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Abstract 
The design of the distribution system is a Strategie issue for almost every Company. The 

Problem of locating facilities and allocating customers Covers the core topics of distribution 
system design. Model formulations and Solution algorithms which address the issue vary 
widely in terms of fundamental assumptions, mathematical complexity and computational 
Performance. This paper reviews some of the contributions to the current state-of-the-art. In 
particular, continuous location models, network location models, mixed-integer programming 
models, and applications are summarized. 

Keywords: Strategie planning; distribution system design; facility location; mixed-
integer programming models 

1 Introduction 

Decisions about the distribution system are a Strategie issue for almost every Company. The 
Problem of locating facilities and allocating customers Covers the core components of distri
bution system design. Industrial firms must locate fabrication and assembly plants as well as 
warehouses. Stores have to be located by retail outlets. The ability to manufacture and market 
its produets is dependent in part on the location of the facilities. Similarly, government agencies 
have to decide about the location of offices, schools, hospitals, fire stations, etc. In every case, 
the quality of the services depends on the location of the facilities in relation to other facilities. 

The problem of locating facilities is not new to the Operations research Community; the 
challenge of where to best site facilities has inspired a rieh, colorful and ever growing body 
of literature. To cope with the multitude of applications encountered in the business world 
and in the public sector, an ever expanding family of models has emerged. Location-allocation 
models cover formulations which ränge in complexity from simple linear, single-stage, single-
produet, uncapacitated, deterministic models to nonlinear probabilistic models. Algorithms 
include, among others, local search and mathematical programming-based approaches. 

It is the purp ose of this paper to review some of the work which has contributed to the 
current state-of-the-art. The focus is on the fundamental assumptions, mathematical models 
and specific references to Solution approaches. For the sake of brevity, work which has been 
done using Simulation is neglected; see, for instance, Conners et al. (1972). 

The outline of the work is as follows: In Section 2 types of models are classified. Section 3 
reviews continuous location models. Then, Section 4 is dedicated to network location models, 
while Section 5 provides mixed-integer programming models. Finally, Section 6 Covers a variety 
of applications. 

2 Types of Models 

Facility location models can be broadly classified as follows: 

1. The shape or topography of the set of potential plants yields models in the plane, network 
location models, and discrete location or mixed-integer programming models, respectively. 
For each of the subclasses distances are calculated using some metric. 

2. Objectives may be either of the minsum or the minmax type. Minsum models are designed 
to minimize average distances while minmax models have to minimize maximum distances. 
Predominantly, minsum models embrace location problems of private companies while 
minmax models focus on location problems arising in the public sector. 

3. Models without capacity constraints do not restrict demand allocation. If capacity con-
straints for the potential sites have to be obeyed demand has to be allocated carefully. In 
the latter case we have to examine whether single-sourcing or multiple-sourcing is essential. 
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4. Single-stage models focus on distribution systems covering only one stage explicitly. In 
multi-stage models the flow of goods comprising several hierarchical stages has to be ex-
amined. 

5. Single-product models are characterized by the fact that demand, cost and capacity for 
several products can be aggregated to a single homogeneous product. If products are 
inhomogeneous their effect on the design of the distribution system has to be analyzed, 
viz. multi-product models have to be studied. 

6. Frequently, location models base on the assumption that demand is inelastic, that is, 
demand is independent of spatial decisions. If demand is elastic the relationship between, 
e.g., distance and demand has to be taken into account explicitly. In the latter case cost 
minimization has to be replaced through, for example, revenue maximization. 

7. Static models try to optimize system Performance for one representative period. By con-
trast dynamic models reflect data (cost, demand, capacities, etc.) varying over time within 
a given planning horizon. 

8. In practice model input is usually not known with certainty. Data are based on forecasts 
and, hence, are likely to be uncertain. As a consequence, we have either deterministic 
models if input is (assumed to be) known with certainty or probabilistic models if input 
is subject to uncertainty. 

9. In classical models the quality of demand allocation is measured on Isolation for each pair 
of supply and demand points. Unfortunately, if demand is satisfied through delivery tours 
then, for instance, delivery cost cannot be calculated for each pair of supply and demand 
points separately. Combined location/routing models elaborate on this interrelationship. 

Additional attributes such as single- vs. multiple objective models or desirable vs. undesirable 
facilities may be distinguished; see, for instance, Aikens (1985), Brandeau and Chiu (1989), 
Daskin (1995), and Revelle and Laporte (1996). 

3 Continuous Location Models 

Continuous location models (models in the plane) are characterized through two essential at
tributes: (a) The Solution Space is continuous, that is, it is feasible to locate facilities on every 
point in the plane, (b) Distance is measured with a suitable metric. Typically, the Manhattan 
or right-angle distance metric, the Euclidean or straight-line distance metric, or the Zp-distance 
metric is employed. 

Continuous location models require to calculate coordinates (x, y) E.W x Rp for p facilities. 
The objective is to minimize the sum of distances between the facilities and m given demand 
points. 

The subject of the Weber problem is to determine the coordinates (x, y) E R x E of a single 
facility such that the sum of the (weighted) distances Wkdk(x,y) to given demand points k € K 
located in (a&, W is minimized. The corresponding optimization problem 

can be solved efRciently by means of an iterative procedure. This gradient-like search method 
was originally proposed by Weiszfeld (1937) and has been further improved by Miehle (1958). 
This simple problem has a century-long tradition for the case of \K\ = 3 demand points and it 
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has beert included in the famous book of Weber (1909) giving the problem its nowadays name. 
The history of the Weber problem is well documented in Wesolowsky (1993). 

An extended version of the problem requires to locate p, 1 < p < \K\ facilities and to 
allocate demand to the chosen facilities. This problem, also denoted as multisource Weber 
problem (MWP), is NP-hard. It can be modelled as the nonlinear mixed-integer program 

p 
z;(MWP) = min dk(xJ'Vj))zkj 

keK j=1 
p 

s.t.: = 1 V k e K 
3=1 

Zkj € B V k 6 K, j = 1, ..., p 
x, y 6 W 

where B = {0,1} and equals 1 if demand point k is assigned to facility j. Exact Solution 
procedures reformulate the model as a set partitioning problem, the LP-relaxation of which can 
be solved by column generation; see Rösing (1992b) and du Merle et al. (1999). Fast heuristic 
algorithms have been proposed by Taillard (1996), Hansen et al. (1998) and Brimberg et al. 
(2000). The special case of p — 2 facilities has been analyzed by Ostresh (1973), Drezner (1984), 
Rösing (1992b) and Chen et al. (1998). 

