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Abstract
Recently, generative approaches have been used ef-
fectively to provide definitions of words in their
context. However, the opposite, i.e., generating a
usage example given one or more words along with
their definitions, has not yet been investigated. In
this work, we introduce the novel task of Exemplifi-
cation Modeling (EXMOD), along with a sequence-
to-sequence architecture and a training procedure
for it. Starting from a set of (word, definition)
pairs, our approach is capable of automatically gen-
erating high-quality sentences which express the
requested semantics. As a result, we can drive
the creation of sense-tagged data which cover the
full range of meanings in any inventory of inter-
est, and their interactions within sentences. Human
annotators agree that the sentences generated are
as fluent and semantically-coherent with the input
definitions as the sentences in manually-annotated
corpora. Indeed, when employed as training data
for Word Sense Disambiguation, our examples en-
able the current state of the art to be outperformed,
and higher results to be achieved than when us-
ing gold-standard datasets only. We release the
pretrained model, the datasets and the software at
https://github.com/SapienzaNLP/exmod.

1 Introduction
Providing the sense of a word given its context is a major
topic in lexical semantics that has drawn considerable atten-
tion [Blevins and Zettlemoyer, 2020; Bevilacqua and Navigli,
2020; Barba et al., 2021]. Through the years, this task has
mainly been formulated in two flavors: Word Sense Disam-
biguation [Bevilacqua et al., 2021, WSD], where the sense
has to be chosen from a predefined sense inventory, and,
more recently, Definition Modeling, where the sense defini-
tion for a word in context is automatically generated [Bevilac-
qua et al., 2020]. In particular, Definition Modeling drops the
need for enumerative sense inventories and leverages instead
the power of auto-regressive pretrained models to generate
glosses, i.e., definitions, for arbitrary words and expressions.
∗Work carried out while at the Sapienza University of Rome.

We claim that the reverse process, i.e., providing examples for
a sense starting from its definition, has advantageous applica-
tions too, both for humans and automatic systems. Indeed, on
the one hand, using examples to further describe word mean-
ings can be beneficial for second language learners [Nation,
2001]. On the other hand, generated examples can be used to
enrich pre-existing knowledge bases and as a data augmenta-
tion technique for Word Sense Disambiguation systems.

In this paper, we introduce the Exemplification Modeling
(EXMOD) task, which aims at generating example sentences
starting from one or multiple words with their sense defini-
tions, together with a sequence-to-sequence architecture for
the task, and a procedure for training it from sense-annotated
corpora. We show that our model can generalize not only over
unseen words and definitions, but also across different lexical
resources with diverse sense granularities. Furthermore, the
proposed architecture can provide examples for up to three
senses at the same time, paving the way to new scenarios on
how a generative system can model the interaction among
multiple senses. We evaluate the produced sentences quan-
titatively by employing them as additional training examples
for the WSD task. The examples generated lead WSD models
to perform better than when relying on manually-annotated
datasets only, and to attain results higher than the current state
of the art. Furthermore, we analyze the sentences generated
by means of a human-annotation task, and show that anno-
tators perceive the examples produced as fluent and seman-
tically coherent as those in a manually-curated corpus. This
work brings the following novel contributions:

• The Exemplification Modeling (EXMOD) problem, i.e.,
an innovative task requiring systems to generate a usage
example given one or more words with their sense defi-
nitions.

• A sequence-to-sequence architecture for EXMOD that
can be trained directly on already-existing lexical-
semantic resources.

• An effective procedure for creating large-scale and high-
quality training corpora for English WSD covering all
senses of the reference inventory.

• An in vivo evaluation framework taking into account dif-
ferent sense inventories and gold training corpora, as
well as a human-evaluation task for measuring the flu-
ency and semantic coherence of the generated sentences.

https://github.com/SapienzaNLP/exmod


2 Methodology
In this Section, we introduce and formalize the task of Ex-
emplification Modeling (Section 2.1), describe our auto-
regressive approach for it (Section 2.2) and present the sam-
pling strategy over the training instances (Section 2.3).

