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Abstract—Industrial internet of unmanned aerial vehicles
(IIoUAVs) which enable autonomous inspection and measure-
ment of anything anytime anywhere have become an essential
component of the future industrial internet of things (IIoT)
ecosystem. In this paper, we investigate how to apply IIoUAVs
for power line inspection in smart grid from an energy effi-
ciency perspective. Firstly, the energy consumption minimization
problem is formulated as a joint optimization problem, which
involves both the large-timescale optimization such as trajectory
scheduling, velocity control, and frequency regulation, and the
small-timescale optimization such as relay selection and power
allocation. Then, the original NP-hard problem is transformed
into a two-stage suboptimal problem by exploring the timescale
difference and the energy magnitude difference between the
large-timescale and the small-timescale optimizations, and is
solved by combining dynamic programming (DP), auction theory
and matching theory. Finally, the proposed algorithm is verified
based on real-world map and realistic power grid topology.

Index Terms—IIoUAVs, IIoT, power line inspection, energy ef-
ficiency, dynamic programming, auction theory, matching theory,
smart grid.

I. INTRODUCTION

A. Background and Motivation

W ITH the evolutionary development of the smart grid
industry, it is estimated that by 2020, the total length

of transmission power lines in US will increase to 0.59
million kilometers with a compound annual growth rate of
4%, while the global annual growth rate is 3% [1]. This
massive deployment poses new challenges on maintenance and
inspection since power lines deployed in the fields are subject
to numerous adverse environmental and human impacts such
as wind blowing, sun exposure, rain erosion, etc [2], [3].
Accordingly, power line inspection which allows fast detec-
tion of a series of defects including line damage, cracking,
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galvanization loss, corrosion, and insulating breakage, is of
significant importance for preventative maintenance [4]. At
present, power line inspection is mainly conducted via human
patrol, which exhibits the following major problems [5]: 1)
Safety issues: the electromagnetic field radiation generated by
high-voltage power lines with hundreds of kilovolts is haz-
ardous to human health; 2) Accuracy issues: high inspection
accuracy cannot be guaranteed due to large-scale distribution
and complex geographical environment; 3) Cost issues: the
labor, transportation, and equipment costs can be enormously
high. Thus, a shift of paradigm is urgently required for the de-
velopment of automatic machine-based inspection approaches
with excellent cost-performance balance.

To this end, industrial unmanned aerial vehicles (UAVs),
which enable autonomous inspection and measurement of
anything anytime anywhere, have emerged as a promising
solution for power line inspection. Due to the unique char-
acteristics such as fast deployment, easy programmability,
reconfiguration, control flexibility, and scalability [6], indus-
trial internet of UAVs (IIoUAVs) which enable ubiquitous
information sharing and fine-granularity coordination among a
fleet of UAVs with little or no human intervention, are essential
to realize the framework of future industrial internet of things
(IIoT) ecosystem [7]. During inspection, IIoUAVs mounted
with up-to-date visual inspection and communication devices
can consecutively capture high-resolution images of power
lines and deliver the data back to ground base stations (BSs)
[8].

Despite the huge potential benefits of IIoUAVs, the en-
durance and reliability performance is fundamentally limited
by the maximum battery capacity, which is generally small
due to practical space, cost and weight constraints [9]. For
an instance, the battery capacity of a small-type UAV with
a payload of 300 grams is only around 5200mAh, which
is equivalent to eight alkaline batteries [10]. The energy
consumption model of IIoUAVs is also different from con-
ventional terrestrial communication systems. On one hand,
since power line inspection is delay tolerant, inspection data
are firstly stored in local storage devices temporarily, and
are then delivered to the remote BS via some relay UAVs
in an opportunistic multi-hop fashion [11]. The optimization
of relay selection and power allocation depends on channel
variations in the timescale of milliseconds. On the other hand,
additional energy consumption is required for IIoUAVs to
support mobility and avoid collision, which is usually several
orders of magnitudes higher than the energy consumed for
data delivery [12], and relies on trajectory variations in the
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timescale of seconds.
Therefore, how to achieve energy-efficient IIoUAVs for

power line inspection remains nontrivial. Firstly, it is difficult
to determine the optimal energy minimization strategy subject
to the complicated power grid topology, UAV flying model,
and various practical environmental factors. Secondly, it is
infeasible to derive a polynomial-time solution since the large-
timescale optimization variables are coupled with the small-
timescale optimization variables. Last but not least, the energy
consumption performance should be evaluated in a trustworthy
manner based on realistic power grid topology data.

B. Contribution

We summarize the main contributions of this paper as
follows.
• We investigate how to realize energy-efficient IIoUAVs

for power line inspection in smart grid. The energy
consumption minimization problem is formulated as a
joint optimization problem, which involves both the large-
timescale optimization such as trajectory scheduling, ve-
locity control, and frequency regulation, and the small-
timescale optimization such as relay selection and power
allocation. The formulated problem is NP-hard due to the
coupling between the large-timescale and small-timescale
optimization variables.

