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ABSTRACT

Optimization under uncertainty has been a well-studied field, with significant interest generated in this field in the past four decades. This paper is both practical and
expository — its purpose is to: discuss the process of generating robust solutions, highlight issues that arise in practice, and discuss ways to address such issues. For
illustrative purposes, we study three different, commonly adopted, approaches for optimization under uncertainty (chance-constrained programming, robust opti-
mization and conditional value at risk); and apply these approaches to three real-world application-based case studies. Our case studies are chosen to span a variety of
problem characteristics. For each case study, we discuss the applicability of each of the three approaches, practical issues that arose during application, and
robustness and further characteristics of the subsequent solutions. We point out associated advantages and limitations, and illustrate the gap between the theoretical
and actual performance of these approaches for each case study. We also discuss how some of the discovered limitations can be overcome using extensions of the
approaches or through a better understanding of the data. We conclude by summarizing common and generalizable insights obtained across the three case studies.
Our findings suggest the effectiveness of solutions is dependent on: the methods, the size of the problem, the underlying pattern of uncertainty in data, and the
metrics of interest. While we provide some guidelines to identify the most suitable approach to a given problem, our experience matches theory to suggest that under
carefully tuned parameters accompanied by simulation, the different approaches can generate results that are similar and provide comparable tradeoffs between the
mean and robustness metric. However, this could also require considerable tuning requiring experience, and we provide some guidelines to achieve such results. This

illustrates that generating high quality robust solutions is both an art and a science.

1. Introduction

Real world systems are routinely and inevitably subject to un-
certainty. Solutions built without considering possible future un-
certainty, usually using the average values of parameter realizations
(the corresponding model is usually referred to the nominal problem),
are often subject to the well-known flaws of averages: such solutions,
when implemented in practice can be sub-optimal, and even infeasible
when the uncertainty in the system is actually realized, resulting in
significantly higher costs. Therefore, one should proactively plan for
future uncertainty and associated costs [1-3]. The susceptibility of a
system to uncertainty depends on the level of uncertainty, the timeline
of the decision, and the magnitude of the costs incurred to “recover
from non-favorable events”. Methodologies for optimization under
uncertainty allow decision makers and managers to attain a solution
that is less sensitive to variability by incorporating future uncertainty a
priori: this allows to move from solutions that essentially minimize
costs induced by average scenarios, to solution that accounts for future
true costs associated with all events under consideration, and to deal in
particular with potential solution infeasibility.

* Corresponding author.

In this work, we refer to a robust plan as one that captures the un-
certainty of alternative future scenarios and generate solutions that
address future uncertainty with an acceptable quality for all scenarios
[1]. Note that, while we use the term ‘scenarios’ this does not always
refer to an explicit enumeration of scenarios, but a possible space of
parameter realizations. The impact of capturing uncertainty, and con-
sequently, the impact of providing robust solutions, can be enormous.
In the past two decades, therefore, there has been an exponential
growth in developing uncertainty modeling approaches in the context
of numerous applications, including finance [4-8], revenue manage-
ment [9-14], queueing theory [15-18], transportation [19-23], project
management [24], scheduling [25], network optimization [26,27], in-
ventory and supply chain management [28,29] and energy grids
[30-33].

In modeling uncertainty in real-world problems, decision-makers
face multiple challenges, such as:

e How does one define robustness? How can we model it in different
contexts?
e How applicable are classic approaches for optimization under
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uncertainty?

e What type of knowledge of the underlying data uncertainty is re-
quired for a particular approach to be applied?

e How does more information/data about a system help generate
better models and find more robust solutions?

e How can we assess/evaluate ‘true’ or ‘realized’ performance of a
solution — both in terms of the objective function and the robustness
of the solution under uncertainty?

e Can we a priori know which approach can yield the best solution
under uncertainty for a given problem?

® Practically, given a limited budget for investment in software
packages for mathematical modeling or coding/implementation
time in-house, what types of models and/or frameworks should a
company invest in for the long term?