2.1 Exemplification Modeling
Given a set of lemmas along with their definitions, we frame
Exemplification Modeling as the task of generating a sen-
tence where each input lemma is used with its intended
sense.1 For example, consider as input the lemma-definition
pair (bank, a building where financial services
are offered), a possible correct output might be: He went
to the bank to deposit a check. Formally, let D be
the set of lemma-definition pairs (l1, d1), . . . , (lk, dk), with
each definition di specifying the intended meaning of lemma
li; both li and di are sequences of tokens2 and we use lji
and dji to denote their respective j-th token. The task can
thus be formulated as follows: given the set D of lemma-
definition pairs, a model has to yield a meaningful and
semantically-coherent token sequence s = s1, . . . , sn, such
that, ∀(li, di) ∈ D, li occurs in any of its inflected forms in
s with the meaning defined by its corresponding definition
di. Furthermore, as knowing precisely where each li occurs
in s represents a natural desideratum, we include as part of
the task also yielding the set of indices φi = j1i , . . . , j

|φi|
i

(1 ≤ j1i < · · · < j
|φi|
i ≤ n) where li is expressed in s.

2.2 Model
To tackle the EXMOD task, we propose a two-stage approach,
which first generates a usage example s where all the input
lemmas occur with their expected meanings, and then com-
putes φi ∀(li, di) ∈ D by means of a post-processing strategy.
For the first stage, we use a sequence-to-sequence model and
define its input m as follows:

m =<s> l11 . . . l
|l1|
1 </s>d11 . . . d

|d1|
1

. . .

<s> l1k . . . l
|lk|
k </s>d1k . . . d

|dk|
k

where <s> and </s> are two special tokens around which
each input lemma is wrapped. The target example s is
similarly encoded into a sequence ŝ, where, ∀(li, di) ∈
D, all contiguous spans in φi are surrounded by the spe-
cial markers <t> and </t>. For instance, given the
above usage example He went to the bank to deposit
a check, we convert it into He went to the <t> bank
</t> to deposit a check. With this encoding, we then
train the sequence-to-sequence model to learn the factorized
probability:

p(ŝ|m) =

|ŝ|∏
j=2

p(ŝj |ŝ1:j−1,m)

1Lemma-definition pairs identify a sense for the lemma, there-
fore, we use “lemma-definition pair” and “sense” interchangeably.

2We model lemmas through lists of tokens to support multi-
words.

by minimizing the cross-entropy loss with respect to ŝ.
However, as this formulation does not compute

φi ∀(li, di) ∈ D, we perform the second stage of our
approach and, denoting with o the sequence generated by our
model, we apply the following four steps:

• We lemmatize each token in o;
• We pair each highlighted span, tagged with lemma l, to

the pair (li, di) such that li = l;3

• We compute φi by considering the indices of the span
aligned to each input pair (li, di).4

• We remove the highlighting markers from the sequence.
After these four steps, the system produces a usage example
s for the input pairs in D, along with a set of indices φi indi-
cating where the i-th input pair is expressed within s.

2.3 Sampling
We now present the method we use for sampling
the training instances from a given collection B =
(D1, s1), . . . , (D|B|, s|B|) of inputs and expected outputs. In
this work, we limit ourselves to consider only k = |Di| ∈
{1, 2} for i = 1, . . . , |B| and defer exploring training strate-
gies with k ≥ 3 for future work. We believe that these
two values of k are significantly different from each other, as
sense interactions enter the picture when dealing with k = 2,
and we further argue that their modeling calls for different
approaches. For k = 1, we assume all instances in B be
equally adequate and define a uniform distribution over this
list, sampling (Di, si) with probability:

p(Di, si) =
1

|B|
For k = 2, instead, we focus on usage examples where the

senses in Di appear as lexical collocations5 of one another
and, thus, employ a p(Di, si) that fosters this choice. That
is, for each input Di = {(li,1, di,1), (li,2, di,2)} and its target
sentence si, we set its probability p(Di, si) to 0 if the senses
in Di appear more than ξ tokens away from each other in si.
For all the remaining instances B̂, instead, we compute their
probability based on the Positive Pointwise Mutual Informa-
tion6 (PPMI, Niwa and Nitta [1994]) measure:

p(Di, si) = (1− α) ppmi(Di)∑|B̂|
j=1 ppmi(Dj)

+ α
1

σ(si)|S|
(1)

where σ(si) is the number of (Dj , sj) pairs such that sj =
si, S is the set of all the usage examples, and ppmi is the
function defined as:

ppmi(Di) = max

(
0, log

p(li,1, li,2)

p(li,1)p(li,2)

)
3If multiple pairs match l, we assign it to one at random.
4If no input pair is associated with any span, we discard the ex-

ample.
5Pairs of words that co-occur more frequently than chance.
6We estimate the probability of the occurrence of a given word by

counting its occurrences in the English Wikipedia corpus (Decem-
ber 2019 dump). Further details at https://github.com/SapienzaNLP/
exmod (D).

https://github.com/SapienzaNLP/exmod
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The second term of Equation 1 is effectively a smoothing fac-
tor7 that distributes a uniform probability over each usage ex-
ample si, dividing it equally among all the training instances
in which it occurs. With this strategy, we effectively foster
the sampling of (Di, si) pairs such that:

• (li,1, di,1) and (li,2, di,2) co-occur nearby;
• the co-occurrence is statistically significant.