A couple of variants and extensions of continuous location problems have been investigated 
in literature. To mention a few: Problems with barriers are the subject of, e.g., Hamacher and 
Nickel (1994) and Käfer and Nickel (2001). The location of undesirable (obnoxious) facilities 
requires to maximize minimum distances; see, e.g., Melachrinoudis (1988), Erkut and Neuman 
(1989) and Brimberg and Mehrez (1994). Location models with both desirable and undesirable 
facilities have been analysed in, for instance, Chen et al. (1992). Minmax location models have 
been dealt with, among others, by Krarup and Pruzan (1979), Love et al. (1988, pp. 113 ff.) and 
Francis et al. (1992, pp. 217ff.). 

4 Network Location Models 

In network location models distances are computed as shortest paths in a graph. Nodes represent 
demand points and potential facility sites correspond to a subset of the nodes and to points on 
arcs. 

The network location model corresponding to the continuous multisource Weber model is 
called p-median problem. In the p-median problem p facilities have to be located on a graph 
such that the sum of distances between the nodes of the graph and the facility located nearest 
is minimized. Hakimi (1964, 1965) has shown that it is sufficient to restrict the set of potential 
sites to the set of nodes in the case of concave distance functions. 

Let K denote the set of nodes, J C K the set of potential facilities, wkdkj the weighted 
distance between nodes k and j, yj a binary decision variable being equal to 1 if node j is 
chosen as a facility (0, otherwise), and xkj a binary decision variable reflecting the assignment 
of demand node k 6 K to the potential facility site j. Then 

z/(PMP) = min Y2(wkdkj)zkj (la) 
keK j£J 

s.t.: ^2,zkj = 1 V k € K (lb) 
jeJ 

Zkj ~ Vj 5s 0 V k E K, j £ J (lc) 
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£vi=p (ld) 
jeJ 

Zkj,yje B VjeJ (le) 

formally describes the p-median problem. Constraints (lb) guarantee that demand is satisfied, 
inequalities (lc) couple the location and the assignment decision, and constraint (ld) fixes 
the number of selected facilities to p. Solution methods for the p-median problem have been 
presented by, e.g., Christofides and Beasley (1982), Hanjoul and Peeters (1985), Beasley (1993) 
and Klose (1993). 

Let us now consider the p-center problem the aim of which is to locate p facilities such that 
the maximum distance is minimized. Unfortunately, for the p-center problem we cannot restrict 
the set of potential facility sites to the set of nodes because the maximum of concave distance 
functions is no concave function any more. Fortunately, it suffices to consider a finte set of points 
on the arcs. These points can be determined as intersection points q for which the weighted 
distance Widiq between q and node i G K equals the weighted distance w^d^q between q and 
another node k G K. Let J denote the set of intersection points. Then the discrete optimization 
model 

i/(PCP) = min r (2a) 

s.t.: r - ̂ wkdkjZkj >0 VA: e K (2b) 
jeJ 

£ Zkj = 1 V k G K (2c) 
jeJ 

Zkj -Vj < 0 V k G K, j G J (2d) 

£w=P (2e) 
jeJ 

yj e ® VjeJ (2f) 

formally describes the p-center problem which can be transformed into a sequence of covering 
problems; see, e.g., Handler (1979) and Domschke and Drexl (1996). We start with a given set 
S C J, |5| < p, of centers with radius r = max-keK m^jes{wkdkj}• Then the covering model 

z/(SCP) = min ^ yj (3a) 
jeJ 

s.t.: ^2 akjVj >1 V k 6 K (3b) 
jeJ 

yj 6 B VjeJ (3c) 

with akj = 1 for Wkdkj < r and cikj = 0 for Wkdkj > r computes a set of at most p centers with 
a radius smaller than r or shows that no such set exists. 

Recently, Boland et al. (2001) considered the so-called "discrete ordered median problem" 
which contains, among others, p-median and p-center problems as special cases. 

The models treated so far assume given demand and cost minimization as objective. On the 
contrary competitive facility location models aim at maximum sales or market shares. One of 
the first papers is due to Hotelling (1929). A survey and a Classification can be found in Eiselt 
et al. (1993); see Dobson and Karmarkar (1987) and Bauer et al. (1993) also. 

Given an undirected graph with arc and node weights two basic models can be described 
as follows. The nodes A; G K of the graph represent the customers with known demand 6% for 
a certain product. Two companies A and B producing that product compete for customers. 
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Company A (B) wants to locate r (p) facilities in order to satisfy customers. Originally none of 
the companies is present in the market. At first Company A determines locations of r facilities, 
then Company B does so for p facilities. Customers always choose the nearest facility; in case of 
ties demand is divided between A and B. 

Let Ar (Bp) denote the set of facilities of A (B). Furthermore, let i/(Bp\Ar) denote the 
market share which can be achieved by Company B choosing Bp, given Ar, then both companies 
have to solve two different problems; see Hakimi (1983): 

Given Ar, Company B determines the set B* such that v(B*\Ar) = maxßp{i/(ß;,|Ar)}. If 
Bp can be chosen among all points of the graph we have to solve a (p|^4r)-medianoid problem, if 
this choice is restricted to the set of nodes it is called maximum capture problem. Models and 
methods for both cases can be found in ReVelle (1986). 

Company A determines, given Bp, the set A* such that u(A*r\Bp) = maxAr{v(Ar\Bp)}. Ar 

either can be chosen among all points of the graph or is restricted to the set of nodes. The 
problem at hand is called (p|r)-centroid problem. The reasoning is as follows: When A chooses 
his facilities no other facilities do already exist. A locates his facilities in such a way that the 
market share gained subsequently by B is minimized, i.e., A anticipates the reaction of his 
competitor. In fact A has to solve a minmax-problem, that is, he minimizes the maximum 
market share which can be gained subsequently by B. 

(p|Ar)-medianoid problems and (p|r)-centroid problems are NP-hard if r and p are not fixed 
in advance. Given p the (p|Ar)-medianoid problem can be solved in polynomial time if the 
choice is restricted to the node set; see Benati and Laporte (1994). 

5 Mixed-Integer Programming Models 

Starting with a given set of potential facility sites many location problems can be modelled as 
mixed-integer programming models. Apparently, network location models differ only gradually 
from mixed-integer programming models because the former ones can be stated as discrete 
optimization models. Yet network location models explicitly take the structure of the set of 
potential facilities and the distance metric into account while mixed-integer programming models 
just use input parameters without asking where they come from. 