The objective of this work is to help managers and decision-makers to
address the above questions, by illustrating the application of three
main paradigms for modeling uncertainty, through three applications.
The three major paradigms we consider are: (a) chance-constrained
programming (CCP), from the field of stochastic programming, (b) the
robust optimization (RO) method of Bertsimas and Sim, from the fra-
mework of worst-case-based robust optimization, and (c) Conditional
Value-at-Risk (CVaR), a risk-mitigation approach. While there have
been a number of new approaches recently, as we discuss in Section 2,
many are based on bridging the above three approaches. Hence, we
believe that focusing our attention on, and taking lessons from practical
applications of, these three fundamental paradigms should be relevant
to the decision-makers, even in contexts where he might consider hy-
brid methods. Our focus is on real-world settings of single-stage (static
problems without explicit recourse), linear and mixed-integer pro-
blems, that is, problems whose nominal form is “Minimize cx over all x in
R" such that Ax < b, where some of the components of x are restricted to be
integers”, but where b, ¢ and/or A are subject to uncertainty. We con-
sider settings from corporate portfolio optimization, pharmaceutical
supply chain management and aircraft routing, which we discuss in
further detail in Sections 3, 4 and 5. We illustrate our insights on these
three case studies, chosen for the different manifestations of uncertainty
and different problem sizes — each allowing for experimentation of
different methods, depending on applicability. All these case studies are
drawn from real-world data, however, some of the exact quantities and
cost parameters are masked for confidentiality purposes. For each case
study, we discuss modeling, tractability and solution quality issues for
each method, and provide recommendations to facilitate the deploy-
ment of these methods, and robust planning in general, in practice.

1.1. Contributions and outline

The contributions of our work are as follows.

We present a discussion of the key issues in choosing an approach
for modeling uncertainty, namely: (i) a method's definition of un-
certainty, including its managerial and statistical interpretability; (ii)
metrics of robustness used by the method and their measurement; (iii)
tractability issues arising in the generation of robust solutions; and (iv)
evaluation of the performance metrics of robustness.

Our results should help practitioners in addressing the following
challenges: (i) capturing uncertainty in a mathematical form using
various approaches, by understanding the specific way each approach
makes tradeoffs between the objective function and its specific ro-
bustness metrics; (ii) modeling uncertainty when uncertain parameters
are poorly defined; and (iii) setting robustness parameters in these
approaches for real implementation in order to better control perfor-
mance and tractability.

Our work also provides recommendations to decision-makers on
how investments should be targeted. Our experience shows that
building robust solutions involves substantial investment in time and
money in order to collect data, develop a simulation platform and
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investigate the applicability of robust planning methods; specifically, in
that order.

In particular, we find that simulation frameworks are fundamental to
investigate robustness of solutions, and are an essential and very ben-
eficial initial investment for the managers. Because each method has
different metrics of robustness (that might differ significantly from the
manager's conceptualization of robustness), solutions from these ap-
proaches often require an independent manner of performance eva-
luation, more aligned with the manager's or organization's Key
Performance Indices (KPIs), typically through simulation, to truly
measure performance along both cost and robustness objectives.

We also find that it is difficult to a priori predict which method can
produce the solution with the best performances for any general pro-
blem. We demonstrate that the applicability and success of each of the
methods depends greatly on the problem type, size, and the available
data. Therefore, while we do not recommend any one method as the
‘best’; we provide guidelines to using these approaches, and discussions
of extended methods that can address some limitations of these core
approaches. We also recommend practical investigation of ongoing
theoretical developments that bridge the strengths of these approaches.

Outline: The remainder of this paper is structured as follows. In
Section 2, we discuss background related to the three key methodolo-
gies of interest. In Sections 3, 4 and 5 we discuss each of the individual
case-studies, and discuss our findings from applying the three methods
to these approaches. Wherever applicable, we also provide pointers to
alternative methods that address some of the issues encountered with
each approach. In Section 6, we summarize our lessons from all three
case-studies and conclude with general insights.

2. Background

Optimization under uncertainty was first considered in the 1950s
with Dantzig [34] and Beale [35] and has since stimulated a large body
of research [36]. The last three decades have seen a significantly in-
creased growth in this field, motivated by the increased realized costs
from the practical implementation of deterministic solutions, the
availability of data, and increased computational power. While a
number of approaches to modeling uncertainty to obtain robust solu-
tions exist and many have been recently proposed, they belong to two
main families: the first assuming the exact probability distributions of
the uncertain parameters (distribution-based), and the second free of
such specific distributional assumptions (distribution-free). Some ap-
proaches, as we discuss below, attempt to bridge the two families.
Nevertheless, in practice, three important approaches have been most
employed, namely: chance-constrained programming, robust optimi-
zation, and conditional value at risk.