Therefore, we encourage the generation of usage examples
where the input lemmas actively interact between each other.

3 In Vivo Evaluation
In this Section, we put forward an in vivo evaluation suite
for the Exemplification Modeling task. To this end, we focus
on the Word Sense Disambiguation (WSD) problem, which,
given a word in context, aims at selecting its most suitable
meaning, and design 5 sub-tasks to evaluate different aspects
of the examples generated by an EXMOD model. Across all
sub-tasks, we make use of the following lexical resources:

• WordNet [Miller et al., 1990], an electronic dictionary
where textual definitions, i.e., glosses, are assigned to
synsets, lexical units denoting a group of synonymous
senses, each associated with a different lemma.

• SyntagNet [Maru et al., 2019], a manually-curated re-
source of semantic collocations, i.e., pairs of WordNet
senses that appear frequently together in texts.

• SemCor [Miller et al., 1993], a large sense-annotated
corpus for WSD, comprising 33K sentences for 200K
instances tagged with WordNet senses.

• Princeton WordNet Gloss Corpus (WNG)8, a corpus
consisting of tagged examples and definitions in Word-
Net. We keep only the examples and the resulting
dataset features 34,275 instances.9

• The Oxford Dictionary Dataset [Chang et al., 2018],
containing 555,695 sentences for as many instances
tagged with senses from the Oxford Dictionary of En-
glish (ODE).

3.1 Tasks
For each task, we define the data that the EXMOD system will
use during the training and generation phases. We also report
the cardinality k of the input set of lemma-definition pairs
and the sense inventory from which the input pairs have to be
drawn. In what follows, we delineate the five WSD sub-tasks:
Task 1 In this sub-task, we test the capabilities of EXMOD
models to generate data in the simplest scenario, that is, pro-
ducing examples for a single sense at a time from the same
sense inventory that was used during the training phase.
Training: We set k = 1, therefore serving only (D, s) pairs
with |D| = 1, and draw the training pairs from the concate-
nation of SemCor and WNG.
Generation: We query the model with all lemma-definition
pairs contained in WordNet and build the WSD dataset from
the resulting examples.

7We use α = 0.15.
8https://wordnetcode.princeton.edu/glosstag.shtml
9Please refer to https://github.com/SapienzaNLP/exmod (A).

Task 2 This task is analogous to the previous one as far as
k is concerned, but differs in the inventories used at training
time. This setting, indeed, aims at assessing the capability of
a model to perform zero-shot generations for senses coming
from a previously unseen inventory.
Training: We set k = 1 and select the training instances from
the Oxford Dictionary Dataset.
Generation: We query the model analogously to Task 1 and
build the WSD dataset from the resulting examples.

Task 3 The third task challenges EXMOD models to gener-
ate examples that are coherent with two input senses.
Training: We vary k ∈ {1, 2}, therefore serving training
pairs (D, s) with |D| ≤ 2. To build the set of training in-
stances when k = 1, we consider all WordNet senses appear-
ing in the concatenation of SemCor and WNG. As for k = 2,
we collect all the sense pairs appearing in a SemCor sentence
and discard all those whose senses are further away than a
window of ξ = 10 tokens. We recall from Section 2.3 that we
sample each pair according to Equation 1.
Generation: We query the model with all the possible pairs
of senses (k = 2) in SemCor appearing within a window of
size 10, and all sense pairs of SyntagNet.

Task 4 This task evaluates the generalization ability of an
EXMOD model to scale from inputs with k ≤ 2 used at train-
ing time, to inputs with k = 3 used at generation time.
Training: We keep the same training setting as Task 3.
Generation: We query the model to generate examples for
triplets of senses (k = 3) that we compute by enumerating all
sense triangles in SyntagNet, i.e., sets of three senses, each in
collocation with the other two.

Task 5 The last task aims at pushing an EXMOD model to
its limit by considering all the possible resources at training
and generation time.
Training: We vary k ∈ {1, 2}. For k = 1, we extract the
training instances by considering all WordNet senses appear-
ing in SemCor or WNG and all ODE senses in the Oxford
Dictionary Dataset. For k = 2, we use the setting of Task 3.
Generation: We query the model varying k ∈ {1, 2, 3} and
draw i) senses from WordNet, ii) pairs from SemCor and Syn-
tagNet, and iii) triplets from SyntagNet triangles.

