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Abstract
Nanoporous and nanowire structures based on silicon (Si) have a well recognized potential in a
number of applications such as photovoltaics, energy storage and thermoelectricity. The
immiscibility of Si and aluminum (Al) may be utilized to produce a thin film of vertically aligned
Al nanowires of 5 nm diameter within an amorphous silicon matrix (a-Si), providing a cheap and
scalable fabrication method for sub 5 nm size Si nanostructures. In this work we study
functionalization of these structures by removal of the Al nanowires. The nanowires have been
etched by an aqueous solution of HCI, which results in a structure of vertically aligned
nanochannels in a-Si with admixture of SiO,. The removal of Al nanowires has been monitored
by several electron microscopy techniques, x-ray diffraction, Rutherford backscattering
spectroscopy, and optical reflectance. We have established that optical reflectance measurements
can reliably identify the complete removal of Al, confirmed by other techniques. This provides a
robust and relatively simple method for controlling the nano-fabrication process on a
macroscopic scale.
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(Some figures may appear in colour only in the online journal)

Introduction

The optical properties of silicon (Si) nanostructures are
widely researched towards utilizing silicon in photonics and
optimizing absorption properties in thin film silicon solar cells
[1]. Specifically, reducing the dimensions of Si to the
quantum confinement regime in order to increase and change
the bandgap type from indirect to direct is particularly inter-
esting for such applications [2—4]. Si nanostructures have also
been suggested incorporated into e.g. energy storage devices
and thermoelectric materials [5-8].
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Various fabrication methods have been developed to
achieve ‘<5nmsize’ silicon structures such as porous Si
[9-11], Si nanowalls [3], nanowires [12] and quantum dots
[4]. Self-assembly approach has already shown a great
potential for fabrication of a broad range of nanostructured
films and composite materials: from organic—inorganic
structures [13—15] to pure inorganic based systems [16, 17].
Nanoporous amorphous Si (a-Si) consisting of parallel verti-
cally aligned channels may be fabricated via nanophase
separation between aluminum (Al) and Si and subsequent
selective etching of Al [18]. The structure arises from self-
assembly of Al nanowires which are formed in the a-Si due to
the low solubility of Si and Al in the solid state [19]. The Al
wires grow perpendicularly to the substrate surface and
stretch over the film thickness. Previous reports have
demonstrated the fabrication of such structures by magnetron
sputtering and filtered cathodic vacuum arc deposition
[18, 20]. Thggeresen et al have recently demonstrated that Al

© 2019 IOP Publishing Ltd  Printed in the UK
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Figure 1. Top view HRTEM (a) and (b) and cross-section HAADF STEM (c) images and EDS stoichiometry profile (d) for the as-grown aSi:

Al film.

nanowires with 5 nm diameter within an a-Si framework may
be fabricated by co-sputtering of Al and Si at room temper-
ature [21].

In this study we investigate functionalization of the a-Si
nanostructure by removing Al with wet chemical etching. We
have fabricated nanoporous films with well-aligned, evenly
distributed, straight pores with a diameter of ~5nm and a
length of 100 nm. The structures have been characterized by
transmission electron microscopy (TEM), Rutherford back-
scattering spectrometry (RBS), x-ray diffraction (XRD) and
ultraviolet-visible-near infrared spectrophotometry (UV-vis-
NIR). We demonstrate that the removal of Al-nanowires can
be monitored by relatively simple optical measurements, thus
providing a robust and simple method for controlling the
nano-fabrication process on a macroscopic scale.