A rough Classification of discrete facility location models can be given as follows: (a) single-
vs. multi-stage models, (b) uncapacitated vs. capacitated models, (c) multiple- vs. single-
sourcing, (d) single- vs. multi-product models, (e) static vs. dynamic models, and, last but not 
least, (f) models without and with routing options included. 

5.1 Uncapacitated, Single-Stage Models 

The most simple model of this category solely considers the tradeoff between fixed operating 
and variable delivery cost. Mathematically, 

(4a) 
keKjeJ j€J 

y] Zkj — 1 V k € K 
jeJ 

zkj — yj o VkeK,jeJ 

(4b) 

Vj G B V j 6 J 

(4c) 

(4d) 

(4e) 
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describes the simple plant location problem (SPLP) or uncapacitated facility location problem 
(UFLP). 

The UFLP can be formulated more compact by aggregating constraints (4c) to YlkeK zkj — 
\K\yj. The LP-relaxation of this "weak" model can be solved analytically; see Efroymson and 
Ray (1966) and Khumawala (1972). Unfortunately, the lower bounds are very weak. Cornuejols 
and Thizy (1982) have shown that the restrictions (4b) and (4c) cover all clique cuts of the UFLP 
which accounts for the fact that the model (4) yields a tight LP-relaxation. Branch-and-bound 
algorithms for the UFLP based on dual ascent methods have been proposed by Erlenkotter 
(1978) and Körkel (1989). Guignard (1988) considers the addition of Benders' inequalities 
within a Lagrangean ascent method for the UFLP. 

Obviously, the p-median problem (1) and the UFLP are close to each other. While the 
number of facilities is fixed in the p-median problem, the number of open depots is part of the 
UFLP Solution. Both models can be combined if cardinality constraints 

PL<YJ % - Pu (5) 
jeJ 

are added to (4). Usually the outcome is called account location problem or generalized p-median 
problem. The aggregate capacity constraint 

£ siVi ^ d(K) (6) 
jeJ 

where sj > 0 denotes the maximum capacity of depot j and d(K) = YhkeK total demand, 
ensures that facilities open in a feasible Solution have enough capacity in order to satisfy demand. 
Adding constraint (6) to the UFLP 

y(APLP) = min j ckjzkj + ̂  fjyj : (4b)-(4e), (6)} (7) 
j£j 

yiuelds the aggregate capacity plant location problem (APLP). Exact algorithms for solving the 
APLP have been developed by Ryu and Guignard (1992b), Thizy (1994) and Klose (1998). The 
APLP is not important as a stand-alone model but it has a dominant role as a relaxation when 
solving models presented in Section 5.2. 

The UFLP is closely related to covering problems; see Balas and Padberg (1976). Formally 
the set covering problem (SCP) computes a minimal collection {Mj : j € S} of a family 
{Mj : j 6 N} of subsets of a set M such that Mj = M holds. Letting a^- = 1 for k e Mj 
and a,kj = 0 for k £ Mj translates it into model (3). The SCP is closely related to the set 
partitioning problem (SPaP) 

y(SPaP) = min ^ % (8a) 
jeJ 

s.t.: Y,akjVj = 1 VfcGK (8b) 
j£J 
yj€ B V j € J (8c) 

and to the set packing problem (SPP): 

f(SPP) = max (9a) 
jeJ 

s.t.: Ylakjyj - 1 ^ k G K (9b) 
jeJ 
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yj e B v j e J (9c) 

The covering model (3) itself is a location model: An optimal Solution of (3) determines a 
minimal subset S = {j G J : yj = 1} of facilities such that every customer can be reached 
within a given maximal distance from one of the chosen depots. An important variant of (3) is 
denoted as the maximum covering location problem (MCLP): 

i^(MCLP) = max ^ (10a) 
kSK 

s.t.: ^2 ai-jyj - Zk> 0 V k G K (10b) 
jeJ 

Y2vj=P (10c) 
jeJ 
zk,yj € B Vk e K, j e J (lOd) 

The MCLP requires to calculate a subset S = {j G J : yj = 1} of facilities with cardinality 
p such that a maximum number of wk weighted demand nodes k £ K can be covered through 
facilities j £ S within a given maximal distance; see, e.g., Schilling et al. (1993), Daskin (1995) 
and Galvaö (1996). Defining the parameters 

Ckj = (° ' ̂  akJ * and fj = 1 Vj € J 
I oo , ior a/cj - 0 

states the SCP (3) as an UFLP. Additionally, because of 

z/(MCLP) = maxi ̂  ̂  akjWkZkj •' (lb)-(le)} 
keKjeJ 

= Y2Wk~ min{S ö1 ~ akj)wkZkj = (lb)-(le) J 
keK keKjeJ 

the MCLP (10) is equivalent to the p-median problem with the special "distance" measure dkj = 
(1 - akj)wk. On the contrary substituting variables % in the UFLP through their complement 
yCj = 1 — yj and adding slack variables rkj in (4c) leads to the special SPaP 

min - EW + E h 
keKjeJ jeJ jeJ 

s.t.: ^ zkj — 1 V k 6 K 
jeJ 

Zkj +Vj+rhj = 1 V k E K, j £ J 

Zkj, rkj, ycj£ B V k £ K, j £ J 

which in turn can be transformed into the SPP 

max cki)zkj + Efjycj 
k£K j£J k£K j G*/ 

s.t.: J2zkj — 
jeJ 

Zkj + Vj <1 V k £ K, j £ J 

zkj, ycj£ B V k G K, j G J 
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by replacing min through max and penalizing the slack Y^j zkj ~ 1 with a sufficiently large 
Lk. Guignard (1980), Cho et al. (1983) and Cornuejols and Thizy (1982) capitalize on the 
transformation from UFLP to SPaP and SPP in order to study the polyedral structure of the 
UFLP. These relationships date back to Krarup and Pruzan (1983). 

The UFLP can be transformed into the SCP as follows: Replace in (8) the restrictions 
akjUj = 1 through inequalities Y^j akjVj > 1 and gather the slack variables Yjj akjUj — 1 

with sufficiently large penalties Lk in the objective function. 