3.2 Setup
In this Section, we detail the EXMOD and WSD models used
for the experiments, as well as their training hyperparameters,
the generation strategy and the evaluation data. Finally, we
also propose a metric for model selection that takes into ac-
count the semantic coherence of the sentence produced with
respect to the input senses.

EXMOD Model and Training. We use BART [Lewis et
al., 2020] as the underlying sequence-to-sequence architec-
ture of our approach; henceforth, we refer to our model as
EXMAKER. We train EXMAKER with RAdam [Liu et al.,
2020] for 300,000 training steps, learning rate set to 1e−5 and
batches of 800 tokens, accumulating gradient for 10 steps.
When dealing with multiple datasets, we perform batch sam-
pling from each of them.

https://wordnetcode.princeton.edu/glosstag.shtml
https://github.com/SapienzaNLP/exmod


EXMOD Model Selection. Choosing the set of weights of
EXMAKER that yields the best generations is not a trivial
task. Indeed, as multiple usage examples may be perfectly
adequate for a given set D, our generative approach is an in-
stance of open-ended text generation where referenced met-
rics, such as the cross-entropy loss over a reserved sample of
data, have been shown to be unsuitable [Liu et al., 2016]. To
overcome this issue, we propose an unreferenced metric for
measuring the semantic coherence of the example generated
with respect to its input set D. Specifically, we take advan-
tage of ARES [Scarlini et al., 2020], i.e., latent representa-
tions of WordNet senses that lie in a space comparable to that
of BERT Large [Devlin et al., 2019]. Given a generated sen-
tence and a target word therein, we extract the target word
embedding by means of BERT Large and compute its co-
sine similarity with the ARES embedding of the input sense.
Thus, to perform model selection during training, we define
two sets of validation instances for k = 1 and k = 2, with
300 and 580 samples, respectively,10 and calculate this simi-
larity for each pair in each input set D, aggregating them via
a macro average. We compute the ARES-score every 2000
training steps and select the model with the highest perfor-
mance in terms of macro average.

Generation. In each subtask, we generate from 1 to 6 ex-
amples given a set of lemma-definition pairs D by applying
the following decoding strategies in parallel on EXMAKER:

• beam-n1: beam search returning the best beam;

• sample-n5: nucleus-sampling with p = 0.9 returning up
to 5 sequences.

We group the outputs and clean them by discarding all the
ill-formed generations, that is, we discard all those examples
generated from D such that ∀(li, di) ∈ D, φi = ∅. Finally,
using φi, we tag the highlighted tokens with the sense in the
reference inventory identified by the (li, di) pair.

WSD Reference Model. As reference WSD system, we
choose a simple yet effective Transformer-based solution,
i.e., BERT for token classification. Following Devlin et al.
[2019], we represent each token11 through the concatenation
of the last four layers of BERT, and apply a linear classifica-
tion head to map each token to a sense. We train the model
for at most 50 epochs with early stopping on the validation
accuracy and patience set to 3 epochs.12 As training data, we
use the concatenation of SemCor and WNG together with the
silver data generated for each specific experiment.

Comparison Systems. As comparison, we report the re-
sults of the reference system trained on SemCor and WNG
only, as well as on their concatenation with two other
automatically-produced datasets, i.e., OneSeC [Scarlini et al.,
2019], which relies on information within a knowledge base
to tag Wikipedia sentences, and OMSTI [Taghipour and Ng,
2015], a semi-automatic approach relying on parallel corpora.

10Please refer to https://github.com/SapienzaNLP/exmod (B.1)
for more details on their creation.

11We use the first sub-word embedding when the token is split.
12Please refer to https://github.com/SapienzaNLP/exmod (C) for

all hyperparameters.

To put our results in context with the state of the art, we also
report the result of the currently best-performing system, i.e.,
ESCHER [Barba et al., 2021]. We report its results when
trained on i) SemCor, ii) SemCor, WNG and the Oxford Dic-
tionary Dataset, and iii) SemCor, WNG and EXMAKER data.

WSD Evaluation Data. As standard in WSD, we use the
evaluation framework made available by Raganato et al.
[2017]. The framework contains six test datasets, namely,
Senseval-2 [Palmer et al., 2001], Senseval-3 [Snyder and
Palmer, 2004], SemEval-07 [Pradhan et al., 2007], SemEval-
13 [Navigli et al., 2013] and SemEval-15 [Moro and Navigli,
2015]; and ALL, the concatenation of all the aforementioned
datasets. To examine the models’ ability to generalize over
rare and unseen senses, we partition the ALL dataset into the
three following splits:

• MFS, containing all instances tagged with the Most Fre-
quent Sense (MFS) in SemCor and WNG for a specific
lemma.

