliece

p = 1

2

70:5

p = 2

� = 8

2

68:1

Adams

p = 1

2

72:5

p = 2

� = 8

2

70:5

Cryptosystem Attacks

Algo. A

GD

Algo. A

PD

Algo. A

GS

Algo. A

PS

Stern

p = 1

� = 17

s = 5

2

72:6

p = 2

� = 6

s = 2

2

72:7

p = 2

� = 6

s = 2

2

72:4

p = 2

� = 6

s = 2

2

72:5

McEliece

p = 1

� = 11

s = 2

2

68:4

p = 2

� = 8

s = 2

2

68:7

p = 2

� = 8

s = 2

2

68:1

p = 2

� = 8

s = 2

2

68:3

Adams

p = 1

� = 11

s = 2

2

70:4

p = 2

� = 8

s = 2

2

71:0

p = 1

� = 14

s = 3

2

70:5

p = 2

� = 8

s = 2

2

70:6

Cryptosystem Attacks best

Stern

GD

Stern

PD

Stern

GS

Stern

PS

algorithm

Stern

p = 2

` = 15

2

69:8

p = 2

` = 15

2

69:8

p = 2

` = 15

2

69:9

p = 2

` = 15

2

69:9

Stern

GD

: 2

69:8

McEliece

p = 2

` = 18

2

64:3

p = 2

` = 18

2

64:3

p = 2

` = 18

2

64:2

p = 2

` = 18

2

64:2

Stern

GS

: 2

64:2

Adams

p = 2

` = 18

2

66:0

p = 2

` = 18

2

66:0

p = 2

` = 18

2

66:0

p = 2

` = 18

2

66:0

Stern

GS

: 2

66:0

Table 3. Work factors of optimized modi�ed attacks with Markov chain improvement

PartVI

Accessible weights

The computer speed dramatically increases and every interpretation of the above

theoretical work factors must be taken with care. The experiments show that

a theoretical work factor of 2

30

is currently done in about 15 seconds on a

Sun 10 with two SuperSPARC 50 MHz running under Solaris 2.3. Hence, we

can estimate that a work factor of 2

50

can be done in about three months of

computation.

On the other hand, the number N (n; k; w) of codewords of weight w in an

18



Type Parameters Theoretical Theoretical Average Deviation Average Corrected

work factor

�

N

�

N CPU CPU

log

2

(W ) (s) (s)

p = 2, � = 2 29.3 244 256 +4.9% 7.10 6.8

p = 2, � = 3 29.3 266 275 +3.5% 6.31 6.1

p = 2, � = 4 29.3 291 292 +0.2% 6.12 6.1

p = 3, � = 5 29.4 61 60 -1.6% 7.42 7.5

p = 3, � = 6 29.4 66 68 +2.8% 6.61 6.4

p = 3, � = 7 29.5 71 72 +1.7% 6.12 6.0

p = 3, � = 8 29.7 77 76 -0.9% 5.91 6.0

p = 1, � = 2 28.2 23970 23776 -0.8% 4.85 4.9

Spare p = 1, � = 3 28.1 26247 26753 +1.9% 4.64 4.6

p = 1, � = 4 28.1 28770 29751 +3.4% 4.65 4.5

p = 1, � = 5 28.2 31565 33959 +7.6% 5.06 4.7

Markov p = 2, � = 5 29.5 4940 4921 -0.4% 10.78 10.8

chain p = 2, � = 6 29.5 5329 5494 +3.1% 10.35 10.0

p = 2, � = 7 29.6 5755 5980 +3.9% 10.84 10.4

p = 2, � = 8 29.8 6220 6474 +4.1% 10.46 10.0

p = 2, � = 9 30.0 6728 6869 +2.1% 10.71 10.5

Table 4. Experiments on [256; 129; 14] code using Leon's algorithm

[n; k]-random linear code can be estimated by the following formula:

N (n; k; w) �

�

n

w

�

2

n�k

: (4)

For su�cient large values of w, this number grows enough to allow the al-

gorithms to �nd at least one of the codewords. In fact the work factor can be

divided by N (n; k; w). Table 5 shows an estimation of the weights that can

be found using the described algorithms. We note that the use of any code of

length 512 in McEliece's scheme will fail as the upper bound is greater than the

error-correcting ability of such codes.