5.2 Capacitated, Single-Stage Models 

If depots have scarce capacity, constraints 

^ ] dkzkj — sjVj V j e J (1-0 
keK 

limiting transshipments Ylk^kZkj for the depots selected (yj = 1) to their capacity Sj have to 
be added. Hence, in the case of scarce capacity the UFLP mutates to the capacitated facility 
location problem (CFLP). 

The extended formulation 

z/(CFLP) = min £ £ ckjzkj + X fjyj 
keK jeJ j£J 

yi zkj—1 V keK (D) 
jeJ 

dkzkj - sjyj < 0 VjeJ (C) 
keK 

0
 

VI 1 

1
 

VkeK, VjeJ (B) 

£ sjyj ^ d(K) (T) 
jeJ 

y! zkj 5: 1 VkeK,VqeQ (U) 
jeJq 
0<zkj<l,0<yj<l vkeK, VjeJ (N) 

yj e {o, 1} Vje J (I) 

of the CFLP is a nice starting point in order to study various relaxations. A common way 
to obtain lower bounds for the CFLP is to relax constraints (C) and/or (D) in a Lagrangean 
manner and to add some additional inequalities which are implied by the relaxed constraints 
and some of the other constraints. The valid inequalities which are usually considered for these 
purposes are the variable upper bound or trivial clique constraints (B) and the aggregate capacity 
constraint (T). Besides the two additional constraints (B) and (T), one may devise a number 
of valid inequalities which can be useful to sharpen a relaxation, provided that the resulting 
subproblem is manageable. One group of redundant constraints is easily constructed as follows. 
Let {Jq : q 6 Q}, Jqr\Jh = q ^ h, denote a given partitioning of the set J of potential plant 
locations. Then the "clique constraints" (U) are implied by (D); however, they can be useful if 
constraints (D) are relaxed. 

Without taking constraints (U) into account, Cornuejols et al. (1991) examine all possible 
ways of applying Lagrangean relaxation/decomposition to the CFLP. Following their notation, 
let 

• Zß denote the resulting lower bound if constraint set S is ignored and constraints R are 
relaxed in a Lagrangean fashion, and let 
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• ZR.I/R.2 denote the bound which results if Lagrangean decomposition is applied in such a 
way that constraints Ri and i?2 are split into two subproblems. 
Regarding Lagrangean relaxation, Cornuejols et al. (1991, Theorem 1) show that 

, and -

Furthermore, they provide instances showing that all the inequalities above can be strict. The 
subproblem corresponding to Zp can be converted to a knapsack problem and is solvable in 
pseudo-polynomial time. Therefore, bounds inferior to Zp seem not to be interesting. Fur
thermore, as computational experiments show, ZQU = Zj. is usually not stronger than Zp. 
This leaves Zp and ZQ = Zc as candidate bounds. Since constraints (U) are implied by (D), 
constraints (U) can only be helpful if constraints (D) are relaxed. If the aggregate capacity con-
straint (T) is relaxed as well, the resulting Lagrangean subproblem decomposes into \Q\ smaller 
CFLPs. Obviously, 

D (Z ,if|Q| = l. 

For 1 < \Q\ < |J|, however, the bound Zp can be anywhere between the (strong) LP-bound 
ZIU = Z1 and the Optimum value Z of the CFLP, i. e. Z1 < Zp < Z. Although the subproblem 
corresponding to Zj has the same structure as the CFLP, the bound Zp may be advantegeous, 
if the set of potential plant locations is large and if the capacity constraints are not very tight. 

With respect to Lagrangean decomposition, Cornuejols et al. (1991, Theorem 2) proofthat 

ryU r?U rjU ifXJ rjU / 17TU 17U "1 ^ yU ^ yU 
^C/D ~ C/DB ' C/DT ~~ ^C/DBT ~~ ^C i max^g , v ^D/TC — ^C i 
nnrl 7U 7^ — 7^ — 7^ ana ££>/BC ~ ^D/TBC ~ ^TD/BC ~ ^D • 

Since Lagrangean decomposition requires to solve two subproblems in each iteration and to 
optimize a large number of multipliers, Lagrangean decomposition should give a bound which is 
at least as strong as Zp. The only remaining interesting bound is, therefore, As shown 
by Chen and Guignard (1998), the bound Z^^TC is also obtainable by means of a technique called 
Lagrangean substitution, which Substitutes the copy constraints x = x' by Y^k ^kzkj = Ylk dkx'kj-
Compared to the Lagrangean decomposition, this reduces the number of dual variables from 
|ÜT|-|J| + |J| to 2|J|. 

In summary, interesting Lagrangean bounds for the CFLP are Zp, Zc, Z^/TC &nd Zj^. 
Compared to Zc, the computation of the bound ZpjTC requires to optimize an increased number 
of dual variables. Furthermore, one of the subproblems corresponding to ZQ/TC is an UFLP 
while the subproblem corresponding to Zc is an APLP. Since the bound is no stronger 
than Zc and since an APLP is often not much harder to solve than an UFLP, the bound Zp ,TC 

can be discarded. The computation of these bounds by means of column generation is described 
in detail in Klose and Drexl (2001). 

In the CFLP demand dk can be supplied from more than one depot. Given a certain 
set of depots the CFLP reduces to a simple transportation problem. Apparently, this implies 
transportation cost being proportional to shipment volumes. In many practical settings this 
assumption does not hold and, moreover, it is required that each customer is satisfied from 
exactly one depot. In this case additional constraints 

zkjeM VkeK, j£j (12) 

yield a pure integer program, well-known as capacitated facility location problem with single 
sourcing (CFLPSS). Unfortunately, single sourcing constraints make the problem much harder 
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to solve. For a given set O of open depots an optimal Solution of the NP-hard generalized 
assignment problem (GAP) 

z/(GAP) = min ^ £ CkiZki (13a) 
keKjeo 

s.t.: zkj = 1 V k G K (13b) 
jeo 

dkzkj <sj VjeO (13c) 
keK 
zkj G B V k G K, j G O (13d) 

provides a minimum cost assignment of customers to depots. Note that the GAP usually is for-
mulated in such a way that capacity requirements depend on the assignments also; see Martello 
and Toth (1990, pp. 189ff.). 