• We explore both the timescale difference and the energy
magnitude difference to transform the NP-hard problem
into a two-stage suboptimal optimization problem, in
which the large-timescale optimization problem is solved
in the first stage by dynamic programming (DP), and
the small-timescale optimization problem is solved in the
second stage by combining auction theory and matching
theory.

• We evaluate the energy consumption performance based
on real-world map and realistic power grid topology. The
relationships between energy consumption and other key
parameters, including the total number of target points,
broadcasting frequency, velocity and computational com-
plexity are illustrated through numerical results.

The structure of this work is elaborated as follows. A
comprehensive review of the state-of-the-art development is
provided in Section II. The system model with the explicit
consideration of the energy consumed for propulsion, collision
avoidance, and image data delivery is presented in Section
III. The formulated joint optimization problem is developed
in Section IV. The two-stage energy-efficient power line in-
spection algorithm is described in Section V. Numerical results
and related analysis are presented in Section VI. Section VII
concludes this paper and identifies future directions.

II. STATE OF THE ART

Note that the power line inspection by utilizing UAVs
has been already studied recently [6], [13]–[16]. In [6], the
genetic algorithm (GA) was proposed to obtain effective line
inspection path which supports the shortest length. An altitude
control system for UAV visual inspection was presented in
[13], which was designed based on quaternions algebra. The

authors in [14] studied a method for transmission line inspec-
tion and tracking by employing Hough transform and Kalman
filter. In [15], a power line inspection algorithm called PLineD
was proposed to address the real-time perception problem. A
trajectory scheduling approach for UAVs in a complex 3D
environment was designed in [16] by combining GA and
particle swarm optimization to minimize the execution time.
These works mainly focus on how to utilize UAVs to realize
power line detection system, but have not taken into account
the energy consumption of UAVs and the communication
resource allocation problems.

Energy-efficiency problems of UAVs have been studied in
[11], [12], [17]–[20]. In [11], the network energy efficiency
was maximized through the joint optimization of the speed
and load of UAVs which act as communication relays for
ground nodes. In [12], the deployment of multi-UAVs was
optimized to minimize the flight time while considering the
energy constraint. In [17], the energy-efficient communication
between UAVs and a ground terminal was investigated via
UAV trajectory optimization with the joint consideration of
communication throughput and UAV energy consumption.
The authors in [18] proposed an energy-efficient resource
allocation scheme for UAVs which work as aerial BSs to
serve ground devices. A reference small-UAV model called
“averaged model” was proposed in [19], and the aircraft
stability and the power consumption issues were addressed
simultaneously. An energy optimization approach for solar-
powered UAVs was proposed in [20], in which the trajectory
was optimized by controlling the flight attitude.

It is noted that all above mentioned works mainly study
energy-efficiency problems of UAVs in regular wireless com-
munication services that involve air-to-ground links, and can-
not be applied for IIoUAVs-based power line inspection.
The system models and problem formulations are completely
different from our work, since there still lacks a comprehen-
sive consideration of joint trajectory scheduling, frequency
regulation, velocity control, communication relay selection
and power allocation optimization from an energy efficiency
perspective. In this paper, we use DP with a velocity control
and frequency regulation sub-process in combination with
matching theory and auction theory to optimize energy con-
sumption of propulsion, collision avoidance, and image data
delivery for IIoUAVs.

III. SYSTEM MODEL

The IIoUAVs-based power line inspection model is pre-
sented in Fig. 1. The power grid topology can be considered as
a graph. Let K = {0, · · · , k, · · · ,K} be the set of nodes of the
graph, the elements of which represent the inspection target
points such as power towers, renewable energy generators, etc.
Let lk,k′ represent the power line segment between target point
k and target point k

′
, i.e., k, k

′ ∈ K, k 6= k
′
. The length of

segment lk,k′ is denoted as dk,k′ , i.e., dk,k′ = ∞ if k and
k
′

are disconnected. A fleet of N inspection UAVs (denoted
as IUAVs) start from target point k = 0, then fly along the
power lines to carry out both target point inspection and line
corridor inspection missions, and finally return back to the
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Fig. 1: The IIoUAVs-based power line inspection model.

starting point. It is noted that the flying trajectory of IUAVs
must pass through all of the target points.