13 Conclusions

We here improve all the previously known algorithms for �nding short words in

a coset of any linear code, since all our results can easily be extended codes over

GF (q) (see appendix D).

New attacks on the cryptosystems based on error-correcting codes then fol-

low. We notably obtain an attack on McEliece's cryptosystem which requires

2

64:2

elementary operations. Such an attack is of course still infeasible, but it

enables us to de�ne the parameters which could be insecure.

We show for instance that the whole message in McEliece's cryptosystem

can be recovered in 2

50

operations if only 120 bits of the plain-text are known
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Binary code [512,256] [1024,654] [1024,524]

w 56 (Stern) 37 (Adams) 50 (McEliece)

Upper bound 37 25 35

Parameters

p = 2

` = 15

2

49:1

p = 2

` = 18

2

49:9

p = 2

` = 18

2

49:9

Estimated

minimum 58 72 111

weight

Lower bound 72 117 171

Parameters

p = 2

` = 13

2

49:5

p = 2

` = 15

2

49:6

p = 2

` = 15

2

50:2

Table 5. Accessible weights using Stern's

GSM

algorithm

- this corresponds to the work factor required for �nding a word of weight 50

in a [1024,524-125] code using Stern's modi�ed algorithm -. This could occur if

several relatively close plain-texts are sent.

We otherwise notice that the parameters for McEliece's cryptosystem which

maximize the work factor of these new attacks are n = 1024, k = 614 and

w = 41; the corresponding work factor using Stern's

GSM

algorithm is 2

66

.
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A Work factor of the previously known attacks

A.1 McEliece's algorithm

This algorithm corresponds to Lee-Brickell's algorithm with parameter p = 0.

A.2 Lee-Brickell's algorithm

This algorithm is a GD-type algorithm.

For this algorithm the success probability depends on the value of parame-

ter p.

�

Lee(p)

(n; k; w) =

p

X

i=0

�

n�w

k�i

��

w

i

�

�

n

k

�

:
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At each iteration, we perform about

P

p

i=0

i �

�

k

i

�

additions of (n � k)-bit

words and a weight checking:

J

Lee(p)

(n; k) = (n � k)

"

p

X

i=0

(i + 1) �

�

k

i

�

#

:

A.3 Leon's algorithm

This algorithm is of GS-type. The success probability is

�

L(p;�)

(n; k; w) =

p

X

i=0

�

n�w

k+��i

��

w

i

�

�

n

k+�

�

:

According to [12, page 455], the number of (k; k+�) matrices over GF (2) of

rank 1 � e � k is

2

e(e�1)

2

e�1

Y

i=0

(2

k+��i

� 1)(2

k�i

� 1)

(2

i+1

� 1)

:

Hence, the probability for the (k; k + �) extracted matrix to be of rank e is

�(�; k; e) =

2

e(e�1)

2

2

(k+�)k

e�1

Y

i=0

(2

k+��i

� 1)(2

k�i

� 1)

(2

i+1

� 1)

:

In this case, the average number of additions and weight-checking on (s� e)-bit

words is given by

P

p

i=1

i

�

e

i

�

, and the probability that the complete computation

on the remaining (n�k��)�2

k�e

bits would be necessary is for each 1 � i � p

p�i

X

j=0

�

k+��e

j

�

2

k+��e

:

Finally, we get the average number of operations by iteration of Leon's algorithm:

J

L(p;�)

(n; k) =

k

X

e=1

�(�; k; e)�

2

4

p

X

i=1

i

�

e

i

�

2

4

(k + � � e) + (n� k � �) � 2

k�e

�

p�i

X

j=0

�

k+��e

j

�

2

k+��e

3

5

3

5

:

Note 14. As pointed out by Pascal Veron, the degenerative cases for the ex-

tracted matrix (e 6= 0) greatly increase the number of operations. Hence the

only selections of columns that will be considered are the non-degenerative ones.