Methods

Si and Al were co-sputtered by a CVC 601 magnetron sput-
tering system onto single crystalline p-Si (100) substrates.
The system consisted of two 8” targets with normal sputter
angle and 6 cm distance between substrate and targets. The
deposition was performed at room temperature with thin
alternating layers with a ratio of approximately 40 atomic %
Al and 60 atomic % Si obtained by a power of 400 W for Si
and 150 W for Al with a substrate rotation of 2.5 rpm and a
sputtering time of 22 min. The rotation speed corresponds to
deposition of Al and Si layers of about 1 nm, but segregation
between the elements is observed as particle formation rather
than layer formation. For a more detailed description of the
deposition process see [12]. The sputtering process was car-
ried out in an argon atmosphere at 3 mTorr and with a
hydrogen flow of 4 ml min~'. Formation of Al nanowires was
confirmed by TEM. Al was removed by a wet etch process in
a 1:1 solution of 37% HCI in deionized water. Changes in
etching conditions during etching is considered to be negli-
gible (Al content <1:10°). The etching process was done at
room temperature without agitation of the solution. After
etching, the samples were rinsed in deionized water.

High resolution TEM (HRTEM), high angled annular
dark field (HAADF) scanning TEM (STEM), and energy
dispersive spectroscopy (EDS) was performed using a FEI
Titan G2 60-300 microscope with a super EDS detector. The
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Figure 2. Cross-sectional HAADF STEM image (a) and a
corresponding EDS line scan (b) of a-Si:Al film etched for 4 h.
Cross-sectional TEM image (c) and a corresponding EDS line scan
(d) for a a-Si:Al film etched for 30 h.

cross-sectional samples were prepared by grinding and ion-
milling using a Gatan precision ion position system with 4 kV
gun voltage.

Optical characterization was performed by measuring
total reflectance at room temperature using a Shimadzu
SolidSpec-3700/3700DUV spectrophotometer with a wave-
length range of 186-2500nm and fitted with an integral
sphere.

XRD with a Rigaku MiniFlex 600 (Cu Ka-radiation,
X = 1.54 A) was used to analyze Al nanowires. The samples
stoichiometry was analyzed by RBS with 1.62MeV 4He™
ions backscattered into a detector positioned at 165° relative
to the incident beam direction. Composition of the films was
determined from the experimental spectra using simulations
performed with the SIMNRA code [22] without taking into
account a porosity of the films.

Results and discussion

Figure 1 shows TEM results for an as-grown sample. In the
HAADF STEM cross-sectional images of the as-deposited
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Figure 3. (a) XRD, (b) RBS and (c) Al depth distributions used for fitting the measured RBS spectra, of samples etched in HCI for 0-30 h.

a-Si:Al film (figure 1(c)) one can observe Al-nanowires as
bright threads that cross through the 100 nm film. The top
view image in figure 1(a) shows that the wires are evenly
distributed in the film and that the diameter of the nanowires
is around 5 nm. The HRTEM image in figure 1(b) indicates
that the Al-nanowires are crystalline. The crystallinity of the
wires is further demonstrated and discussed in [12]. EDS
measurements (figure 1(d)) confirm a close to uniform dis-
tribution of Al over the film thickness, as well as the 50:50
ratio between Si and Al in the film stoichiometry. These
observations are consistent with those reported previously
[18, 20] and demonstrate reproducibility and robustness of the
growth method.

Treatment of the sample in the HCI solution results in
etching of the Al nanowires (figure 2). Figure 2(a) shows a
HAADF STEM cross-sectional image of a sample etched in
HCI for 4 h. The brighter contrast areas indicate the presence
of Al. The image shows that the performed etching results in
partial removal of Al, leaving residual Al in the nanochannels
deeper in the film. It can also be observed that the etching
process does not seem to remove the Al uniformly in different
nanochannels. The EDS line scan presented in figure 2(b)
shows that the overall Al-concentration increases gradually
towards the substrate. In addition, the oxygen concentration
inversely follows the Al concentration, indicating oxidation of
the exposed a-Si. If etched for a sufficient period of time, the
Al in the nanochannels may be removed as shown in the
cross-sectional TEM image of a sample etched for 30h
(figure 2(c)). This observation is supported by the EDS line
scan in figure 2(d), which shows that Al is removed, and the
EDS signal is below the detection limit. The required etching
time is determined by the rate of transport of etchant in the
nanochannels, and due to the narrow channel width, the
etching rate is slower than the common etching rate of Al
[23, 24]. The EDS line scan also shows a homogenous level
of O and Si throughout the film and corresponding x-ray
photoelectron spectroscopy (not shown here) shows that the
film consists of both SiO, and a-Si. Thus, complete etching
results in a homogenous film with unfilled straight nano-
channels in the a-Si framework.