During inspection, IUAVs form a cluster around the power
line and fly forwards with the same velocity in order to provide
a multi-angle inspection of the same location within the
same timestamp. The communication devices mounted on each
IUAV have twofold functions: collision avoidance and image
data delivery. On one hand, a number of predefined beacons
are broadcasted per second by each IUAV for received signal
strength (RSS) based distance measurement. Then, numerous
well-knwon collision avoidance schemes [21], [22] can be
used to maintain a minimum safety distance between any two
IUAVs. On the other hand, a store-carry-forward-based data
transmission approach is adopted, in which the data collected
by the IUAVs are firstly stored in local storage devices
temporarily, and are then delivered to the remote base stations
via some relay UAVs (denoted as RUAVs) in an opportunistic
multi-hop fashion. Afterwards, the data will be transmitted
to the server of grid company, which are then processed and
analyzed to identify potential problems. Therefore, the data
transmission is delay tolerant. As for optimizing the data
delivery latency, we will consider it in our future work. It
is noted that RUAVs which are carrying out other tasks and
happen to appear within the proximity of IUAVs are not
always available. The sets of IUAVs and RUAVs are denoted
as N = {1, · · · , n, · · · , N}, and M = {1, · · · ,m, · · · ,M},
respectively.

Hence, the total energy consumption of each IUAV includes
three parts, i.e., the amount of energy consumed for propul-
sion, collision avoidance beacon broadcasting, and image data
delivery, the models of which are elaborated in the following
subsections.

A. Propulsion Energy Consumption Model

The steady straight-and-level flight (SSLF) model proposed
in [17] is adopted to develop the propulsion energy con-
sumption model. The SSLF model implies the following two
aspects: 1) an IUAV flies towards a fixed direction with a
constant speed without horizontal acceleration and sudden
turning; 2) due to the lift-weight balance, an IUAV flies at
a constant altitude without vertical acceleration. Defining the

velocity of IUAV at segment lk,k′ as vk,k′ , the propulsion
energy consumption required for flying through lk,k′ is given
by

Ep
k,k′

(vk,k′ ) =
dk,k′

vk,k′
P p
k,k′

(vk,k′ ) = dk,k′
c1
k,k′

(vk,k′ )
4 + c2

k,k′

(vk,k′ )
2

.

(1)

Here P p
k,k′

(vk,k′ ) is the propulsion power, which is given by

P p
k,k′

(vk,k′ ) = c1
k,k′

(vk,k′ )
3 +

c2
k,k′

vk,k′
, (2)

where the first term c1
k,k′

(vk,k′ )
3 represents the parasitic power

required for balancing the parasitic drag caused by IUAV skin

friction, the second term
c2
k,k
′

v
k,k
′

represents the induced power
required for balancing the drag force caused by air redirection.
c1
k,k′

and c2
k,k′

are given by

c1
k,k′

,
1

2
ρk,k′C

d
k,k′

S,

c2
k,k′

,
2W 2

(πeηk,k′ )ρk,k′S
, (3)

where ρk,k′ is the air density, Cd
k,k′

is the coefficient of zero-
lift drag force, S is the reference area of IUAV, e is the Oswald
efficiency, and ηk,k′ is the wing aspect ratio, and W is the
weight of IUAV.

Furthermore, we extend the SSLF model to the more
generalized scenario to include the energy consumed by IUAVs
at target points for head direction adjustment. Hence, the
energy required for adjusting head direction at target point

k
′

can be expressed as
c2
k,k
′

v
k,k
′ g2

∫ T
0
a2(t)dt, where a(t) is the

acceleration of IUAV when adjusting the head direction, T is
the duration required for adjusting the head direction, and g is
the gravitational acceleration with nominal value 9.8 m/s2.
It is easy to obtain the energy required for head direction
adjustment at target point k

′
accounts for only 0.12% of the

energy consumed for flying through segment lk,k′ , which can
be neglected for the purpose of simplicity.

B. Collision Avoidance Energy Consumption Model
The collision avoidance scheme is composed of three stages,

i.e., distance estimation, collision warning, and control actions.
Here, we only consider the energy consumption of distance
estimation, since collision avoidance control rules and actions
are out of the scope of this work, and have been intensively
studied in [21], [22]. During the flight in segment lk,k′ , an
IUAV has to continuously broadcast beacons for inter-IUAV
distance estimation with a frequency of fk,k′ , i.e., there
are a total of fk,k′ independent measurements available per
second. Considering the imperfect estimation caused by noise,
define δk,k′ as the maximum estimation error of distance that
can be compensated by collision warning and control actions
for successful collision avoidance. The probability that an
estimation error is greater than δk,k′ is defined as Pr(δk,k′ ),
which is given by

Pr(δk,k′ ) = P (single estimation error > δk,k′ ). (4)
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Hence, a collision occurs if all of the fk,k′ independent
estimations have errors greater than δk,k′ , the probability of
which is given by

Prc(fk,k′ ) = Pr(δk,k′ )
f
k,k
′ . (5)

It is noted that Prc(fk,k′ ) is also the collision probability.
For an instance, assuming that 90% measurements have an
estimation error less than 4 meters, we have Pr(4) = 10%.
Let fk,k′ = 4, we can obtain Prc(4) = 10−4, which represents
that the collision probability of any two IUAVs is 10−4.