Without surprise it is very difficult to calculate an exact Solution for instances of realistic 
size. From an algorithmic point of view, both for the CFLP and the CFLPSS, Lagrangian re
laxation (dual decomposition) plays a dominant role; see Geoffrion and McBride (1978), Nauss 
(1978), Christofides and Beasley (1983), Guignard and Kim (1983), Barcelo and Casanovas 
(1984), Klincewicz and Luss (1986), Beasley (1988), Shetty (1990), Barcelo et al. (1990), Cor
nuejols et al. (1991), Ryu and Guignard (1992a), Beasley (1993), Sridharan (1993), Sridharan 
(1995), Holmberg et al. (1999) and Di'az and Fernandez (2001); additionally, primal and primal-
dual decomposition algorithms have been developed; see Van Roy (1986), Wentges (1994) and 
Wentges (1996). 

5.3 Multi-Stage Models 

Consider a distribution system consisting of facilities on several hierarchically layered levels. 
Facility locations on a higher level can be determined independently of the chosen locations 
on a lower level if the following conditions are met: Higher level nodes have a sufficiently 
high capacity and handling costs as well as transshipment costs associated with these nodes 
are proportional to the amount of items reloaded and shipped, respectively. Transshipment 
cost from the source to the depot then can be charged proportional to the cost of allocated 
demand. Otherwise transshipments covering several stages of the distribution system have to be 
considered explicitly. Clearly, multi-stage facility location problems are present if depots have 
to be located simultaneously on several layers of the distribution system. 

The CFLP and the CFLPSS have to be generalized to a two-stage capacitated facility location 
model if the flow of products from a capacity-constrained predecessor stage (e.g., production 
facility, central distribution facility) to the potential depots is an additional decision variable. 
Let Xij denote the amount which has to be shipped from predecessor node i G I having capacity 
Pi to a depot located in node j. Furthermore, let tij denote the transshipment cost per unit 
(containing the handling cost at node i also) then the following two-stage capacitated facility 
location problem (TS CFLP) arises: 

i/(TSCFLP) = min £ + X X CkiZki + X (14a) 
j€.J k€K j£J j£J 

s.t.: (4b)-(4e), (6), (11) 

<ft V«G/ (14b) 
jeJ 

^2Xij = ^2 dkzkj V j G J (14c) 
i£l k£K 
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Xij -PiVj <0 Vi e I, j e J (14d) 
Xij > 0 V i € I, j € J (14e) 

If single-sourcing of demand nodes is required constraints (12) have to be added. Constraints 
(14b) take care of limited capacities at higher level nodes while restrictions (14c) are flow con-
servation constraints. (14d) are redundant but useful in order to tighten some relaxations. If 
the capacity pi of each node i G I is sufficiently large in order to cover the total demand d(K) 
per period then the TSCFLP reduces to the CFLP or the CFLPSS, respectively. 

If we introduce variables wljk which denote the fraction of demand dk being routed via path 
i j k then an alternative TSCFLP model can be stated as follows for the case of Single 
sourcing: 

zz(TSCFLP) = min X QijWijk + 
iE/ JE*/ k£K j£J 

s.t.: (4b)-(4e), (6), (11), (12) 

^ ] Wijk — Zkj V j G J ,k G K 
iei 

X X dkWirt - Pi Viel 
JE*/ k&K 

X dkwijk < PiVj Viel, j £ J 
keK 
wijk >o Viel, j e J, keK 

In this model qijk = tijdk + ckj defines the procurement cost of node keK via path i -> j —> k. 
Note that this formulation allows to model situations where the cost depend on both the source 
node i and the sink node k. Such cases occur in practice if for instance freight rates from source 
i to depot j are less than the sum of freight rates from i to j plus j to k. Apparently, the flrst 
model is advantageous if the cost q^jk can be split into two parts Ujdk and Ckj, because it has 
far fewer decision variables while the values of the LP-relaxations of both models are identical. 

It demand Splitting is allowed then the variables z&j can be eliminated in the second model. 
Accordingly, the demand constraint can be rewritten as Yliei YhjeJ wijk = 1 and the depot 
capacity restrictions as YieiT^keK dkw%jk < SjVj-

In general, models where facilities on several stages of a distribution system have to be 
located are called multi-level hierarchical facility location problems. In contrast to the TSCFLP 
the tightness of relaxations depends on whether variables for single links or variables covering 
whole paths of the network are used. If gi denotes the fixed cost of facility i G I on the highest 
level and 7i corresponding decision variables then the TSCFLP generalizes to the following 
two-level capacitated facility location problem (TLCFLP). 

z/(TLCFLP) = min £ X + X X + £ 9ili + 
iei jeJ keKjeJ iei jeJ 

s.t.: (4b)-(4e), (6), (11), (14c), (14e) 

X xv - PH* Viel 
jeJ 
- min{p,, Sj}ji <0 V i G I, j G J 

XPH* ^ d(K) 
i€l 

7i G ® Viel 
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Analogously, the UFLP generalizes to the two-level uncapacitated facility location problem 
(TUFLP). An equivalent formulation of the TLCFLP based on path variables w^k can be 
given as follows: 

y(TLCFLP) = min 52 52 ̂  QijkWijk+ 5^ 9ai + 2Z (15a) 
iei jeJ keK iei jeJ 

s.t.: y^2Y/Wijk:= 1 VkeK (15b) 
iei jeJ 

52 52 dkWijk < Pili V i G I (15c) 
j€J k£K 

52 52 dkWijk < SjVj Vje J (15d) 
iG/ k£K 

Yl Wijk <li v i G I, k e K (15e) 
jeJ 

52 wirt ~yj V j e J, k € K (15f) 
iei 

52^; % > 4#) (15g) 
jeJ 

52#-% > 4#) (15h) 
iei 
w^k >0 Viel,jeJ,keK (I5i) 

n,yj GB Viel, j eJ (I5j) 

Constraints (15b) guarantee that demand is satisfied completely. Constraints (15c) and (15d) 
take care of scarce capacities of facilities on both levels. Aggregate capacity constraints (15g) 
and (15h) are redundant but probably useful in order to tighten relaxations. The left hand 
side of (15f) corresponds to the variable in the former TLCFLP model and, hence, (15f) is 
equivalent to (4c). However, the left hand side of (15e) Covers the fraction of demand dk being 
shipped to k G K indirectly from iei. Note that this term cannot be incorporated in the 
former model because the flows on the two stages are modelled independently. 

The pros and cons of two-level hierarchical facility location models based on path variables 
are discussed in Tcha and Lee (1984), Barros and Labbe (1992), Gao and Robinson, Jr. (1992, 
1994), Aardal et al. (1996), Barros (1998) and Aardal (1998). 

