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Abstract

An inversion sequence (x1, . . . , xn) is one such that 1 ≤ xi ≤ i for all 1 ≤ i ≤ n. We first consider the joint distribution
of the area and perimeter statistics on the set In of inversion sequences of length n represented as bargraphs. Functional
equations for both the ordinary and exponential generating functions are derived from recurrences satisfied by this distri-
bution. Explicit formulas for the generating functions are found in some special cases as are expressions for the totals of
the respective statistics on In. A similar treatment is provided for the joint distribution on In for the statistics recording the
number of levels, descents and ascents. Some connections are made between specific cases of this latter distribution and
the Stirling numbers of the first kind and Eulerian numbers.
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1. Introduction

Given a permutation π = π1 · · ·πn of [n] = {1, . . . , n}, represented using the one-line notation, the sequence a = a1 · · · an
in which ai records the number of elements of [i − 1] occurring to the right of the letter i in π for 1 ≤ i ≤ n is called
the inversion table, or inversion sequence, of π (see, e.g., [15, p. 21]). For example, π = 524613 ∈ S6 has inversion table
a = 010242; note that 0 ≤ ai ≤ i − 1 for all i. Conversely, starting with the inversion table a, it is seen that one can
reconstruct the corresponding permutation π. Thus, one may view the inversion table as an alternative representation of
the permutation π. For our purposes, we will add 1 to each entry of a since it will be more convenient to represent the
resulting sequence geometrically.

Here, we consider various statistics on sequences ρ = ρ1 · · · ρn of integers satisfying 1 ≤ ρi ≤ i for all i. In analogy
with avoidance on permutations, the pattern avoidance problem on inversion sequences has been studied from several
perspectives, initiated in the papers [11] and [5] concerning the classical avoidance of a single permutation or word pattern
of length three. See, e.g., [8–10,12] for extensions of this work in various directions. Here, we consider new restrictions on
inversion sequences obtained in connection with certain statistics on their bargraph representation.

Recall that a bargraph is a self-avoiding random walk in the first quadrant starting at the origin and ending at (n, 0)
consisting of up (0, 1), down (0,−1) and horizontal (1, 0) steps. A sequence σ = σ1 · · ·σn of positive integers may be rep-
resented as a bargraph b by requiring that the i-th column of b contain σi cells for 1 ≤ i ≤ n (i.e., the height above the
x-axis of the i-th horizontal step is σi). For instance, the permutation π = 524613 above, which has associated inversion
sequence x = 121353 (add 1 to each entry in the inversion table), may be represented by the bargraph in Figure 1 below.
For examples of recent statistics on bargraphs, see, e.g., [2–4] and references contained therein.

Figure 1: Bargraph of inversion sequence of π = 524613 ∈ S6.

In the next section, we consider the joint distribution of the area and perimeter statistics on the set In of inversion
sequences of length n. We find a recurrence for this distribution on In as well as explicit formulas for the total area and
perimeter on In. In the third section, a comparable treatment is provided for the levels, descents and ascents statistics
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on In. In addition to finding expressions for the totals of these statistics on In, the distribution is determined explicitly in
some specific cases. We remark that the exponential generating functions of the two joint distributions featured in this
paper both satisfy linear first-order functional differential equations with general parameters. Furthermore, the ordinary
generating functions of the distributions can be found explicitly in some general cases by iteration of a functional equation.

2. Area and perimeter statistics

In this section, we study the area and perimeter statistics on bargraphs of inversion sequences. Recall that the area of a
bargraph λ is that of the first quadrant region subtended by λ, whereas the perimeter corresponds to the total number of
steps of λ together with the length of its bottom boundary along the x-axis. It will be convenient to consider the refinement
of these statistics to sequences ending in a particular letter. Given n ≥ 1 and 1 ≤ i ≤ n, let In,i denote the set of inversion
sequences of length n whose last letter is i. Since the perimeter of a bargraph is always even as it includes the bottom
boundary, one can consider equivalently the statistic recording half the perimeter, i.e., the semi-perimeter. Let an,i(p, q)
denote the joint distribution on In,i for the area and semi-perimeter statistics (marked by p and q, respectively). That
is, an,i(p, q) =

∑
ρ∈In,i

parea(ρ)qsper(ρ), where area(ρ) and sper(ρ) denote respectively the area and semi-perimeter of the
bargraph representation of the inversion sequence ρ. For example, area(ρ) = 15 and sper(ρ) = 12 for the ρ pictured in
Figure 1. The polynomials an,i(p, q) are determined recursively as follows.