When the estimated distance is less than the minimum safety
distance, a warning signal is generated and sent to the control
unit, which then issues a collision avoidance control action,
e.g., heading direction adjustment. The energy consumed for
broadcasting beacons is calculated as

Ec
k,k′

(fk,k′ , vk,k′ ) =
P cdk,k′ fk,k′ tc

vk,k′
, (6)

where P c and tc denote the power and duration of each beacon
signal.

C. Data Delivery Energy Consumption Model

We assume that Mk,k′ RUAVs are available when N IUAVs
are flying through power line segment lk,k′ , and RUAV m
serves as the relay station for IUAV n. Data are actually de-
livered from IUAV n to the BS B0 via a two-hop fashion, i.e.,
data are firstly sent from IUAV n to RUAV m in the first hop,
and then are forwarded from RUAV m to BS B0 in the second
hop. In this work, the one-to-one correspondence mapping
between IUAVs and RUAVs is assumed for the purpose of
simplicity. The more complex many-to-one matching model
will be considered in our future works. Furthermore, we have
adopted a simplified model where each UAV occupies an or-
thogonal frequency band, and thus, the co-channel interference
caused by spectrum sharing can be neglected. Similar data
transmission models based on orthogonal resource blocks have
also been employed in previous works such as [23], [24]. The
effective SNR of the two-hop link, i.e., (IUAV n, RUAV m,
BS B0), is expressed as

γn,m,B0
=

γn,mγm,B0

γn,m + γm,B0
+ 1

. (7)

Here, γn,m and γm,B0
denote the SNR expressions of the first-

hop and second-hop links, respectively, which are calculated
as

γn,m =
P dn [t]gn,m

N0
,

γm,B0
=
P dm[t]gm,B0

N0
, (8)

where P dn and P dm denote the transmission power of IUAV n
and RUAV m for data delivery, respectively. gn,m and gm,B0

represent the channel gain between IUAV n and RUAV m, and
the channel gain between RUAV m and BS B0, respectively.
N0 denotes the one-sided power spectral density of the additive
white Gaussian noise (AWGN).

Remark 1: How to derive (7) is omitted here due to space
limitations. A similar proof can be found in [25], [26] and
references therein.

The energy consumption of data delivery for IUAV n at
time slot t is calculated as

En,d
k,k′

(P dn [t]) = P dn [t]Ts, (9)

where Ts is the channel coherence time which is negatively
proportional to velocity, i.e., Ts ≈ c3/vk,k′ , Q1-6: where c3 is
a constant. The total number of time slots at segment lk,k′ can
be calculated as Ns

k,k′
= bdk,k′/(vk,k′Ts)c. The set of time

slots is defined as Ts = {1, · · · , t, · · · , Ns
k,k′
| k, k′ ∈ K, k 6=

k
′}.

IV. PROBLEM FORMULATION

Given the power grid topology, the key research challenge
is how to jointly determine flying trajectory, velocity, beacon
transmission frequency, relay selection, and data transmission
power for each IUAV from an energy efficiency perspective
under various practical constraints. We use a binary value
sdn,m[t] = 1 to represent that IUAV n and RUAV m form the
first-hop link at time slot t, otherwise, sdn,m[t] = 0. Similarly,
sp
k,k′

= 1 represents that segment lk,k′ is chosen, and sp
k,k′

=

0, otherwise. The set of optimization variables is defined as
{VK ,SdN ,S

p
K ,FcK ,PdN}, where VK = {vk,k′ | k, k

′ ∈ K, k 6=
k
′}, SdN = {sdn,m[t] | n ∈ N ,m ∈M, t ∈ Ts}, SpK = {sp

k,k′
|

k, k
′ ∈ K, k 6= k

′}, FcK = {fk,k′ | k, k
′ ∈ K, k 6= k

′}, and
PdN = {P dn [t] | n ∈ N , t ∈ Ts}.

The formulated energy-efficient trajectory scheduling, ve-
locity control, frequency regulation, relay selection, and power
allocation problem is given as follows:

P1 : min
{VK ,SdN ,S

p
K ,FcK ,PdN}

∑
k∈K

∑
k′ 6=k,k′∈K

sp
k,k′

(
NEp

k,k′
(vk,k′ )

+
∑
n∈N

∑
t∈Ts

∑
m∈M

k,k
′

sdn,m[t]En,d
k,k′

(P dn [t])

+NEc
k,k′

(fk,k′ , vk,k′ )
)

s.t. C1 :
1

fk,k′
≤ Ts,∀fk,k′ ∈ F

c
K ,

C2 : Pr(δk,k′ )
f
k,k
′ ≤ Pmax,∀fk,k′ ∈ F

c
K ,

C3 : vk,k′ ,min ≤ vk,k′ ≤ vk,k′ ,max,∀vk,k′ ∈ VK ,
C4 : Pn,min ≤ P dn [t] ≤ Pn,max,∀t ∈ Ts,