Two- or multi-level facility location models cover complete distribution systems. In par-
ticular, if such models comprise the production stage also integrated production distribution 
planning - or Strategie supply chain management - is the topic; see, e.g., Chandra and Fisher 
(1994), Pooley (1994) and Erengüg et al. (1999). Two-level (hierarchical) capacitated facility 
location models can be found in Geoffrion and Graves (1974), Hindi and Basta (1994), Hindi 
et al. (1998), Pirkuland Jayaraman (1996, 1998), Tragantalerngsak et al. (1997), Aardal (1998), 
Chardaire (1999), Marin and Pelegrm (1999) and Klose (1999, 2000); uncapacitated, hierarchi
cal facility location models are discussed in Tcha and Lee (1984), Barros and Labbe (1992), 
Barros (1998), Gao and Robinson, Jr. (1992, 1994), Aardal et al. (1996), Chardaire (1999) and 
Chardaire et al. (1999). 

5.4 Multi-Product Models 

The models discussed so far are based on aggregated demand, production, handling as well as 
distribution cost. Furthermore, capacity of production, depot and transshipment nodes must be 
given uniquely for all the products. Such an aggregation is no more valid if different products 
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make different Claims on the capacities of some nodes of the network. In this case we must 
proceed to a multi-product model, where, for instance, the capacities of nodes, the demand as 
well as the flows are separated with respect to some homogeneous product groups. Such multi-
product variants of the TSCFLP and TLCFLP have been presented in Geoffrion and Graves 
(1974), Hindi and Basta (1994), Hindi et al. (1998) and Pirkul and Jayaraman (1996, 1998). 

Other typ es of multi-product models arise, e.g., if (a) different types of facilities have to 
be distinguished at some locations and/or if (b) fixed cost of Iocations depend on the product 
provided by a location. The first type is called "multi-type model" by Karkazis and Boffey 
(1981), Boffey and Karkazis (1984), Mirchandani et al. (1985), Lee (1996) and Mazzola and 
Neebe (1999) and the second is called "multi-activity model" by Klincewicz et al. (1986), Barros 
and Labbe (1992), Gao and Robinson, Jr. (1992, 1994) and Barros (1998). Both can be modelled 
uniquely if different types of facilities correspond to different products. Fixed cost depend on 
products if a specific infrastructure or equipment is required in order to provide a product or 
Service at a specific location. 

Let I denote the set of product families i £ I and (in addition to the fixed cost fj) gij the 
fixed product cost. Then an uncapacitated multi-activity model, also called multi-commodity 
or multi-activity uncapacitated facility location problem (MUFLP) can be given as follows: 

52 Y, 52 DkWijk+52 E +52 fm (16a) 
iei jeJ keK iei jeJ jeJ 

s.t.: ^ ] w^k — 1 Viel, keK (16b) 
jeJ 

Zij ~~ Uj ^ 0 v i e I, j e J (16c) 

Wijk ~ Zij ^ 0 v i e I, j e J, keK (16d) 

Zij i Uj e B Viel, je J (16e) 

Wijk > 0 Viel, je J, keK (16f) 

Here, Zij is a binary variable which equals 1 if product/service type i is provided at depot j. 
The variable w^k denotes the fraction of demand dik of demand node k for product i which 
is covered by depot j. Likewise denotes the cost of providing dik units of product i from 
depot j to demand node keK. Constraints (16b) require that the demand of each customer 
is covered. The coupling constraints (16c) and (16d) forbid to assign products to closed depots 
and to deliver product i to node k from depot j if product i is unavailable at the depot. In the 
multi-type case each facility can provide one product or Service and, hence, the constraints 

5]za ^ 1 vieJ 

iei 

have to be added. 
The model MUFLP adds product depot allocation decisions to the UFLP. Gao and Robinson, 

Jr. (1992, 1994) show that the MUFLP is a special two-stage hierarchical facility location model. 
To this end products iei have to be viewed as locations on the higher level and customer-
product pairs (k, i) as single customers k' £ K' = Kxl which have to be satisfied from combined 
locations (i, j). Allocation cost are prohibitive large if k' does not correspond to product 
type i. The resulting formulation 

v(MUFLP) = min 52 52 E ̂ wijk> + 5252+ 52 
iei jeJ keK' iei jeJ jeJ 

s.t.: 52 52 Wi3k> = 1 V k e K' 
iei jeJ 
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Zij - yj <0 V i e I, j e J 

w^k' - zij <0 Viel,jeJ,keK' 
, yj e B Vi e I, j e J 

w^k >o Viel, j e J, keK' 

is a two-stage hierarchical facility location model in which the fixed cost gij of lower level location 
j e J are determined completely through the assignment to a location i e I at the higher level. 

5.5 Dynamic Models 

In general, decisions about facility locations are made on a long-term basis. Depots, distribution 
centers and transshipment points once established shall be used for a couple of periods. How-
ever, factors influencing such decisions vary over time. In particular, demand (volume, regional 
distribution) and cost structures may change, but relocation and/or redimensioning of facilities 
can be quite costly. In order to cope with such issues dynamic location and allocation models 
have been developed. Dynamic location models are provided, for instance, by Schilling (1980), 
Erlenkotter (1981), Van Roy and Erlenkotter (1982), Frantzeskakis and Watson-Gandy (1989) 
and Shulman (1991). 

In a dynamic version of the UFLP for every depot a dose or open option is available in 
every period t = 1, ..., T where T denotes a given planning horizon. Fixed cost g\j and g°j 
for closing and opening depots are added to the fixed depot operating cost ftj for relocation 
purposes. Closing cost have to be paid if depot j e J which is open in period t - 1, that is, 
yt-i,j = 1, is closed in period t, i.e. ytj = 0; on the contrary opening cost g°j result if a depot 
which is closed in period t — 1, that is, yt-ij = 0, is openend in period t, i.e. ytj = 1. The 
following quadratic integer program is a dynamic version DUFLP of UFLP. 