The results from electron microscopy measurements are
complemented and supported by other techniques (figure 3).
From XRD measurements presented in figure 3(a) it is clear
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Figure 4. Reflectance as a function of etching time. Insert shows
reflectance of samples with Al removed of thickness 105-117 nm.
Thickness was measured by x-ray reflectivity prior to Al removal.

that the intensity of the Al reflections (111) and (200) is
reduced with increasing etching time, indicating a gradual
reduction in Al content. RBS was used to analyze the depth
distribution of Al through the film. Figure 3(b) shows RBS
spectra for the as-deposited sample and samples etched for
0.5, 4 and 30 h. The Al concentration profiles deduced from
the fitting of the RBS measurements are shown in figure 3(c).
The Al profile after 4 h is consistent with the EDS line scan
showed in figure 2(c). After 30h of etching, there is no
measured response from Al in the sample.

Wet chemical etching has a significant effect on the
optical properties of the structures, in particular on the
reflectance (figure 4). The as-grown aSi:Al films exhibit a
reflectance of around 60%—-65% within a wide spectral range.
However, already a short etching time (0.5 h) results in a
considerable decrease of the reflectance down to 15%—-20% in
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Figure 5. Reflectance (a), (c) and RBS (b), (c) of sample set 2 and 3 etched in HCI for 0—10 h and 0-33 h. Inset shows XRD before and after

Al removal.

the spectral range from UV to NIR (200-1000 nm) and gra-
dually decreases further with increase of the etching time.
Clearly, the reduction of reflectance is in direct relation with
the reduction of Al content in the nanochannels according to
TEM, XRD and RBS measurements. The likely cause of this
effect is a gradient in refractive index due to varying Al and
oxide (Al,O3 and SiO,) content introduced by the etching
[25]. In addition, plasmonic scattering and absorption at the
Al nanowires in the a-Si matrix may contribute to the
observed decrease in reflectance [26, 27]. After etching for
30 h, however, we observe a dramatic change in the reflec-
tance. It shows a strong dependence on the wavelength,
consistent with and governed by the interference. This is
supported by an observed shift in reflectance peak with
increased thickness (shown in inset in figure 4). The change in
the reflectance coincides with the removal of Al nanowires
observed by TEM and EDS (figures 2(c), (d)). Measurements
of diffuse reflectance have not revealed any significant change
for as-deposited, partly, and fully etched samples.

The correlation between optical properties and Al content
is confirmed for several other samples (figure 5). Figure 5(a)

confirm the decrease in reflectance in the UV and visible
range after a short etching time, until the appearance changes
towards a strong wavelength dependent peak for two different
sample sets. The removal of Al at this point is supported by
RBS and XRD measurements which are shown in figures 5(b)
and (d). It can be noted that the etching time needed for
complete Al removal differs between the sample sets.
Preliminary investigations suggest that the difference in
required etching time is due to minor difference in the
microstructure of the nanowires [28]. Nevertheless, the opti-
cal reflectance measurements have reliably identified the
removal of Al from the nanowires.

Conclusion

In conclusion, we have studied functionalization of self-
assembled nanostructured a-Si:Al films. The Al nanowires,
formed in the course of magnetron sputtering of a-Si:Al films
have been etched by an aqueous solution of HCI resulting in a
structure of vertically aligned nanochannels. The removal of
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Al from the nanowires has been monitored by several tech-
niques. It has been established that optical reflectance mea-
surements can reliably identify the removal of Al, thus
providing a relatively simple method of controlling the fab-
rication process on a macroscopic scale.
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