C5 :
∑

m∈M
k,k
′

Sdn,m[t] ≤ 1, n ∈ N ,∀t ∈ Ts,

C6 : min(γn,m, γm,B0 , γn,m,B0) ≥ γ0,
∀n ∈ N ,∀m ∈Mk,k′ . (10)

Here, C1 guarantees that the signal duration should be less
than channel coherence time. C2 denotes the minimum colli-
sion probability required for collision avoidance. C3 and C4

specify the IUAV velocity and transmission power constraints,
respectively. C5 ensures that at most one RUAV can be utilized
as the relay station for IUAV at any time. C6 denotes the
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quality of service (QoS) requirements defined in terms of
minimum SNR threshold.

V. TWO-STAGE ENERGY-EFFICIENT POWER LINE
INSPECTION ALGORITHM

In this section, we introduce the energy-efficient power line
inspection algorithm by combining DP, auction theory, and
matching theory. Firstly, the NP-hard joint optimization prob-
lem is transformed to a two-stage optimization problem based
on energy consumption magnitude and optimization timescale
differences. Then, the large-timescale optimization problem
is solved in the first stage based on DP. Next, the small-
timescale optimization problem is solved in the second stage
by combining auction theory and matching theory. Finally, the
analysis of theoretical properties is elaborated.

A. Problem Transformation

Problem P1 is formulated as a joint optimization problem,
which involves both the large-timescale optimization such as
trajectory scheduling, velocity control, and frequency regula-
tion, the values of which are fixed during a segment and vary in
the timescale of seconds, and the small-timescale optimization
such as relay selection and power allocation, the values of
which depend on channel fading and vary in the timescale of
milliseconds.

It is infeasible to obtain the optimal solution in polynomial
time due to the fact that the large-timescale and small-
timescale optimization variables of P1 are coupled with each
other through the total number of time slots. Furthermore,
the energy consumption objective value of the large-timescale
optimization problem is generally several orders of magnitudes
higher than that of the small-timescale optimization problem.

Therefore, to provide a solution, the timescale difference be-
tween the large-timescale optimization and the small-timescale
optimization is utilized as a pre-knowledge to simplify the
problem. Correspondingly, problem P1 can be transformed
into a two-stage suboptimal problem, in which the large-
timescale problem is solved in the first stage without con-
sidering the second stage optimization problem, and then the
small-timescale problem is solved in the second stage based
on the optimal results obtained in the first stage. Therefore,
the proposed two-stage algorithm will lead to a suboptimal
performance since trajectory scheduling, velocity control, fre-
quency regulation, relay selection, and power allocation are not
jointly optimized simultaneously. The first-stage optimization
problem is given by

P2 : min
{VK ,SpK ,FcK}

∑
k∈K

∑
k′ 6=k,k′∈K

sp
k,k′

(
NEp

k,k′
(vk,k′ )

+NEc
k,k′

(fk,k′ , vk,k′ )
)

s.t. C1 ∼ C3. (11)

The second-stage optimization problem is given by

P3 : min
{SdN ,S

p
K ,PdN}

∑
k∈K

∑
k′ 6=k,k′∈K

∑
n∈N

∑
t∈Ts

∑
m∈M

k,k
′

sp
k,k′

sdn,m[t]En,d
k,k′

(Pdn[t]),

s.t. C4 ∼ C6. (12)

In this fashion, the coupling between the large-timescale
optimization and the small-timescale optimization variables
disappears, and a two-stage low-complexity suboptimal al-
gorithm can be developed by exploring DP, auction theory,
and matching theory, which is elaborated in the next two
subsections.

B. DP-based Energy-efficient Trajectory Scheduling, Velocity
Control, and Frequency Regulation

The first-stage problem P2 has two principal features: 1) the
decisions are made dynamically in discrete-time stages; 2) the
energy consumption is additive over time (or stages), which
is within the framework of the deterministic finite-state travel
salesman problem (TSP), and can be subsequently solved by
using DP.

TSP [27] is a typical NP-hard problem in which the
computational complexity rises exponentially with the number
of parameters. Several heuristic methods and software have
been proposed to solve TSP for computational time reduction,
e.g. Concorde [28], neural networks [29], Genetic algorithms
(GAs) [30], ant colony optimization (ACO) algorithms [31],
and GR-2opt [32].

