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ABSTRACT

Given a large collection of time series, such as web-click logs,
electric medical records and motion capture sensors, how can we
efficiently and effectively find typical patterns? How can we sta-
tistically summarize all the sequences, and achieve a meaningful
segmentation? What are the major tools for forecasting and outlier
detection? Time-series data analysis is becoming of increasingly
high importance, thanks to the decreasing cost of hardware and the
increasing on-line processing capability.

The objective of this tutorial is to provide a concise and intuitive
overview of the most important tools that can help us find patterns
in large-scale time-series sequences. We review the state of the art
in four related fields: (1) similarity search and pattern discovery, (2)
linear modeling and summarization, (3) non-linear modeling and
forecasting, and (4) the extension of time-series mining and tensor
analysis. The emphasis of the tutorial is to provide the intuition
behind these powerful tools, which is usually lost in the technical
literature, as well as to introduce case studies that illustrate their
practical use.

Categories and Subject Descriptors

H.2.8 [Database management]: Database applications—Data min-

ing

General Terms

Algorithms, Experimentation, Theory
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1. INTRODUCTION
Time series data occur naturally in countless domains including

medical analysis [17, 33], financial analysis [56], online text [14],
sensor network monitoring [22, 41] and social activity mining [26,
31, 32]. The increasing volume of online, time-stamped activity
represents a vital new opportunity for data scientists and analysts
to measure the collective behavior of social, economic, and other
important evolutions [21, 13]. In many applications the logging rate
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has increased greatly with the progress made on hardware and stor-
age technology. In such a situation, the most fundamental require-
ments are the efficient and effective mining of “big” time-series
sequences.

Time-series data analysis is a well-known topic that has attracted
huge interest in various research communities (e.g., theory, databases,
data mining, networking) for a few decades. However, recent stud-
ies has revealed some new directions for research on time-series
analysis, which include:

• Large-scale tensor analysis: Many time-series data can be
modeled as tensors, and tensor analysis is an important data
mining tool that has various applications including sensor
streams, hyperlinks, medical records and social networks over
time.

• Non-linear modeling: Non-linear models are widely used in
a variety of areas, such as epidemiology, biology, physics and
economics. In the database and mining fields, analyses of
social media and online user behavior have attracted consid-
erable interest, and recent studies have focused on non-linear
time-series analysis to understand the dynamics of social net-
works.

• Automatic mining: We also emphasize the importance of
fully-automatic mining. Most of the existing time-series tools
require parameter tuning, and they are very sensitive to these
parameters. In fact, faced with “big data”, fully automatic
mining is even more important: otherwise, the user would
have to try several parameter tuning steps, each of which
would take too long (e.g., hours, or days).

This tutorial provides a concise and intuitive overview of the most
important tools that we can use to help us understand and find pat-
terns in large-scale time evolving sequences. We will provide a
comprehensive overview and the above new directions for time-
series analysis, and deal specifically with the following key topics:
(1) similarity search and pattern discovery, (2) linear modeling and
summarization, (3) non-linear modeling and forecasting, and (4)
the extension of time-series mining and tensor analysis.

Who should attend. The target audience is data mining and data
management researchers who wish to get up to speed with the ma-
jor tools used in time sequence analysis. Also, practitioners who
want a concise, intuitive overview of the state of the art.

Prerequisites. None. The emphasis is on the intuition behind all
these mathematical tools.

Related tutorials. Related tutorials have been presented, e.g., (a)
Indexing and Mining Streams, by Christos Faloutsos, SIGMOD
2004, (b) Indexing and Mining Time Sequences, by Christos Falout-
sos and Lei Li, SIGKDD 2010, and (c) Mining Shape and Time Se-
ries Databases with Symbolic Representations, by Eamonn Keogh,



SIGKDD 2007. However, these tutorials look at different approaches
and tools. Moreover, they do not focus on large-scale evolving ten-
sors, or non-linear dynamical systems.

2. CONTENT AND OUTLINE
Our tutorial is structured as follows:

1. Similarity search and pattern discovery (60 minutes)

(a) Why we need similarity search

i. Indexing
ii. Fast searching

(b) Distance function and similarity measure

i. Euclidean distance
ii. Dynamic time warping

iii. Correlation

(c) Feature extraction

i. Discrete Fourier transform, wavelets
ii. Singular value decomposition, independent com-

ponent analysis
iii. Multi-dimensional scaling

(d) Streaming pattern discovery

i. Component analysis
ii. Correlation monitoring

iii. Time warping over streams

2. Linear modeling and summarization (30 minutes)

(a) Linear modeling and forecasting

i. Main idea behind linear forecasting
ii. AR methodology and multivariate regression

iii. Recursive least square
iv. Streaming algorithms

(b) Sequence summarization

i. Linear dynamic systems
ii. Probabilistic models

iii. Automatic mining of co-evolving sequences

3. Non-linear modeling and forecasting (30 minutes)

(a) Non-linear forecasting

i. Lag-plots
ii. Fractal dimension and power-law

(b) Non-linear dynamical systems

i. Main idea: non-linear equations
ii. Non-linear epidemic models

iii. Gray-box non-linear mining
iv. Non-linear dynamical systems for online activities
v. Information diffusion in social networks