T T 
„(DUFLP) = min X X X °tkjztkj + £ 21 

t=I keK jeJ t=l jeJ 
T 

+ - vtj) + X 9°J ~ vt-i,j)ytj) 
t=i jeJ jeJ 

s.t.: X ztkj = 1 V k e K, t = 1, ... ,T 
jeJ 

ztkj - ytj < o v k e K ,v j e J, t = \, ...,T 
ztkj, ytj e B v k e K, v j e J, t = l,..., T 

DUFLP can be linearized by introducing the binary variables ut-\j,j = yt-\,jytj and the addi
tional constraints 

ut-i,t,j < yt-ij, ut-i,t,j < ytj, ut-i,tj > yt-ij + ytj ~ 1 • 

Supplementary constraints 

Vt+nj ^ Vtj for T = 1, ..., 7"i or yt+roj f; ytj f°r T = 1, ..., TQ 

achieve that the status of a depot opened (closed) in period t remains open (close) for at least T\ 
(TO) periods. The dynamic UFLP variant of Van Roy and Erlenkotter (1982) further boils down 
opening/closing options. Closing a depot j e J\ being originally open is feasible in one period 
t only. Similarly, opening a depot j e JQ being originally closed is feasible in one period t only. 
Let the binary variable ytj equal 1 (0) if a depot j E J\ (j 6 Jo) is closed (opened). Furthermore, 
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let Ftj denote the discounted cash flow of the period fixed cost for the periods 1, ..., t for j 6 J\ 
and for the periods t, T for j e Jo- Then we get the following "simplified" dynamic version 
of the UFLP: 

T 
min 52 ctk3ztkj+52 (l7a) 

t=i keKjeJ jeJ 

s.t.: 52ztkj = 1 VkGif, t = l, ...,T (17b) 

t 
Ztkj — 5^2 VTi V k € K, j e Jo , t = 1, ..., T (17c) 

T= 1 
r 

•Ztfcj - 52 ̂  V k £ K, j € Ji, t = 1, T (17d) 
T—t 

ZtkjJ üij-eB V k £ K, j e N0 , t = 1, ..., T (17e) 

Constraints (17c) achieve that demand nodes keK can be assigned to locations j € Jo in 
period t if the depot has been opened in period r < t. Likewise constraints (17d) prevent that 
demand nodes keK are assigned to locations j e J\ in periods t > r if the depot will be closed 
in period r. Note that demand allocation can be changed in every period while opening/closing 
of a depot is possible only once. 

Dynamic models seem to be adequate in light of factors changing Over time. However, their 
practical relevance seems to be limited. First, a "right" planning horizon does not exist. Second, 
the amount of data required is enormous. Third, "disaggregated" models are more sensitive to 
Parameter/data adjustments than aggregated ones. Fourth, the complexity of dynamic models 
increases - compared with static models - dramatically and, hence, the chances to solve such 
models decrease. 

5.6 Probabilistic Models 

In practice some of the input data of location models are subject to uncertainty. Berman 
and Larson (1985), for instance, analyze queuing location models. Given certain distribution 
functions for the customer arrival process, waiting and Service times are approximated. The 
waiting times are a function of the demand allocation and, hence, of facility location. 

A stochastic variant of the p-median problem is discussed in Mirchandani et al. (1985). In 
particular, the input data demand and arc weights are supposed to be random variables. Under 
certain assumptions a finite number of states i e I of the graph with known probabilities can be 
enumerated. The objective of the model (18) is to minimize the expected sum of the weighted 
distances. 

min 52 52 J2 nicikjzikj (IN 
iei keKjeJ 

s.t.: 52 zikj = 1 V i e I, j e J (18b) 
jeJ 

Zikj - yj < 0 Viel, keK, jeJ (18c) 

52 Vj=P (18d) 
jeJ 

Zikj, Uj e B Viel, keK, jeJ (18e) 

The symbol cikj denotes the demand weighted distance between nodes keK and j e J in State 
i e I. The decision variables take care of the demand allocation in State i e I, the variables 
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yj model the location decisions. The stochastic p-median model (18) can easily be reduced to (1) 
by replacing the variables Zikj through variables z^, l — k + |/|(i - 1), denoting the assignment 
of demand node k G K in state i G I with corresponding allocation cost cy = Similarly, 
stochastic variants of the UFLP and CFLP can be considered, but in the case of the CFLP 
capacity constraints prevent the reduction to a deterministic CFLP with an increased number 
of demand nodes. Further stochastic location models are, e.g., discussed in Laporte et al. (1994) 
and Listes and Dekker (2001). Laporte et al. (1994) develop a branch-and-cut algorithm for a 
location problem with stochastic demand; Listes and Dekker (2001) use stochastic models with 
recourse for the purposes of locating facilities in product recovery networks. 

Unfortunately, stochastic models require a large amount of data in order to adapt empirically 
observed distributions to theoretical ones. Usually for Strategie facility location problems such 
Information is not available. Probably, calculating solutions, supported by sensitivity analysis, 
for some scenarios is useful. To gain insight into the effects of parameter changes is important. 
Furthermore, scenario analysis can be employed. This approach tries to find solutions which 
perform best over a set of scenarios with respect to some kind of regret measure; see, e.g., Owen 
and Daskin (1998) and Barros et al. (1998). 

5.7 Hub Location Models 

Recently, hub location models have reeeived considerable attention. Usually, they are studied 
on hub-and-spoke networks with the following properties: For an undirected graph with node 
set K a flow exists between every pair i,j E K of nodes. A subset of "central" nodes act as 
transshipment nodes (hubs); the other (terminal or non-hub) nodes are connected with an arc 
(spoke) starlike with one of the hubs. Flows from one node to another node travel directly if 
both nodes are hub nodes or if one node is a hub node and both are connected through a spoke. 
Otherwise, flow travels via at least another hub node. 

Similar to p-median and facility location models the number of hubs can be fixed or subject 
to decision, capacities can be scarce or non-scarce. Additionally, the hub nodes can constitute 
a complete graph, a tree or a graph without special characteristics. The non-hub (terminal) 
nodes are linked via arcs with hub nodes (and probably with other non-hub nodes also). If 
each terminal node has to be connected with exactly one hub node the Single allocation case is 
given. Otherwise, if terminal nodes have access to more than one hub the multiple allocation 
hub location problem arises. 