However, conventional heuristic algorithms which are de-
signed for minimizing the total traveling distance in TSP prob-
lems cannot be directly applied here since the optimization ob-
jective here is to minimize the total energy consumption. The
calculation of the energy consumed for flying through each
sement involves the joint optimization of trajectory scheduling,
velocity control, and frequency regulation, which cannot be
directly solved by existing heuristic algorithms. In this work,
problem P2 is solved subsequently by the DP algorithm
based on the obtained minimum energy consumption of each
segment. The reason lying behind is that DP is a classic
algorithm to obtain the optimal solution, which can serve as
an upper performance benchmark for evaluating other heuristic
algorithms.

In DP, the evolution of the system state under the influence
of decisions taken at discrete stages is given by xτ+1 =
z(xτ , uτ ), τ = 0, 1, 2, · · · , ψ−1, where ψ is the total number
of stages, τ is the stage index, xτ and xτ+1 are the states
of stage τ and stage τ + 1, respectively, uτ is the decision
made at stage τ , and z enumerates the updating mechanism
of state. By setting the set of states as the set of target points,
e.g., xτ = k, and the set of decisions as the set of trajectory
scheduling variables, e.g., uτ = sp

k,k′
[τ ], the state updating

form is given by

xτ+1 |xτ=k=
∑

k′ 6=k,k′∈K

k
′
sp
k,k′

[τ ], (13)
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The cost function in stage τ , i.e., g(xτ , uτ ), is additive over
stage, which is given by

g(xτ , uτ ) |(xτ=k,uτ=sp
k,k
′ [τ ])

=
∑

k′ 6=k,k′∈K

sp
k,k′

[τ ]E∗
k,k′

. (14)

Here, E∗
k,k′

denotes the minimum energy consumption re-
quired to move from target point k to target point k

′
. For the

deterministic finite-state TSP where ψ is finite, the minimum
energy consumption of IUAV n with the initial stage x0 = 0
(τ = 0, k = 0) is given by

J∗(x0) = min
SpK

[ ψ−1∑
τ=0

g(xτ , uτ ) + g(ψ)
]
, (15)

where g(ψ) is the terminal cost which represents the minimum
energy consumption of the last segment. J∗(x0) can be
obtained by using DP, which proceeds backward from stage
ψ − 1 to stage 0 as

Jψ(xψ) = g(xψ), (16)

Jτ (xτ ) = min
sp
k,k
′ (τ)
{g(xτ , uτ ) + Jτ+1(z(xτ , uτ ))},

τ = 0, 1, · · · , ψ − 1. (17)

However, the above DP-based trajectory scheduling algo-
rithm involves a set of unknown parameters, i.e., {E∗

k,k′
|

k, k
′ ∈ K, k′ 6= k}, which can be obtained by solving the

following joint velocity and frequency regulation problem

P4 : min
{Vk,FcN}

dk,k′
(c1

k,k′
(vk,k′ )

4 + c2
k,k′

(vk,k′ )
2

+
P cfk,k′ tc
vk,k′

)
,

s.t. C1 ∼ C3. (18)

Considering the fk,k′ related constraints C1 and C2 in P4,
we have

fk,k′ = max(
vk,k′

c3
,

log2 Pmax
log2 Pr(δk,k′ )

). (19)

P4 can be further divided into two scenarios based on velocity
range, i.e., the high-velocity scenario and the low-velocity
scenario.

In the high-velocity scenario, i.e.,
v
k,k
′

c3
≥ log2 Pmax

log2 Pr(δk,k′ )
, we

have fk,k′ =
v
k,k
′

c3
, and P4 is written as

P5 : min
v
k,k
′
dk,k′

(c1
k,k′

(vk,k′ )
4 + c2

k,k′

(vk,k′ )
2

+
P ctc
c3

)
,

s.t. C1 ∼ C3. (20)

In the low-velocity scenario, i.e., log2 Pmax
log2 Pr(δk,k′ )

>
v
k,k
′

c3
, we

have fk,k′ = log2 Pmax
log2 Pr(δk,k′ )

, and P4 is written as

P6 : min
v
k,k
′
dk,k′

(c1
k,k′

(vk,k′ )
4 + c2

k,k′

(vk,k′ )
2

+
P ctc log2 Pmax

vk,k′ log2 Pr(δk,k′ )

)
,

s.t. C1 ∼ C3. (21)

It is noted that both P5 and P6 are convex, and can be
easily solved by using the KKT conditions. Defining v̂∗

k,k′
and

ṽ∗
k,k′

as the optimal solutions of P5 and P6, respectively, the
optimal velocity is determined as

v∗
k,k′

= arg min
{v̂∗
k,k
′ ,ṽ
∗
k,k
′ }

(
{Ek,k′ (v̂

∗
k,k′

,
v̂∗
k,k′

c3
),

Ek,k′ (ṽ
∗
k,k′

,
log2 Pmax

log2 Pr(δk,k′ )
)}
)
. (22)

Then, the optimal frequency can be determined by v∗
k,k′

as
(19).