4. Extension of time-series mining - tensor analysis (60 min-
utes)

(a) Tensor decomposition

i. Basic approaches
ii. Decompositions of higher-order tensors

(b) Mining of complex time-stamped tensors

i. Complex time-stamped events and big sparse ten-
sors

ii. Feature extraction from sparse tensors

iii. Forecasting of complex time-stamped events

(c) New directions of tensor analysis

i. Non-linear modeling for tensors
ii. Automatic non-linear analysis

1. Similarity search and pattern discovery. In this first part of
the tutorial, we explain the most common and fundamental tools of
time series data mining. More specifically, we demonstrate some
traditional approaches applied to time series data mining including
similarity search e.g., euclidean distance, dynamic time warping
and correlation [43, 46, 42, 34]; feature extraction including sin-
gular value decomposition (SVD), independent component analy-
sis (ICA) [38, 44], segmentation [17]; multi-dimensional scaling
[10]. We also answer the following important question: What can
we do in the highly likely case that the users need real-time, on-
line data processing while in practice they require high accuracy?
Specifically, we introduce several mining algorithms for online data
streams, including component analysis [40, 41], correlation moni-
toring [56, 45] and time warping over streams [45, 49].

2. Linear modeling and summarization. In this part, we ex-
plain the main ideas behind linear modeling and forecasting. For
example, auto regression and moving averaging models have been
studied for many years in statistics and finance [4], and have been
applied to time-series data mining [6, 16, 23]. We introduce AR
methodology and several important tools including MUSCLES [55]
and AWSOM [39]. We also introduce linear dynamical systems
(LDS), Kalman filters (KF) and their variants [15, 25, 24, 48]. As
regards probabilistic time-series analysis, hidden Markov models
(HMMs) have been used in various applications including speech
recognition [52], and sensor monitoring [22, 32, 12]. For example,
Wang et al. [51] presented a pattern-based hidden Markov model
(pHMM) for time-series segmentation and clustering, while [28]
developed AutoPlait, a fully-automatic mining algorithm for co-
evolving time sequences. Given a large collection of co-evolving
multiple sequences, which contains an unknown number of patterns
of different durations, AutoPlait automatically identifies all distinct
patterns and spots the time position of each variation.

3. Non-linear modeling and forecasting. In this part, we intro-
duce several advanced techniques, and focus specifically on non-
linear time series analysis. We start by explaining non-linear fore-
casting e.g., lag-plots [7], which is based on nearest-neighbor search.
We also explain some fundamental concepts such as fractal dimen-
sion and power law [36, 2, 27]. We then review the most common
non-linear equations, including the logistic function (LF) [5], the
susceptible-infected (SI) model [1], the independent cascade (IC)
model [9], the so-called “Bass” model [3], the Lotka-Volterra (LV)
model [35] and other non-linear equations [37]. We explain the
importance of non-linear equations and the concept of gray-box
non-linear mining. In this part, we also review recent work on un-
derstanding the non-linear time evolution of online user activities.
Analyses of epidemics, blogs, social media, propagation and the
cascades they create have attracted much interest. We answer sev-
eral important topics such as how popularity of “memes” changes
over time [21]; how to find temporal patterns in information diffu-
sion process through online media, e.g., blogs, hashtags [54, 53],
and YouTube [8, 11]; how to describe rising and falling patterns
of information propagation (e.g., memes, hashtags and keyword
search volume) using non-linear dynamical systems [31, 29].

4. Extension of time-series mining - tensor analysis. The goal in
this part is to present large-scale studies of complex time-stamped
events and big sparse tensors. We first introduce some basic ap-



proaches including Tucker, PARAFAC, and higher-order SVD
(HOSVD) [18, 19, 47, 20]. Complex time-stamped events can
be represented as a tensor with several dimensions. For example,
given a set of time-stamped event entries of the form { object, ac-
tor, timestamp} (e.g., web-clicks: {URL, userID, timestamp}), we
can treat them as a 3rd order tensor. Here, one subtle, but impor-
tant issue is that the complex time-stamped tensor is very sparse,
which derails all typical time-series mining and forecasting tools.
We introduce a scalable algorithm, TriMine [30] to deal with this
issue. TriMine has the ability to find meaningful patterns in com-
plex time-stamped tensors, and forecast future events, e.g., estimate
the number of clicks from user “Smith” to URL “CNN.com” for the
next 30 days.

Finally, we show new directions for tensor analysis, namely, au-
tomatic and non-linear analysis for big time-series tensors. Specif-
ically, we introduce a unifying analytical model, FUNNEL [33],
for mining and forecasting large-scale epidemiological data (e.g.,
the Project Tycho [50]) as well as an efficient fitting algorithm,
which solves the problem. We also discuss the importance of fully-
automatic mining for time-series tensor analysis. There are many
fascinating and useful tools for time-series analysis. However, most
existing methods require parameter settings and fine tuning, such as
the number of coefficients, and the reconstruction error thresholds,
and they are very sensitive to these parameters. The ideal method
should look for arbitrary patterns and require no initial human in-
tervention to guide it.
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