In what follows we consider a multiple allocation hub location problem in more detail. As-
sume an undirected, complete graph with n = \K\ nodes, arc set E and arc weights c. For each 
pair of nodes i and j the volume of traffic (flow) equals Vij. Each node k € H of a subset H C K 
of nodes can be chosen as hub node. The fixed cost of locating a hub in node k G H equal /&-
The hub network is a complete subgraph. Flows between terminal nodes travel via at most two 
hubs, flows between terminal nodes are infeasible. ckj denotes the arc weights (cost per unit). 
If one unit travels from terminal node i via hub nodes k and m to terminal node j then the cost 
are Cikmj = Cik + Ö • Ckm + cmj-; a is scaling factor, 0 < a < 1. Let Xikmj denote the fraction of 
flow Vjj that travels via hub nodes k and m. Furthermore, yk is a binary decision variable for 
the selection of hubs. Then 

I/(UHLP) = min X X X X viJcikmjXikmj + £ fkVk (19a) 
iEK k£H meH jeK keK 

V i,j G K (19b) 
keH m£H 
xikmj — Vk 
%ikmj — Vm 

V i,j G K, k,m G H 
V i,j G K, k,m G H 

(19c) 

(19d) 

16 



yk G B, Xikmj >0 V i,j G K, k,m G H (19e) 

formally describes the uncapacitated hub location problem (UHLP). Apparently, if the set of 
hubs is known a shortest path problem remains to be solved. Otherwise, the problem is NP-
hard. Algorithms for solving the uncapacitated hub location problem have been developed, 
among others, by Klincewicz (1996), Ernst and Krishnamoorthy (1998), Hamacher et al. (2000) 
and Meyer and Wagner (2000). The capacitated case is studied by, e.g., Aykin (1994) and Ebery 
et al. (2000). A survey is given by Campbell (1994b). The problem of locating such interacting 
hub facilities arises in many applications some of which include airlines, see Campbell (1992), 
Aykin (1995b), the Civil Aeronautics Board, see O'Kelly (1986, 1987), emergency services, see 
Campbell (1994a) and postal delivery services, see Ernst and Krishnamoorthy (1996). 

5.8 Routing Location Models 

The application of the location models discussed so far requires that the cost Ckj for allocating 
the demand dk of a customer k G K to a depot can be allocated indepently of the allocation 
of other demand points. A very complex form of Service cost depending on each other arises 
if customers are satisfied within routes covering several customers simultaneously. In this case 
location and routing decisions are strongly interrelated. Unfortunately, the formulation and 
Solution of routing location models is extremely complicated because of several reasons. First, 
optimization problems become very complicated. Second, the planning horizons inherent in 
both subproblems are different. Third, facility location requires to aggregate customers while 
routing does not. Moreover, besides the variety of facility location models there do exist many 
different routing models as well (for a survey see Fisher (1995) and Crainic and Laporte (1998)). 
Hence, a huge number of combined models is possible; to mention a few: Determine an optimal 
location for a traveling salesman; see Laporte et al. (1983), Simchi-Levi and Berman (1988), 
Branco and Coelho (1990). Combine an UFLP with a matching approach; see Gourdin et al. 
(2000). Integrate multi-stage facility location, multi-depot vehicle routing and scheduling and 
fleet mix models; see Jacobsen and Madsen (1980), Perl and Daskin (1985), Bookbinder and 
Reece (1988), Laporte et al. (1988), Nagy and Salhi (1996), Salhi and Fräser (1996), Bruns and 
Klose (1996), Bruns (1998). An in-depth discussion of combined routing location models can be 
found in Klose (2001). Aykin (1995a) studies hub location and routing problems. 

6 Applications 

Applications of facility location models are not restricted to the primary application area of 
this article, that is, the design of distribution systems. By contrast many other problems where 
location and allocation decisions are interdependent are covered also. For the sake of brevity 
some of them shall be sketched out as follows: 

• Cluster analysis: The topic of Cluster analysis is to group items in such a way that items 
belonging to one group are homogeneous and items belonging to different groups are 
heterogeneous. Location then means to select representative items from the Overall set of 
items while allocation corresponds to the assignment of the remaining items to the chosen 
Clusters. Mulvey and Crowder (1979) model the clustering task as a p-median problem. 
To the contrary, Rösing (1992a) uses a clustering algorithm in order to solve the MWP 
heuristically. Moreover, clustering is important in the problem setting of vehicle routing 
and scheduling, see Fisher and Jaikumar (1981) and Bramel and Simchi-Levi (1995), and 
in the area of combined routing location, see Klose and Wittmann (1995) and Klose (1996). 

• Location of bank accounts: A Company which has to pay suppliers has to decide which 
bank accounts to use for this purpose. Depending on the location of the used accounts 
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float can be optimized. Cornuejols et al. (1977) model this problem, the so-called account 
location problem, as an UFLP with the additional constraint (5). Nauss and Markland 
(1981) study the revers problem of locating bank accounts in order to receive customer 
payments, the so-called lock box location problem. 

• Vendor selection: Each Company must choose vendors for the supply of producta. Vendor 
selection is based on multiple criteria such as price, quality, know-how, etc. Location in 
this setting means selecting some vendors from a given set of vendors. Allocation relates to 
the decision which product to buy from which vendor. Current and Weber (1994) discuss, 
among other topics, that this problem can be tackled using well-known location models 
such as the UFLP and the CFLP. 

• Location and sizing of offshore platforms for oil exploration: Hansen et al. (1992, 1994) 
use a capacitated multi-type location model in order to locate offshore platforms for oil 
exploration. Different platform types relate to potential platform capacities. 

• Database location in Computer networks: Within a Computer network databases can be 
installed on certain nodes. Installation and maintenance of databases gives raise to fixed 
cost while transmission times or cost may decrease, hence, once more, a certain location-
allocation problem arises. Fisher and Hochbaum (1980) model this problem as an extended 
UFLP. 

• Concentrator location: The design of efficient telecommunication and Computer networks 
poses several complex, interdependent problems. Related surveys can be found in Boffey 
(1989), Gavish (1991) and Chardaire (1999). Starlike networks comprise a simple topology, 
connecting terminals with a central machine. Such a topology is inefficient in the case of 
many terminals and large distances. Probably, the Installation of concentrators having 
powerful links to the central machine or another (backbone) network then is necessary. 
To determine the layout of a concentrator-based network results in a typical location-
allocation problem, also called concentrator location problem by Mirzaian (1985) and 
Pirkul (1987). Chardaire (1999), Chardaire et al. (1999) and Chardaire et al. (1999) study 
the case where concentrators can be located on two different layers of the network. 

• Index selection for database design: Databases comprise a set of tables, each of which 
consists of several arrays. Relating indices to arrays allows to störe entries in a sorted 
manner yielding fast queries. Caprara and Salazar (1995, 1999) and Caprara et al. (1995) 
study the index selection problem as an important optimization problem in the physical 
design of relational databases. Moreover, it is shown that this problem can be formulated 
as an UFLP (4). Furthermore, efficient branch-and-bound and branch-and-cut algorithms 
are presented. 
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