This leads to minor change for the success probability:

�

L(p;s)

(n; k; w) =

p

X

i=1

�

n�w

s�i

��

w

i

�

�

n

s

�

:

On the other hand, the average number of operations by iteration becomes:

J

L(p;�)

(n; k) =

p

X

i=1

i

�

k

i

�

"

� + (n � k � �)

P

p�i

j=0

�

�

j

�

2

�

#

:
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A.4 Stern's algorithm

PS type (initial version) The initial version of this algorithm is of PS-type.

The success probability is according to [18]:

�

S(p;`)

(n; k; w) =

�

n�w

k�2p

��

w

2p

�

�

n

k

�

�

2p

p

�

4

p

�

n�w�k+2p

`

�

�

n�k

`

�

and the average number of operations by iteration is:

1. 2p

�

k=2

p

�

operations on `-bit words.

2. The average number of collisions is

(

k=2

p

)

2

2

`

and for each collision we must

perform 2p�1 additions and a weight checking of (n�k� `) bit codewords.

3. We need K(p

�

k=2

p

�

+ 2

`

) more operations to perform the dynamic memory

allocation where K is the size of a computer word (usually 32).

4. As the e�cient data structure to perform a Gaussian elimination is the row-

structure, and on the other hand column structure is necessary for the rest

of the iteration, you must add a conversion which needs (n�k)k operations.

Hence, we obtain

J

S

PS

(p;`)

(n; k) = (n � k)� k + 2p`

�

k=2

p

�

+2p(n � k � `)

�

k=2

p

�

2

2

`

+K �

�

p

�

k=2

p

�

+ 2

`

�

:

GS type The single modi�cation is that in this case the conversion between

the row-structure and the column-structure is not necessary.

Then we have:

J

S

GS

(p;`)

(n; k) = 2p`

�

k=2

p

�

+2p(n� k � `)

�

k=2

p

�

2

2

`

+K �

�

p

�

k=2

p

�

+ 2

`

�

:

GD type The success probability is unchanged but the number of operations

by iteration slightly increases since we need at each step one more addition to

compare the word to decode with the codewords obtained by the linear combi-

nations.

J

S

GD

(p;`)

(n; k) = (2p+ 1)`

�

k=2

p

�

+(2p+ 1)(n� k � `)

�

k=2

p

�

2

2

`

+K �

�

p

�

k=2

p

�

+ 2

`

�

:
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PD type Same remark.

J

S

PD

(p;`)

(n; k) = (n� k)� k + (2p+ 1)`

�

k=2

p

�

+(2p+ 1)(n� k � `)

�

k=2

p

�

2

2

`

+K �

�

p

�

k=2

p

�

+ 2

`

�

:

B Algorithm A

B.1 GS type

This version is described in section 8.1. The success probability of the algorithm

is

�

A

GS

(p;�;s)

(n; k; w) =

p

X

i=1

2

4

�

w

i

��

n�w

k�i

�

�

n

k

�

min(�;s�i)

X

j=max(0;��(n�k�w+i))

�

w�i

j

��

n�k�w+i

��j

�

�

n�k

�

�

3

5

For each iteration, an estimation of the number of operations is:

1.

P

p

i=1

�

k

i

�

(i � 1) additions of �-bit words and a weight computation.

2. The average number of cases such that the whole computation is needed is

p

X

i=1

�

k

i

�

P

s�i

j=0

�

�

j

�

2

�

:

We consequently have the following estimation:

J

A

GS

(p;�;s)

(n; k) =

p

X

i=1

i

�

k

i

�

"

� + (n� k � �)

P

s�i

j=0

�

�

j

�

2

�

#

:

B.2 GD type

In this case, as the word to decode is kept outside of the matrix, it is possible

to �nd and detect an information window which contains no error position.