Lemma 2.1. If n ≥ 2 and 1 ≤ i ≤ n, then

an,i(p, q) = piq

n−1∑
j=i

an−1,j(p, q) + piq

i−1∑
j=1

qi−jan−1,j(p, q), (1)

with a1,1(p, q) = pq2.

Proof. The initial condition follows from the definitions, so assume n ≥ 2. To show (1), let λ ∈ In,i and let λ′ ∈ In−1,j

denote the inversion sequence obtained by removing the final column x in the bargraph of λ. Note that if j ∈ [i, n − 1],
then removing x from λ in essence exposes the right boundary of no new cells since the i bottom cells in the last column
of λ′ replace the cells of x in this regard. Upon taking into account the additional horizontal step, we have that the semi-
perimeter increases by one in going from λ′ to λ, while the area increases by i. This yields a contribution of piqan−1,j(p, q)
for such λ towards the overall weight. Considering all possible j ∈ [i, n − 1] accounts for the first sum on the right side of
(1). On the other hand, if j ∈ [i− 1], then there is in addition an increase of i− j in the semi-perimeter to account for the
cells of x that are at a height strictly greater than j. Thus, there are piqi−j+1an−1,j(p, q) such λ in this case and considering
all j < i accounts for the second sum on the right and completes the proof.

Let an,i = an,i(p, q) and an(y) = an(y; p, q) =
∑n
i=1 an,iy

i for n ≥ 1. For example, a1(y) = ypq2, a2(y) = yp2q3 + y2p3q4,
a3(y) = yp3q4(1 + pq) + y2p4q5(1 + p) + y3p5q6(1 + p).

Multiplying both sides of (1) by yi, summing over 1 ≤ i ≤ n and interchanging summation yields

an(y) = q

n∑
i=1

(yp)i
n−1∑
j=i

an−1,j + q

n∑
i=1

(yp)i
i−1∑
j=1

qi−jan−1,j = q

n−1∑
j=1

an−1,j

j∑
i=1

(yp)i + q

n−1∑
j=1

an−1,jq
−j

n∑
i=j+1

(ypq)i

= q

n−1∑
j=1

an−1,j ·
yp− (yp)j+1

1− yp
+ q

n−1∑
j=1

an−1,jq
−j · (ypq)

j+1 − (ypq)n+1

1− ypq

=
ypq

1− yp
(an−1(1)− an−1(yp)) +

ypq2

1− ypq
(an−1(yp)− (ypq)nan−1(1/q)) , n ≥ 2, (2)

where we have used the fact an(1) =
∑n
i=1 an,i. Define the exponential generating function f(x, y) = f(x, y; p, q) by f(x, y) =∑

n≥1 an(y)
xn

n! .Multiplying both sides of (2) by xn−1

(n−1)! , and summing over n ≥ 2, implies f(x, y) satisfies the linear functional
differential equation given in the following theorem.

Theorem 2.1. We have

∂

∂x
f(x, y) = ypq2 +

ypq

1− yp
(f(x, 1)− f(x, yp)) + ypq2

1− ypq
(f(x, yp)− ypqf(xypq, 1/q)). (3)

Note that (3) with p = q = 1 gives

∂

∂x
f(x, y; 1, 1) = y +

y

1− y
f(x, 1; 1, 1)− y2

1− y
f(xy, 1; 1, 1).
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From this, one can obtain
f(x, y; 1, 1) =

y

1− y
ln

(
1− xy
1− x

)
. (4)

In particular f(x, 1; 1, 1) = x
1−x .

To determine a formula for the total area of all members of In, let us consider the derivative with respect to p evaluated
at p = 1. Define Pf(x, y) = ∂

∂pf(x, y; p, 1) |p=1=
∑
m≥1 Pfm(y)x

m

m! . Then (3), taken together with (4), gives

∂

∂x
Pf(x, y) =

y

1− y
Pf(x, 1)− y2

1− y
Pf(xy, 1) +

y

(1− x)(1− xy)2
.