C. Auction-matching based Energy-efficient Relay Selection
and Power Allocation

Based on the optimal flying trajectory and velocity obtained
in the first stage, the total number of time slots in segment lk,k′
can be determined. Assuming that Mk,k′ RUAVs are available
when IUAVs are flying through lk,k′ , the second-stage energy-
efficient relay selection and power allocation problem given in
P3 becomes a two-sided matching problem with N IUAVs on
one side, and Mk,k′ RUAVs on the other side.

The two-sided matching is denoted as χ, which maps
elements in set N to setMk,k′ in a one-to-one fashion. For an
instance, χ(n) = m represents that IUAV n is matched with
RUAV m. In general, χ is obtained based on the preference,
which is defined as the reciprocal of the minimum achievable
energy consumption minus the matching cost. The cost set
of RUAVs is defined as Λ={ξ1, · · · , ξm, · · · , ξM

k,k
′ }, i.e., the

cost of selecting RUAV m for any IUAV is ξm. Hence, the
preference value of IUAV n towards RUAV m is calculated
as

Ên,m
k,k′

=
1

En,d
k,k′

(P d∗n [t])
− ξm, (23)

where P d∗n [t] is the optimal power allocation strategy, which
can be obtained by solving the following power allocation
problem

P7 : min
Pdn[t]

En,d
k,k′

(P dn [t]),

s.t. C4, C6. (24)

By solving (24), the optimal power allocation strategy is given
by

P d∗n [t] = min(max(P dn [t], Pn,min), Pn,max), (25)

where

P dn [t] =
γ0gm,BmN0P

d
m[t] + γ0N

2
0

gn,mgm,B0P
d
m[t]− γ0gn,mN0

. (26)

Then, the preference list of any IUAV n, i.e., Φn, is estab-
lished by sorting M RUAVs in a descending order according
to Ên,m

k,k′
.

During the iterative matching process, a matching request
is sent from any IUAV that remains unmatched to its most
preferred RUAV in the preference list. If there exists only
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one matching request, then a stable matching is formed ac-
cordingly. A matching contention arises when multiple IUAVs
simultaneously send matching requests to the same RUAV. We
propose an English auction strategy to resolve the contention
and update preference.

English auction can be regarded as a typical second-price
auction, in which the winner has to outbid the second-highest
bidder with a predefined minimum increment. The auction
model is composed of four fundamental elements: 1) Auction
goods: the set of RUAVs that are requested by multiple IUAVs,
which is defined as G; 2) Auctioneer: the macro BS which
determines the allocation of G based on the principle of
auction; 3) Bidders: the set of IUAVs that request the same
RUAV, which is defined as B; 4) Bidding Price: the cost set
Λ.

For any RUAV in G, an auction is implemented as follows.
In the i-th bidding round, the bidding price of bidders, i.e.,

IUAVs in B, is increased by a predefined amount ∆ξm, which
is given by

ξm[i] = ξm[i− 1] + ∆ξm. (27)

Then, the preference lists of bidders are also updated based
on the latest bidding price, since the preference of any bidder
towards RUAV m is decreased by an amount ∆ξm. As the
bidding iteration proceeds, any bidder except the winner will
quit the bidding due to the continuous growth of the matching
cost, i.e., some other URAV m

′
(m
′ 6= m) is more preferred

than RUAV m, Ên,d
k,k′
|χ(n)=m< Ên,d

k,k′
|χ(n)=m′ . The auction

terminates when no bidder is willing to outbid the current
price, and RUAV m is matched with the IUAV who bids the
highest price.

The matching process will continue until either any IUAV
has been matched with some RUAVs, or none RUAV is
available for relaying.

D. Property Analysis

In this subsection, we provide the convergence and com-
plexity analysis.

By employing the concept from the matching theory [33],
the following convergence and stability properties can be
derived. The proof is omitted here due to space limitation.

Theorem 1: χ generated by the auction-matching based
joint relay selection and power allocation algorithm converges
to a stable matching.

Based on [34], the computational complexity of the DP-
based energy-efficient trajectory scheduling, velocity control,
and frequency regulation algorithm is O(ψ22ψ−1). For the
auction-matching based relay selection and power allocation
algorithm, the corresponding computational complexity is
O(NN loop) if N ≥Mk,k′ , or O(Mk,k′N

loop) if Mk,k′ ≥ N ,
where N loop is the number of bidding rounds.

VI. PERFORMANCE EVALUATION

In this section, the proposed two-stage energy consumption
minimization algorithm is evaluated based on real-world map
and realistic power grid topology, which is shown in Fig.
2. The solar farm located in Newton County, Mississippi, is

Fig. 2: A snapshot of the solar farm located in Newton County,
Mississippi.
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Fig. 3: The relationship among segment energy consumption,
flight velocity, and beacon broadcasting frequency.

selected as the simulation scenario, where solar power plants
are represented by small yellow points. The corresponding
geographical and capacity data are obtained from both U.S.
Energy Information Administration (EIA) [35] and Google
Earth. An example of plant information is shown in Table
I. Simulation parameters are shown in Table II.