• LFS, containing all the instances that are tagged with a
Least Frequent Sense, i.e., a sense that is not the MFS.

• Unseen, containing all the instances tagged with a sense
that never appears either in SemCor or in WNG.

3.3 Results
In Table 1, we report the results of our reference model in
each sub-task, as well as the various baselines.

We first compare the reference model when trained on
SemCor with the WNG Examples only and when trained with
additional data for the WordNet inventory coming from OM-
STI, OneSeC and EXMAKER (Task 1). As one can see, the
data generated by EXMAKER boosts BERT performance by
1.3 points, a result that none of the other additional datasets
achieves. More interestingly, the improvement comes entirely
from senses that are underrepresented in the training set (LFS
and Unseen columns). These results highlight the unique
ability of EXMAKER to produce examples for senses that are
either rarely or never seen in the gold datasets, while confirm-
ing that a model trained for the EXMOD task can be employed
effectively to generate examples for WordNet senses.

By considering the results in the second task (Task 2),
we can state with confidence that EXMAKER, while being
trained with definitions from a single inventory (ODE), can
provide examples for senses in another inventory (WordNet)
that has different sense granularity. Furthermore, training on
instances from EXMAKER in Task 2 results in higher WSD
performance than when training on the sentences generated
by EXMAKER in Task 1. This result paves the way for new
scenarios where EXMOD models are used to complete exist-
ing knowledge bases, e.g., WordNet, which lacks examples
for roughly 85% of its senses.13

We now focus on results for Task 3 and 4, which test the
ability of EXMAKER to create coherent examples for pairs or
triplets of senses when trained on single definitions or pairs
of definitions. Results show that the sentences generated with
k = 2 are beneficial to the WSD model and further boost its

13207,016 in total.
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WSD Setting Dev Set Test Sets

Task Model Additional Dataset k SE7 MFS LFS Unseen ALL

B
as

el
in

e — BERT — — 69.6 95.1 42.5 53.43 74.4
— BERT OMSTI — 68.4 93.7 45.5 53.5 74.5
— BERT OneSec — 67.3 95.3 39.5 54.0 73.9
— ESCHER† — — 76.3 93.7 55.7 75.0 80.7
— ESCHER ODE — 77.9 94.6 56.4 76.8 81.6

O
ur

s

Task 1) BERT EXMAKER 1 69.8 93.2 48.1 58.9 75.7

Task 2) BERT EXMAKER 1 70.1 93.3 48.3 59.1 76.0

Task 3) BERT EXMAKER 2 69.9 93.0 48.4 59.8 76.2

Task 4) BERT EXMAKER 3 70.0 93.1 48.0 60.3 76.1

Task 5) BERT EXMAKER 1, 2, 3 71.2 95.7 47.3 57.8 76.8
Task 5) ESCHER EXMAKER 1, 2, 3 78.1 94.8 58.6 77.1 82.3

Table 1: F1 attained when training the reference model, BERT, on the gold training set (the concatenation of SemCor and WNG) concatenated
with several silver datasets generated by different configurations of EXMAKER and its competitors, i.e., OMSTI and OneSeC. † indicates that
the model is trained on SemCor instances only. Underlined scores are statistically significant with respect to ESCHER results with p < 0.05.

performance from 75.7 (Task 1) to 76.2 (Task 3). We hy-
pothesize that this result is a consequence of the more com-
plete semantics provided to EXMAKER, enabling it to gen-
erate sentences where the senses occur with a sharper con-
notation, thus providing, in turn, a clearer context to a WSD
model. Considering the dataset generated with k = 3 (Task
4), the WSD model performance is comparable to that at-
tained when trained on a dataset generated with k = 2 (Task
3). As EXMAKER is not trained to generate examples for
triplets of word-definitions pairs, this surprising result high-
lights its capability to produce coherent sentences even for
sets of senses larger than those seen during training.

Finally, we discuss the last task, where we aim at mea-
suring the maximum performance that a WSD model can
reach when using data from EXMAKER, i.e., when trained
on all resources and used for generating sentences with k ∈
{1, 2, 3}. In this setting we also train the state-of-the-art
model for WSD (ESCHER) on the concatenation of SemCor,
WNG and EXMAKER data. Thanks to EXMAKER data, ES-
CHER reaches an unprecedented result of 82.3 points of F1,
performing better than when using manually-annotated data
only (SemCor, WNG Examples and the Oxford Dictionary
Dataset), and surpassing the current state of the art (80.7) by
1.6 points. We also note that BERT performance gains 0.5
and 0.6 points on ALL with respect to Tasks 3 and 4, result-
ing in an overall improvement of 1.1 points over Task 1.