Thus, Pfm+1(y) =
y−ym+2

1−y Pfm(1) +m!
∑m+1
i=1 iyi for m ≥ 0, with Pf0(y) = 0. By induction on m, we have

Pfm(1) =
m!

2

((
m+ 2

2

)
− 1

)
,

which leads to

Pfm+1(y) = m!
y − ym+2

2(1− y)

((
m+ 2

2

)
− 1

)
+m!

m+1∑
i=1

iyi.

From this, one can find
∑
m≥1 Pfm(y)x

m

m! explicitly.

Corollary 2.1. The generating function Pf(x, y) for the sum of the areas of all members of In,j for n ≥ 1 and 1 ≤ j ≤ n is
given by

2xy(3y + 2)− x2y(7y2 + 21y + 5) + x3y(2y3 + 21y2 + 19y + 2)− x4y2(6y2 + 19y + 6) + 6x5y3(y + 1)− 2x6y4

2(1− x)3(1− xy)3
.

In particular, the sum of the areas of all members of In is given by n!
2

((
n+2
2

)
− 1
)
.

Now let us consider the derivative at q = 1. Define Qf(x, y) = ∂
∂qf(x, y; 1, q) |q=1=

∑
m≥1Qfm(y)x

m

m! . Then (3), together
with (4), gives

∂

∂x
Qf(x, y) =

y

1− y
Qf(x, 1)− y2

1− y
Qf(xy, 1) +

y2

(1− y)3
ln

(
1− xy
1− x

)
− (2(x− 2)− 2(2x2 − x− 4)y + 2(x+ 2)(x2 − x− 1)y2 − x(x2 + x− 4)y3 + x2(x− 1)y4)y

2(1− y)2(1− x)(1− xy)2
.

By finding the coefficient of xm/m!, and taking the limit as y → 1, we have

Qfm+1(1) = (m+ 1)Qfm(1) +
1

6
(m+ 8)(m+ 1)!, m ≥ 1,

with Qf1(1) = 2. Hence, by induction on m, we obtain Qfm(1) = 1
12 (m

2 + 15m+ 8)m!, which implies the following result.

Corollary 2.2. The sum of the semi-perimeters of all members of In for n ≥ 1 is given by 1
12 (n

2 + 15n+ 8)n!.

We have the following sign balance result for the area and semi-perimeter statistics on In.

Proposition 2.1. If n ≥ 3, then
an(y;−1, 1) = 0 (5)

and
an(y; 1,−1) = 2n−2yn−1(y − 1). (6)

Proof. Formulas (5) and (6) can be obtained from (2) (and the equation directly prior) by an induction argument. Here, we
provide a direct bijective proof. Let ρ = ρ1 · · · ρn ∈ In where n ≥ 3. Note first that replacing ρ2 with 3− ρ2 changes the area
of the bargraph of ρ by one for all ρ, which implies (5). Now let k be the smallest index i, if it exists, such that ρi /∈ {i−1, i};
note that k ≥ 3. Within ρ, consider replacing ρk−1 with 2k − 3 − ρk−1 to obtain ρ′ ∈ In. Let m = max{ρk−2, ρk}. Note that
ρk−1 = m implies 2k− 3− ρk−1 > m and ρk−1 > m implies 2k− 3− ρk−1 ≥ m. Since ρk−1 ≥ m, it follows that the bargraphs
of ρ and ρ′ have semi-perimeters differing by one and hence are of opposite parity. Thus, the mapping ρ 7→ ρ′ provides a
sign-changing involution on all of In for which k is defined.

Note that this mapping is defined on the entirety of In,j if j ∈ [n − 2] since k is guaranteed to exist in this case. If
ρ = ρ1 · · · ρn ∈ In,j for j = n− 1 or n, then no such k exists if and only if ρi ∈ {i− 1, i} for 2 ≤ i ≤ n− 1. Thus, there are 2n−2

possible members of In,j in either case. Finally, each possible member of In,n−1 and In,n is (weakly) increasing and hence
has semi-perimeter 2n− 1 or 2n, respectively, which explains the signs and completes the proof of (6).
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The array an,i may also be determined by the following three-term recurrence.