Fig. 3 shows the relationship among segment energy con-
sumption (e.g., Ek,k′ ), flight velocity, and broadcasting fre-
quency of distance estimation beacons. It is noted that the
energy consumption decreases firstly and then increases with
velocity, while increases monotonically with broadcasting fre-
quency. The reason is that whenever the increased propulsion
energy consumption due to unit velocity increment is less than
the amount of energy saved from flight duration reduction,
the energy consumption decreases as velocity increases. Oth-
erwise, the energy consumption increases with velocity.

Fig. 4 shows the impact of target point numbers on the
total energy consumption. The greedy algorithm which always
selects the segment with minimum energy consumption at
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Fig. 4: The impact of target point numbers on the total energy
consumption.
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Fig. 5: The second-stage energy consumption versus the
number of IUAVs.

each stage, and the random scheme which randomly de-
termines trajectory, velocity, broadcasting frequency, relay,
and transmission power, are used for comparison. Numerical
results demonstrate that the energy consumption performances
of all of the three algorithms deteriorate as the number of
target points increases. Nevertheless, the energy consumption
increasing rate of the proposed algorithm, i.e., the curve slope,
is much lower compared with the two heuristic algorithms due
to the joint optimization of multiple variables from an energy
efficiency perspective.

Fig. 5 shows the second-stage energy consumption versus
the number of IUAVs. The brute-force searching scheme
which achieves the optimum performance by examining every
possible combination is used to served as the upper perfor-
mance benchmark. It is shown that the proposed algorithm
can achieve up to 87.6% of the optimum performance, and
outperform the random allocation scheme by more than 41.8%
when N = 5. The reason lies behind is that relay selection
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Fig. 6: The tradeoff between energy consumption reduction
and computational complexity.
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Fig. 7: The impact of trajectory scheduling optimization and
relay selection optimization on the total energy consumption.

is not jointly optimized with power control in the heuristic
algorithm.

Fig. 6 shows the tradeoff between energy consumption
reduction and computational complexity. Numerical results
demonstrate that the joint optimization of trajectory schedul-
ing, velocity control, and frequency regulation could bring
an energy saving gain up to 75.1% at the cost of a 73.2%
computational complexity increment. In particular, it is noted
that the energy saved from the joint optimization of relay
selection and power allocation is trivial compared to the
total amount of energy consumption. The reason lies behind
is that the propulsion power is usually several orders of
magnitudes higher than the data transmission power. Thus,
proper consideration of energy saving gains and computational
complexity costs are required to achieve satisfactory energy
efficiency performance. This phenomenon is further revealed
in Fig. 7, which demonstrates the energy saving could achieve
75.1% when the number of target points is 10.
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TABLE I: An example of plant information

Number Plant Code Capacity Longitude Latitude
1 59474 17.5 MW 35◦42’54.8”N 81◦09’01.0”W
2 59519 3.5 MW 35◦42’43.8”N 81◦08’04.9”W
3 58829 5 MW 35◦39’21.7”N 81◦11’05.9”W

TABLE II: Simulation Parameters.

Simulation Parameters Value
Propulsion power related coefficient c1

k,k
′ 0.001∼0.1

Propulsion power related coefficient c2
k,k
′ 20∼2000

Channel coherence time related coefficient c3 2.539 ∗ 10−2

Beacon signal duration tc 100 µs
Noise power N0 -114 dbm
Collision probability threshold Pmax 10−4

SNR threshold γ0 20 db
Maximum transmission power for IUAV n Pn,max 20 dbm
Minimum transmission power fot IUAV n Pn,min 0 dbm
Maximum flight velocity V

k,k
′
,max

20 m/s
Minimum flight velocity V

k,k
′
,min

2 m/s
Number of IUAV 1∼5
Number of RUAV 6
Estimations errors δ

k,k
′ 2∼4 m

The probability of estimations errors Pr(δ
k,k
′ ) 0.1∼0.2

Number of target points K 10
Cell radius of base station 5 km

VII. CONCLUSION

In this paper, we investigated IIoUAVs based power line
inspection in smart grid, and proposed a two-stage energy-
efficient joint trajectory scheduling, velocity control, frequency
regulation, relay selection, and power allocation algorithm by
combining DP, auction theory, and matching theory. The pro-
posed algorithm was compared with other heuristic algorithms
based on real-world map and realistic power grid topology, and
its superior performance in energy consumption reduction was
validated through numerical results. In future works, we will
focus on how to jointly optimize trajectory scheduling and
collision avoidance via machine learning based approaches.
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