Through these quantitative experiments, we show that
EXMAKER produces high-quality sentences even when ex-
emplifying rare and unseen senses, fully taking advantage of
different resources and sense inventories. Furthermore, the
datasets generated prove to be useful as additional resources
for WSD models, leading them to set a new state of the art.

4 Qualitative Analysis
We now focus on qualitatively evaluating the EXMAKER ex-
amples by means of two annotation tasks. We ask annotators
to manually assign two scores to each example generated: one

ALL EXMAKER

Task AVG κ AVG κ

Fluency 4.82 0.74 4.63 0.70
Coherence 4.83 0.69 4.82 0.68

Table 2: Results for the two tasks of qualitative analysis. We report
the Likert scores average and the pairwise average of Cohen’s κ.

measuring its fluency and one measuring its semantic coher-
ence with respect to a given lemma-definition pair.
Data to Annotate. We build two datasets: one automati-
cally generated by EXMAKER trained as in Task 5, and one
drawn from the ALL dataset. We consider a statistically sig-
nificant sample14 of 284 and 382 instances of the ALL and
EXMAKER datasets, respectively, shuffle them together, and
provide the anonymized examples to three English-proficient
annotators.15

Annotation Task. We provide annotators with guidelines16

and ask them to tag each example with two scores: the first,
to evaluate its fluency and indicate whether it is logical and
grammatically correct; the second, to measure to what extent
the usage of the target word in the example reflects the mean-
ing described by the given definition. Following Bevilacqua
et al. [2020], in both cases, we ask the annotators to fill
a five-level Likert scale that assigns higher scores to better
sentences. We report the average computed across all in-
stances and annotators for each measure and Cohen’s κ [Co-
hen, 1960] as metric for the Inter-Annotator Agreement.
Results. As one can see in Table 2, the average Likert
scores for EXMAKER data are 4.63 and 4.82 for fluency and
semantic coherence, respectively. These results are nearly

14Samples are statistically significant w.r.t. the sizes of the source
datasets with confidence level of 95% and a margin error of ±5.

15Annotators do not know the source of each sentence.
16Released at https://github.com/SapienzaNLP/exmod (E).
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identical to those attained for the manually-annotated ex-
amples of ALL. The inter-annotator agreement is substan-
tial [Landis and Koch, 1977] for both datasets and measures.
These results underline the high quality of the sentences pro-
duced by EXMAKER, which not only have a fluency close to
that of human-curated corpora, but are also capable of con-
veying the required input meaning into valid examples that
turn out to be only slightly worse on average than those cre-
ated by humans.

5 Related Work
Definition Modeling The spread of generative models is
fostering the advancement of research in several topics,
among which definition modeling [Noraset et al., 2017] is
the closest to ours. The task requires a gloss to be pro-
duced for a word, and was initially proposed as an inter-
pretable way for analyzing the semantics of word embed-
dings. Early approaches to the task [Gadetsky et al., 2018;
Chang et al., 2018] relied mainly on static word embeddings
to model the input context and generate the most suitable def-
inition for the target word. Static word embeddings were then
replaced by contextualized embeddings, better modeling the
semantics of a target word in context. Nevertheless, these
approaches were neither able to provide definitions for mul-
tiword expressions [Mickus et al., 2019], nor to take into ac-
count the word order when defining multiword expressions
[Ishiwatari et al., 2019]. The most recent effort in this di-
rection is Generationary [Bevilacqua et al., 2020], which ex-
ploits a sequence-to-sequence generative approach where the
spans to be defined are explicitly marked. This approach
closed the gap between Definition Modeling and Word Sense
Disambiguation, showing that the glosses generated could
easily be mapped to those in a lexical knowledge base, hence
making it possible to link the target span to a sense in a dic-
tionary.
Word Sense Disambiguation Differently from Definition
Modeling, Word Sense Disambiguation is a long-standing
task in NLP [Navigli, 2009], which aims at assigning each
content word in a text to its most suitable meaning drawn
from a sense inventory. Approaches to this task are either
knowledge-based, such as graph and heuristic-driven algo-
rithms [Maru et al., 2019], or supervised, such as neural net-
works [Bevilacqua and Navigli, 2020; Blevins and Zettle-
moyer, 2020]. Knowledge-based methods rely solely on
lexical-semantic knowledge bases, and, in general, perform
worse than their supervised counterparts. These latter, in-
deed, consistently attain state-of-the-art results thanks to their
ability to learn from data. Nevertheless, their results are still
limited by the lack of large-scale sense-annotated corpora:
currently-used datasets cover less than 20% of the senses in
WordNet, i.e., the de facto standard sense inventory of En-
glish.
Automatically-generated Data for WSD Since super-
vised approaches show better performance in general, several
efforts have been put into creating sense-annotated corpora
automatically. OMSTI [Taghipour and Ng, 2015] exploited
human annotations of Chinese senses within a parallel corpus
to automatically disambiguate their corresponding English