Proposition 2.2. If n ≥ 3, then

an,i = p(q + 1)an,i−1 − p2qan,i−2 + piq(q − 1)an−1,i−1, 3 ≤ i ≤ n, (7)

with an,1 = pqan−1(1) and an,2 = pan,1 + p2q(q − 1)an−1,1 for n ≥ 2 and a1,1 = pq2.

Proof. Consider the difference an,i − pan,i−1, which by (1) is given by

an,i − pan,i−1 = −piqan−1,i−1 + piq

i−1∑
j=1

qi−jan−1,j − piq
i−2∑
j=1

qi−j−1an−1,j = piq(q − 1)

i−1∑
j=1

qi−j−1an−1,j , 2 ≤ i ≤ n. (8)

By (8), we then have for 3 ≤ i ≤ n,

(an,i − pan,i−1)− pq(an,i−1 − pan,i−2) = piq(q − 1)

i−1∑
j=1

qi−j−1an−1,j −
i−2∑
j=1

qi−j−1an−1,j

 ,

so that
an,i − p(q + 1)an,i−1 + p2qan,i−2 = piq(q − 1)an−1,i−1,

which gives (7). The initial condition for an,i when i = 1 follows from the definitions, upon appending 1 to any member of
In−1. Taking i = 2 in (8) gives the formula for an,2.

We conclude this section by finding an expression for the ordinary generating function of an(y) when q = 1. Define
A(x, y) = A(x, y; p, q) =

∑
n≥1 an(y)x

n. By (2), we have

A(x, y) = xypq2 +
xypq

1− yp
(A(x, 1)−A(x, yp)) + xypq2

1− ypq
(A(x, yp)− ypqA(xypq, 1/q)) . (9)

By (9) with y = q = 1, we get
A(x, 1; p, 1) =

xp(1− p)
1− p− xp

− xp2

1− p− xp
A(xp, 1; p, 1).

Iterating the last expression (where it is assumed |x|, |p| < 1) yields

A(x, 1; p, 1) = x(1− p)
∑
j≥0

(−1)jxjpj+(
j+2
2 )∏j

i=0(1− p− xpi+1)
. (10)

By (9) with q = 1, we have
A(x, y; p, 1) = xyp+

xyp

1− yp
(A(x, 1; p, 1)− ypA(xyp, 1; p, 1)),

which by (10) implies the following result.

Theorem 2.2. The (ordinary) generating function
∑
n≥1 an(y; p, 1)x

n is given by

A(x, y; p, 1) = xyp+
x2yp(1− p)

1− yp

∑
j≥0

(−1)jxjpj+(
j+2
2 )∏j

i=0(1− p− xpi+1)
−
∑
j≥0

(−1)jxjyjp2j+(
j+2
2 )∏j

i=0(1− p− xypi+2)

 .

3. Levels, descents and ascents

Recall that a level, descent or ascent within a word w = w1w2 · · · is an index i such that wi = wi+1, wi > wi+1 or wi < wi+1,
respectively. Given n ≥ 1 and 1 ≤ i ≤ n, let bn,i(p, q, r) denote the joint distribution for the level, descent and ascent
statistics on In,i, marked by p, q and r, respectively. Considering whether the penultimate letter j of a member of In,i for
1 ≤ i ≤ n− 1 is equal to, greater than or less than i yields the following recurrence for bn,i(p, q, r), where the condition for
i = n follows from observing that all members of In,n must end in an ascent.

Lemma 3.1. If n ≥ 2 and 1 ≤ i ≤ n− 1, then

bn,i(p, q, r) = pbn−1,i(p, q, r) + q

n−1∑
j=i+1

bn−1,j(p, q, r) + r

i−1∑
j=1

bn−1,j(p, q, r), (11)

with bn,n(p, q, r) = r
∑n−1
i=1 bn−1,i(p, q, r) for n ≥ 2 and b1,1(p, q, r) = 1.
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Let bn,i = bn,i(p, q, r) and bn(y) = bn(y; p, q, r) be given by bn(y) =
∑n
i=1 bn,iy

i for n ≥ 1. For example, b1(y) = y,
b2(y) = yp+ y2r, b3(y) = y(qr + p2) + 2y2pr + y3r(p+ r). By (11), we have

bn(y)− ynrbn−1(1) = p

n−1∑
i=1

bn−1,iy
i + q

n−2∑
i=1

yi
n−1∑
j=i+1

bn−1,j + r

n−1∑
i=2

yi
i−1∑
j=1

bn−1,j

= pbn−1(y) + q

n−1∑
j=1

bn−1,j

j−1∑
i=1

yi + r

n−1∑
j=1

bn−1,j

n−1∑
i=j+1

yi (12)