�

A

GD

(p;�;s)

(n; k; w) =

p

X

i=0

2

4

�

w

i

��

n�w

k�i

�

�

n

k

�

min(�;s�i)

X

j=max(0;��(n�k�w+i))

�

w�i

j

��

n�k�w+i

��j
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�

n�k

�

�

3

5

Besides, we need at each step one more addition to compare the word to decode

with the codewords obtained by the linear combinations:

J

A

GD

(p;�;s)

(n; k) =

p

X

i=0

(i+ 1)

�

k

i

�

"

� + (n� k � �)
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s�i
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�
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:

24



B.3 PS type

This version is described in section 8.3. In binary case we must take care of the

implantation constraints. The Gaussian elimination must be performed on the

rows and the other operations on the columns of the matrix. A small conversion is

therefore needed, and it requires k�(n�k) operations. Otherwise, the operations

are similar.

J

A

PS

(p;�;s)

(n; k) = k � (n� k) +

p

X

i=1

i

�

k

i

�

"

� + (n� k � �)

P

s�i

j=0

�

�

j

�

2

�

#

:

B.4 PD type

Same remark.

J

A

PD

(p;�;s)

(n; k) = k � (n� k) +

p

X

i=0

(i + 1)

�

k

i

�

"

� + (n� k � �)

P

s�i

j=0

�

�

j

�

2

�

#

:

C Average number of iterations for the algorithms with

Markov chain improvement

C.1 Expected number of iterations for Lee-Brickell'sDM algorithm

The �rst description of this modi�ed algorithm was given in [4].

Let us suppose we look for a codeword e of weight w. Then the algorithm can

be described by a random variable X

i

that represents the number of positions

of supp(e) contained in the information window I at step i. Considering Lee-

Brickell's algorithm with parameter p means that the algorithm stops as soon

as the information window contains p positions of supp(e).

Proposition15. The stochastic process associated with the modi�ed Lee-Brickell's

algorithm with parameter p is a stationary Markov chain whose state space is

E = f0; � � � ; wg and success space is S = f0; � � � ; pg.

Proof. We just have to �nd the transition matrix of the algorithm, that is to say

for all (u; v) 2 F

2

, the probability

P

u;v

= Pr[X

i+1

= v=X

i

= u]:

Since we only change one column of the information window I, we have

P

u;u

=

k � u

k

�

n � k � (w � u)

n� k

+

u

k

�

w � u

n � k

P

u;u�1

=

u

k

�

n� k � (w � u)

n� k

P

u;u+1

=

k � u

k

�

w � u

n � k

P

u;v

= 0 for all v =2 fu� 1; u; u+ 1g
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Hence by applying proposition 12, we get the average number of iterations

for Lee-Brickell's algorithm.

Note 16. The initial probability vector is

�

0

=

 

�

w

u

��

n�w

k�u

�

�

n

k

�

!

0�u�w

:

It is easy to see that �

0

is an invariant probability distribution for this chain:

�

i

= �

0

for all i � 0.

C.2 Expected number of iterations for Stern'sM -type algorithm

The modi�cation of Stern's algorithm consists in replacing the Gaussian elimi-

nation in the �rst step by the procedure detailed in section 11.

Proposition17. The stochastic process associated with the modi�ed Stern's al-

gorithm is a stationary Markov chain whose state space is E = f0; : : : ; 2p� 1g[

f2p+1; : : : ; wg[f(2p)

S

; (2p)

F

g and whose single success state is (2p)

S

. The state

(2p)

F

corresponds to a correct number of supp(e)-positions in the information

window I but to an incorrect distribution of these positions in L and among I

1

and I

2

(see section 11.2).