sentences. MuLaN [Barba et al., 2020] also employed human
annotations, but focused on producing data in languages other
than English by relying on a cross-lingual sentence retrieval
step to project English annotations potentially to hundreds of
languages. Conversely, OneSeC [Scarlini et al., 2019] does
not require manually-annotated data, but instead leverages the
information within a knowledge base and in Wikipedia to pro-
duce sense-tagged data.

To the best of our knowledge, this work is the first to for-
mulate the Exemplification Modeling (EXMOD) task, i.e., the
task of generating example sentences given one or more sense
definitions. EXMOD is similar in its generative nature to Def-
inition Modeling, however, its goal is to provide usage exam-
ples of selected word meanings, rather than defining words in
contexts. As a by product, the proposed architecture for the
task (EXMAKER) can generate data to train models for the
Word Sense Disambiguation problem. Despite not being the
main goal of this work, our approach is novel in comparison
to other methods for creating silver data. Indeed, EXMAKER
generates examples ex novo and on demand, while all the
other systems tag already-existing sentences.

6 Conclusions
In this work, we introduced the new task of Exemplification
Modeling (EXMOD), aimed at generating a usage example
for a given set of words with their definitions. We showed
that the task can be tackled by means of an encoder-decoder
architecture (EXMAKER) trained on already-available data
for Word Sense Disambiguation (WSD). Human evaluation
showed that the examples produced can be confused with
those drawn from a manually-curated corpus as they are flu-
ent and semantically-coherent with the input. Finally, we pro-
posed an in vivo evaluation to measure the performance of
systems for the EXMOD task automatically. This was based
on the supervised WSD task, where the examples generated
for the EXMOD task could be used to train a WSD model.
Results show that the examples provided by EXMAKER lead
WSD models to attain better performance than when using
manually-tagged data only, while, at the same time, paving
the way towards a full-fledged generative approach for data
augmentation in Word Sense Disambiguation.

As future work we plan to expand the generation of ex-
amples on languages other than English and to enlarge the
number of input senses that the architecture can handle.
We release the software, all data and the annotation guide-
lines for the human-evaluation task at https://github.com/
SapienzaNLP/exmod.
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A WNG Filtering
We perform a mild filtering over the examples in WordNet, enforc-
ing reasonable minimum length and structure. In particular, we dis-
card examples:

• that are shorter than 4 tokens;

• that do not contain at least 1 noun and 1 verb.

Furthermore, as the exact span where the sense occurs in a given
example is not specified, we search for it looking for a span whose
lemma is equal to that of the sense; should this search operation fail,
we discard the whole example.

B ARES-score
B.1 Validation Split
To build the validation sets that we use for the ARES-score, we ex-
ploit the lexical resource SyntagNet [Maru et al., 2019] for both
k = 1 and k = 2. As for k = 1, we generate 3 groups of instances,
each amounting to 100 elements, by randomly sampling from Syn-
tagNet senses that are MFS, LFS and Unseen, respectively. As for
k = 2, we build the following groups of senses:

• Senses that are jointly seen in the gold training set and that are
both MFS;

• MFS senses that are seen in the gold training set, but never
together;

• senses that are jointly seen in the gold training set and with
either of them LFS;

• senses that are seen in the gold training set, but never together,
with either of them LFS;

• senses that are jointly seen in the gold training set and that are
both LFS;

• senses that are seen in the gold training set, but never together,
that are both LFS;

• senses with either one of them unseen in the training set and
the other MFS;

• senses with either one of them unseen in the training set and
the other LFS;

• senses that are unseen in the training set.

We extract, by random sampling from SyntagNet, 60 pairs for each
group, resulting in a validation set for k = 2 of 540 instances.