= pbn−1(y) +
q

1− y
(ybn−1(1)− bn−1(y)) +

yr

1− y
(
bn−1(y)− yn−1bn−1(1)

)
,

which may be rewritten as

bn(y) =

(
p+

yr − q
1− y

)
bn−1(y) +

y(q − ynr)
1− y

bn−1(1), n ≥ 2. (13)

Let Hn =
∑n
i=1

1
i denote the n-th harmonic number.

Corollary 3.1. The total number of levels, descents and ascents in all members of In for n ≥ 1 is given by n!(Hn − 1),
1
2 (n+ 1)!− n!Hn and n−1

2 n!, respectively.

Proof. By differentiating both sides of (13) with respect to p when y = q = r = 1, setting p = 1 and making use of
the fact bn(y) = n! when all arguments are unity, we have ∂

∂pbn(1) |p=q=r=1= (n − 1)! + n ∂
∂pbn−1(1) |p=q=r=1 for n ≥ 2,

with ∂
∂pb1(1) |p=q=r=1= 0. By induction, this yields ∂

∂pbn(1) |p=q=r=1= n!
∑n
j=2

1
j = n!(Hn − 1), which implies the first

formula. Differentiating (13) at q = 1 with y = p = r = 1, we have in a similar fashion ∂
∂q bn(1) |p=q=r=1=

n−2
2 (n − 1)! +

n ∂
∂q bn−1(1) |p=q=r=1 for n ≥ 2, with ∂

∂q bn(1) |p=q=r=1= 0. By induction, we get ∂
∂q bn(1) |p=q=r=1=

1
2 (n+ 1)!− n!Hn. Finally,

differentiating (13) with respect to r at r = 1 with y = p = q = 1 yields ∂
∂r bn(1) |p=q=r=1=

n−1
2 n!, which gives the last

formula and completes the proof.

Let g(x, y) = g(x, y; p, q, r) be given by g(x, y) =
∑
n≥1 bn(y)

xn

n! . Then (13) may be rewritten in terms of generating
functions as follows.

Theorem 3.1. We have

∂

∂x
g(x, y) = y +

(
p+

yr − q
1− y

)
g(x, y) +

y

1− y
(qg(x, 1)− yrg(xy, 1)) . (14)

Note that (14) with p = q = r = 1 gives

∂

∂x
g(x, y; 1, 1, 1) = y +

y

1− y
g(x, 1; 1, 1, 1)− y2

1− y
g(xy, 1; 1, 1, 1),

which implies
g(x, y; 1, 1, 1) =

y

1− y
ln

(
1− xy
1− x

)
,

as expected, since f(x, y) and g(x, y) agree when all other arguments are unity. In particular, g(x, 1; 1, 1, 1) = x
1−x .

One may extend the results of Corollary 3.1 above as follows by making use of (14).

Theorem 3.2. The generating functions for the totals of the levels, descents and ascents statistics on In,j for n ≥ 1 and
1 ≤ j ≤ n are given respectively by

∂

∂p
g(x, y; p, 1, 1) |p=1= xy +

2(xy − y − 1) ln(1− xy)− 2y(x− 2) ln(1− x)− y(ln2(1− xy)− ln2(1− x))
2(1− y)

, (15)

∂

∂q
g(x, y; 1, q, 1) |q=1 =

xy

2(1− y)

(
3x− 2

1− x
− xy2

1− xy

)
+

(1− xy) ln(1− xy)− y(2− x− y) ln(1− x)
(1− y)2

+
y(ln2(1− xy)− ln2(1− x))

2(1− y)
, (16)

and
∂

∂r
g(x, y; 1, 1, r) |r=1=

xy

2(1− y)

(
2− x
1− x

− xy2

1− xy

)
+
y(1− xy)
(1− y)2

ln

(
1− x
1− xy

)
. (17)
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Proof. Let h(x, y) = ∂
∂pg(x, y; p, 1, 1) |p=1 and note by (14) that h(x, y) must satisfy