Proof. As (2p)

S

corresponds to a correct distribution of the error positions

among all windows, we have

� = Pr[X

i

= (2p)

S

=X

i

= 2p]

=

�

2p

p

��

k�2p

bk=2c�p

�

�

k

bk=2c

�

�

n�k�w+2p

`

�

�

n�k

`

�

Hence the transition probabilities corresponding to the transient states are

P

u;u

=

k � u

k

�

n� k � (w � u)

n� k

+

u

k

�

w � u

n� k

for all u 6= (2p)

F

P

u;u�1

=

u

k

�

n� k � (w � u)

n� k

for all u 6= 2p+ 1

P

u;u+1

=

k � u

k

�

w � u

n� k

for all u 6= 2p� 1

P

u;v

= 0 for all v =2 fu� 1; u; u+ 1g

P

(2p)

F

;(2p)

F

= (1� �)

�

k � 2p

k

�

n� k � (w � 2p)

n� k

+

2p

k

�

w � 2p

n� k

�

P

2p+1;(2p)

F

= (1� �)

�

2p+ 1

k

�

n� k � (w � (2p+ 1))

n� k

�

P

2p�1;(2p)

F

= (1� �)

�

k � (2p� 1)

k

�

w � (2p� 1)

n� k

�

And we can apply proposition 12 to get the average number of iterations for

modi�ed Stern's algorithm.
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C.3 Expected number of iterations for algorithm A

DM

Proposition18. The stochastic process associated with algorithm A

DM

is a

stationary Markov chain whose success space is E = f(0)

S

; : : : ; (p)

S

g and whose

failure space is F = f(0)

F

; : : : ; (p)

F

g[fp+1; : : : ; wg. The states (u)

F

, 0 � u � p,

correspond to a correct number of errors in the information window I but a too

large number of these errors in � (see section 11.1).

Proof. As (u)

S

corresponds to a correct distribution of the error positions among

all windows, we have

�

u

= Pr[X

i

= (u)

S

=X

i

= u]

=

min(�;s�u)

X

j=0

�

w�u
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��
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��j

�

�

n�k

�

�

Hence the transition probabilities corresponding to the transient states are

P
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n� k
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u
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�
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n� k
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�
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P
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w � u

n� k

�

for all 0 � u � p

P

(u)

F

;(u�1)

F

= (1� �

u�1

)

�

u

k

�

n � k � (w � u)

n� k

�

for all 1 � u � p + 1

P

(u)

F

;(u+1)

F

= (1� �

u+1

)

�

k � u

k

�

w � u

n� k

�

for all 0 � u � p

And we can apply proposition 12 to get the average number of iterations for

this algorithm.

D General case over GF (q)

D.1 Generalities

The general equations of sections 8.3 and 12.1 remain true. But, whereas the

average number of iterations of the algorithms is unchanged, the cost of the

operations increases.

In the followingM will denote the cost of a multiplication, A the cost of an

addition and I the cost of an inversion over GF (q).

27



Then the previously de�ned costs become:

G(n; �) = ��

�

I + ��

q � 1

q

� n(M+A)

�

;

D

G

(n; k) =

q � 1

q

k � n(M+ A);

D

P

(n; k) =

q � 1

q

(n� k) � (n � k)(M+ A);

g(n; �) = I + ��

q � 1

q

� (n � �)(M +A);

d(n; k) =

q � 1

q

� (n � k)(M +A):

Formula 4 becomes

N

q

(n; k; w) � q

k

�

n

w

�

(q � 1)

w

q

n

:

Note 19. In GF (2) we had I =M = 0 and A = 1. For m < 32 we may estimate

the computation costs in GF (2

m

) as follows:

A = 1

M = m

2

I = m

2

log

2

m:

D.2 Algorithm A

S type For each iteration, an estimation of the number of operations is:

1.

P

p

i=1

�

k

i

�

(q � 1)

i

(i � 1) additions of �-elements words and a weight compu-

tation.

2. The average number of cases such that the whole computation is needed is

p

X

i=1

�

k

i

�

(q � 1)

i

P

s�i

j=0

�

�

j

�

(q � 1)

j

q

�

:

Consequently we have the following estimation:
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A
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p
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�
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:

D type We have one more addition to perform to compare the given word with

the codewords
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A

D
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(n; k) =

p
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�
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:
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