B.2 Comparison with Cross-Entropy Loss
Our choice of the ARES-score as the model selection strategy, was
mostly motivated by theoretical concerns and we defer a more for-
mal and thorough analysis of its appropriateness in the context of
EXMOD for future work. Nonetheless, we compare, in Table 3, how
EXMAKER, trained as depicted in task 5, fares i) when considering
ARES as the development strategy, and ii) when considering, in-
stead, the more common cross-entropy loss over a held-out sample
of data. Hence, to create an appropriate setting, we reserve 800 sen-
tences from SemCor in both trainings (k = 1 and k = 2); we further
split them into 2 parts of identical size, dev and test. We use dev as
the held-out sample of data we provide to the cross-entropy criterion
at training time. Conversely we use test as the reference test set we
will consider in this simulated version of task 5. We report results in
Table 3.

The outcome of this experiment seems to suggest that ARES-
score is indeed an adequate development metric for EXMOD, lead-
ing to the choice of a model that generates better examples for the
input senses.

Selection Strategy Performance

ARES 73.8
Cross-Entropy Loss 73.1

Table 3: Comparison between ARES score and cross-entropy over
a held-out sample of data as model selection strategies. Reported
scores are on SemEval-2007

C WSD Reference Model Training
In Table 4 we describe the hyperparameters we used to train the
Word Sense Disambiguation model.

Hyperparameter Value

Optimizer Adam
Learning Rate 2× 10−5

Batch Size 16
Max Epochs 50
Patience 3
Validation Metric ARES-score

Table 4: Hyperparameters utilized for the training of the WSD ref-
erence model.

D Qualitative Analysis Guideline
We employed a five-levels Likert scale for both the annotation tasks.
We report an excerpt of the two tasks, together with the guidelines
released to the annotators, in Table 5 and Table 6 for the fluency and
coherence evaluation, respectively.

To break the uncomfortable silence, Haney began to talk.

1 Wrong. The sentence has serious grammatical and struc-
tural issues. It doesn’t make any sense. Example: The
runs cat before.

2 Wrong. The sentence has no meaning, although the
grammar is somehow correct. Example: The book runs
fast.

3 Neutral. The sentence is meaningful, but incomplete.
The grammar is mostly correct. Example: and the cat
was going there.

4 Correct. The sentence has a meaning and it’s complete.
There are minor grammatical errors. Example: The cat
run really fast.

5 Correct. The sentence is meaningful and grammatical.
Example: The cat runs really fast.

Table 5: An excerpt of the fluency annotation task. For each annota-
tion item (first row), we gave annotators a list of Likert scores (left
column) with a brief description and an example (right column).

E EXMAKER Exemplification Samples
In Table 7 we show some samples that were annotated in the qualita-
tive analysis produced by the EXMAKER system described in Task
5.



To break the *uncomfortable* silence, Haney began to talk.
uncomfortable: conducive to or feeling mental discomfort.

1 Wrong. The sentence does not use the given lemma.

2 Wrong. The sentence uses the given lemma in one of its
senses, but not the one given as input.

3 Neutral. The sentence uses the given lemma in an am-
biguous context. It is not possible to determine whether
the sense is the one specified in the gloss or not.

4 Correct. The sentence uses the given lemma in a sense
that is close to the one given in input.

5 Correct. The sentence uses the lemma with the given
sense.

Table 6: An excerpt of the semantic coherence annotation task. The
sentence is provided with a target *lemma* and its gloss from Word-
Net (first row). Then, for each Likert score (left column) there is a
brief explanation on how to assign it (right column).

k
=

1 - Input: {protester} someone who participates in a public
display of group feeling.
- Output: The {protesters} were dispersed by the police.

k
=

1

- Input: {interest} the power of attracting or holding
one’s attention.
- Output: The place was of great {interest} to him be-
cause of its location on the river.

k
=

2

- Input: {give} cause to have, in the abstract sense or
physical sense. {member} one of the persons who com-
pose a social group.
- Output: The {members} of the audience {gave} a
standing ovation.

k
=

2

- Input: {storage} an electronic memory device.
{system} a procedure or process for obtaining an objec-
tive.
- Output: This {storage} {system} is designed to pro-
vide the same level of protection for the data stored in
the hard disk.

k
=

3

- Input: {baby} a very young child (birth to 1 year) who
has not yet begun to walk or talk. {milk} produced by
mammary glands of female mammals for feeding their
young . {feed} give food to someone .
- Output: The {milk} was {fed} to the {baby} by his
mother.

k
=

3

- Input: {boy} a young male human. {eat} ingesting
food. {hamburger} a type of meat, usually round.
- Output: “ I ’ve never {eaten} a {hamburger} before ” ,
said the {boy} .

Table 7: Example outputs that EXMAKER generates for k ∈
{1, 2, 3}. For improved readability, we use curly brackets as the
highlighting markers.
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