∂

∂x
h(x, y) = g(x, y; 1, 1, 1) +

y

1− y
h(x, 1)− y2

1− y
h(xy, 1). (18)

To show that the purported formula for h(x, y) indeed satisfies (18), one must write h(x, 1) = limz→1 h(x, z) to evaluate the
right-hand side. Upon observing

lim
z→1

(
ln2(1− xz)− ln2(1− x)

1− z

)
=

2x ln(1− x)
1− x

and
lim
z→1

(
(1 + z − xz) ln(1− xz)− z(2− x) ln(1− x)

1− z

)
= ln(1− x) + x(2− x)

1− x
,

and recalling the expression for g(x, y; 1, 1, 1), one gets

y

1− y
ln

(
1− xy
1− x

)
− xy + y ln(1− x)

(1− x)(1− y)
+
xy3 + y2 ln(1− xy)
(1− y)(1− xy)

for the right side of (18). This is seen to coincide with ∂
∂xh(x, y), which completes the proof of (15). Similar proofs apply to

(16) and (17). Note that for (16), it is convenient to first write the formula for ∂
∂q g(x, y; 1, q, 1) |q=1 as

x2y

2(1− y)

(
1

1− x
− y2

1− xy

)
+
y(ln2(1− xy)− ln2(1− y))

2(1− y)
+

(1− xy) ln(1− xy)− y(2− x− y) ln(1− x)− xy(1− y)
(1− y)2

and compute three separate limits as y → 1, where the third expression requires two applications of L’Hopital’s rule. For
(17), it is best to write the formula for ∂

∂rg(x, y; 1, 1, r) |r=1 as

x2y

2(1− y)

(
1

1− x
− y2

1− xy

)
+
y(1− xy)(ln(1− x)− ln(1− xy)) + xy(1− y)

(1− y)2

prior to computing the limit.

Let c(n, k) for 1 ≤ k ≤ n and e(n, k) for 0 ≤ k ≤ n − 1 denote the (signless) Stirling number of the first kind and
Eulerian number, respectively. Recall that the number of permutations of [n] with k cycles and k ascents is given by c(n, k)
and e(n, k), respectively; see, e.g., [6, Sections 6.1 and 6.2]. The following result provides a connection between inversion
sequences and the Stirling and Eulerian numbers.

Theorem 3.3. If n ≥ 1, then

bn(1; t, 1, 1) =

n−1∑
k=0

c(n, k + 1)tk (19)

and

bn(1; 1, 1, t) = bn(1; t, t, 1) =

n−1∑
k=0

e(n, k)tk. (20)

Proof. Formulas (19) and (20) can be obtained by taking p = t, r = t or p = q = t in (12) (with all other arguments equal
to unity) and comparing the resulting equations with the known recurrences for the distributions

∑n−1
k=0 c(n, k + 1)tk and∑n−1

k=0 e(n, k)t
k. We leave the details to the reader. However, we find it more instructive to provide direct bijective proofs of

these formulas as follows, starting with (19). Let In(k) denote the subset of In whose members have exactly k levels and
Sn(k) the subset of Sn whose members have exactly k cycles. Given ρ = ρ1 · · · ρn ∈ In(k), we generate a member of Sn(k+1)

as follows. First let π1 = (1) and we subsequently form permutations π2, . . . , πn by successively inserting the elements
2, . . . , n into cycles. Let ` = ρj−1 where 2 ≤ j ≤ n. If ρj ∈ [j] − {`} and is the i-th smallest member of this set, to obtain
πj in this case, we insert the element j so that it directly follows i in its current cycle within πj−1 (expressed in standard
cycle form). If ρj = `, in which case the (j − 1)-st and j-th letters of ρ correspond to a level, then insert the element j into
a new cycle by itself to obtain πj . Let f(ρ) = πn ∈ Sn(k + 1). For example, if n = 8, k = 3 and ρ = 12243377 ∈ I8(3), then
π1 = (1), π2 = (1, 2), π3 = (1, 2), (3), π4 = (1, 2), (3, 4), π5 = (1, 2), (3, 5, 4), π6 = (1, 2), (3, 5, 4), (6), π7 = (1, 2), (3, 5, 4), (6, 7)

so that f(ρ) = π8 = (1, 2), (3, 5, 4), (6, 7), (8) ∈ S8(4). One may verify that f is a bijection between In(k) and Sn(k + 1) for
0 ≤ k ≤ n− 1, which implies (19).

Given ρ = ρ1 · · · ρn ∈ In, let ρ′ be obtained from ρ by replacing ρi with i + 1 − ρi for 1 ≤ i ≤ n. Then it is seen that the
mapping ρ 7→ ρ′ is a bijection on In which demonstrates that the ascents statistic distribution is equal to the distribution
for the sum of the number of levels and descents. Thus, to complete the proof of (20), we need only show that |I(k)n | = |S(k)

n |
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for 0 ≤ k ≤ n − 1, where I(k)n denotes the subset of In and S
(k)
n the subset of Sn whose members have k ascents. Let

ρ = ρ1 · · · ρn ∈ I(k)n , and first write π1 = 1. If ρj = ` where 2 ≤ j ≤ n, then to obtain πj ∈ Sj , we append the letter ` to πj−1
and increase all letters in [`, j − 1] by 1. Note that the final two letters of πj form an ascent if and only if ρj−1ρj within ρ

does. Let g(ρ) = πn denote the member of Sn that results after all letters ` have been appended successively as described.
For example, if n = 8, k = 4 and ρ = 12142473 ∈ I(4)8 , then π1 = 1, π2 = 12, π3 = 231, π4 = 2314, π5 = 34152, π6 = 351624,
π7 = 3516247 and thus g(ρ) = π8 = 46172583 ∈ S

(4)
8 . Note that since previous ascents are preserved in later steps, the

permutation πn has the same number of ascents as ρ. One may then verify that g is a bijection between I
(k)
n and S(k)

n for
each 0 ≤ k ≤ n− 1, which completes the proof.

Remark 3.1. Note that members of Sn starting with r correspond (under g−1) to members ρ of In wherein the longest
subsequence of ρ that is itself an inversion sequence (when its subscripts are re-indexed to start 1, 2, . . .) and not containing
the initial 1 has length r − 1.

Remark 3.2. The polynomial bn(1; t, 1, t) was shown in [13, Section 2.3.4] by a combinatorial argument to coincide with
sequence A122890 in [14].

Using the interpretation implicit in (19), one can provide a combinatorial proof of the formulas above for the totals of
the levels, descents and ascents statistics on In as follows.

Combinatorial proof of Corollary 3.1.

By (19), the total number of levels in all members of In equals the total number of cycles in Sn minus n!. By [1,
Theorem 12], which was provided a combinatorial proof, the average number of cycles in Sn is given by Hn, which implies
the first formula in Corollary 3.1. The bijection ρ 7→ ρ′ from the proof of Theorem 3.3 above shows that the ascents at
index i within In for each i are equal in number to the union of all levels and descents at index i. As there are (n − 1)n!

non-terminal positions within all members of In, each of which corresponds to either a level, descent or ascent, it follows
that the total number of ascents in In is given by n−1

2 n!. Finally, for descents, we subtract the first and last expressions in
Corollary 3.1 from (n− 1)n! to get a total of

(n− 1)n!−
(
n!(Hn − 1) +

n− 1

2
n!

)
=

1

2
(n+ 1)!− n!Hn,

which completes the proof.

Let en(y) and on(y) denote the restriction of bn(y) to those members of In having an even or an odd number of levels,
respectively. Note that bn(y;−p, q, r) = en(y; p, q, r)− on(y; p, q, r). We have the following sign balance result concerning the
levels statistic on In.

Proposition 3.1. If n ≥ 2, then
bn(y;−t, t, t) = (−1)n2n−2tn−1(y − 1)y. (21)

In particular, the statistic on In recording the number of levels is balanced for n ≥ 2.

Proof. The latter statement follows from the former upon taking y = 1, so we need only prove the former. Note that one
can show (21) by an induction argument using (12) with q = r = t = −p, the details of which we leave to the reader. Here,
we wish to provide a direct bijective proof of (21) which makes use of a sign-changing involution. Suppose ρ = ρ1 · · · ρn ∈ In
contains at least one letter greater than 2. Let j0 be the minimal j such that ρj > 2. Let ρ∗ be obtained from ρ by
replacing ρj0−1 with 3− ρj0−1, which can be done since j0 ≥ 3 ensures that it is not the first letter that is undergoing this
replacement (which of course would not be allowed as ρ1 = 1 for all ρ). Note that ρ∗ has a parity with respect to the levels
statistic opposite to that of ρ. Thus, ρ 7→ ρ∗ is a sign-changing involution that is defined on the entirety of In except for the
subset consisting of its binary members, which we will denote by Bn.

We now determine the (signed) weight of the members of Bn. First suppose λ = λ1 · · ·λn ∈ Bn, with λn = 1. Then since
λ is binary, there must be an even number m of indices i ∈ [n− 1] such that λi 6= λi+1 since λ1 = λn = 1. Thus, the number
of levels is given by n− 1−m for all such λ. In particular, all λ ∈ Bn with λn = 1 have levels parity equal to that of n− 1.
Since there are clearly 2n−2 such λ, their (signed) weight is given by (−t)n−12n−2y. By similar reasoning, the weight of all
λ ∈ Bn with λn = 2 is given −(−t)n−12n−2y2. Combining this case with the prior one yields formula (21).

Considering the difference bn,i − bn,i−1, and using (11), yields the following three-term recurrence for the array bn,i.
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Proposition 3.2. If n ≥ 3, then

bn,i = bn,i−1 + (p− q)bn−1,i + (r − p)bn−1,i−1, 2 ≤ i ≤ n− 1, (22)

with bn,1 = (p− q)bn−1,1 + qbn−1(1) and bn,n = rbn−1(1) for n ≥ 2 and b1,1 = 1.

We conclude by finding an expression for the ordinary generating function of the polynomial bn(y) when y = 1. To do
so, first define Bn(v) =

∑n
i=1 bn,iv

i−1. Note that

n−1∑
i=2

bn,i−1v
i−1 =

n−2∑
i=1

bn,iv
i = v(Bn(v)− bn,nvn−1 − bn,n−1vn−2).

By (11) with i = n− 1, we have

bn,n−1 = pbn−1,n−1 + r(Bn−1(1)− bn−1,n−1) = rBn−1(1) + r(p− r)Bn−2(1)

so that
n−1∑
i=2

bn,i−1v
i−1 = vBn(v)− rvn−1(1 + v)Bn−1(1)− r(p− r)vn−1Bn−2(1).

Multiplying both sides of (22) by vi−1, and summing over 2 ≤ i ≤ n− 1, then implies

Bn(v)− rvn−1Bn−1(1)−Bn(0) = vBn(v)− rvn−1(1 + v)Bn−1(1)− r(p− r)vn−1Bn−2(1)

+ (p− q)(Bn−1(v)−Bn−1(0)) + (r − p)(vBn−1(v)− rvn−1Bn−2(1)),

which may be rewritten as

(1− v)Bn(v) = Bn(0)− (p− q)Bn−1(0)− rvnBn−1(1) + (p− q + (r − p)v)Bn−1(v), n ≥ 3, (23)

withBn(0) = (p−q)Bn−1(0)+qBn−1(1) for n ≥ 2. Note that (23) is also seen to hold when n = 2. LetB(x, v) =
∑
n≥1Bn(v)x

n.
Then (23) may be rewritten as

(1− v)B(x, v) = −xv + (1− (p− q)x)B(x, 0)− xrvB(xv, 1) + x(p− q + (r − p)v)B(x, v), (24)

with B(x, 0) = x+ (p− q)xB(x, 0) + xqB(x, 1). Applying the kernel method [7], and letting v = ρ(x) = 1−(p−q)x
1−(p−r)x in (24), we

obtain
B(x, 1) =

ρ(x)− 1

q
+
rρ(x)

q
B(xρ(x), 1).

Iteration of this last formula leads to the following result.

Theorem 3.4. The (ordinary) generating function
∑
n≥1 bn(1; p, q, r)x

n is given by

B(x, 1) =
∑
j≥0

rj(vj(x)− 1)

qj+1
v0(x)v1(x) · · · vj−1(x),

where vj(x) is defined recursively by vj(x) = ρ(xvj−1(x)) for j ≥ 1 with v0(x) = ρ(x) = 1−(p−q)x
1−(p−r)x .
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