Chance Constrained Programming (CCP) belongs to the family of
approaches typically referred to as stochastic programming or dis-
tribution-based approaches. Stochastic programming, first pioneered by
Dantzig [34], aims to find a policy that is feasible for all (or almost all)
possible data instances, while maximizing the expectation of some
function of the decisions and the random variables. Formulating sto-
chastic programs require exact knowledge of, or assumptions on, the
data distributions underlying uncertain parameters. The most widely
applied and studied stochastic programming models are two-stage
linear programs, referred to as stochastic programming with recourse,
which allow for some decisions to be made before the realizations of
uncertain parameters are known, and others after the uncertain para-
meters are realized. We refer the reader to Birge and Louveaux [37] and
Kall and Mayer [38] for details.

Chance-constrained programming was originally developed by
Charnes and Cooper [39,40] to deal with uncertainty on the constraints
Ax < b in the nominal problem (the objective function could actually be
turned into a constraint as well and studied through this framework
too). This approach regulates the level of robustness of the solutions via
a maximum requirement on the probability of violation (a) of the
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constraint(s) in the system Ax < b that are subject to uncertainty. More
precisely, given a subsystem of the formA’x < b’, a user-specified
probability a, and distribution assumptions on the uncertain para-
meters A’ and b’, a chance constraint (or set of chance-constraints) is a
constraint of the form P(A'x <b’) > 1 — a. The probability of con-
straint violation a is the robustness measure of the approach.

The notion of constraint violation is intuitive and easy to explain to
a manager or a stakeholder. However, other than scenario generation
methods via sampling, requiring extensive data [41,42], there is no
single standard way of converting the probabilistic chance-constraint
P(Ax < b') > 1 — a into an equivalent deterministic formulation for all
distributions of A’ and b’. This conversion needs to be performed on a
case-by-case basis, with different assumptions valid for different pro-
blems. Methods for making the probabilistic chance-constraint de-
terministic have been developed for specific problem settings, specific
distributions of uncertain parameters, or for specific parameters in the
mathematical program [40,41,43,44]. For instance, CCP is easy to
formulate when the uncertainty is on the right-hand-side of a constraint
(parameter b) [45]. In this case, full distribution information is not
required and information about uncertainty quantiles is sufficient
[20,40]. When uncertainty is in the left-hand-side parameters, a for-
mulation using joint probability distributions of parameters may be
needed [43,46,47], which is often difficult to formulate in the absence
of large quantities of data, and may also prove intractable. Specific
versions of these formulations are modeled as joint probabilistic con-
straints [48], taking advantage of special structures [49,50] and de-
terministic equivalents or approximations constructed via sample
average approximations [51-53], strong valid inequalities [44,54], and
efficient points of the distribution [55-58].

Conditional Value-at-Risk CVaRis a risk measure that is an extension
of the well-known Value-at-Risk (VaR) measure. The latter originates
from banking and insurance and quantifies the maximum loss if we
exclude the a worst scenarios fraction, when implementing a solution
(typically a portfolio in banking). That is, given the distribution of the
data uncertainty, VaR(a,x) represent the (1-a) quantile of the loss
function, if implementing solution x. CVaR(a, x) is in contrast the ex-
pected loss at the a-th probability level, that is, the conditional expected
loss given that the loss exceeds VaR(a, x). Specifically, the approach
considers a risk function f(x, ¢) defined with respect to decisions x and a
system of input parameters ¢ that are subject to uncertainty. For each x,
the risk f(x, ) is a random variable having a distribution induced by
that of . The CVaR is a function of the decision x and the a-th quantile
of protection defined by the wuser, and is given by:
CVaR(a, x) =E(f (x, {)If (x, ¢) = VaR(a, x)). CVaR can be obviously
adapted to deal with profit/revenue maximization. In this case, VaR
represents the minimum profit/revenue if we exclude the a worst sce-
narios fraction and CVaR(«, x) = E(f(x, O)If (x, {) < VaR(a, x)).

For a profit/revenue maximization problem, typical formulations
involving CVaR either focus on (i) maximizing the CVaR value while
imposing a minimum expected return, or (ii) enforcing the CVaR to be
greater or equal to a user-specified critical value c.v. (which represents
the practitioner's risk appetite) while maximizing the expected return.
A larger expected value of the percentile risk (meaning larger CVaR)
indicates a more robust solution. CVaR, unlike VaR, is a coherent
measure of risk [59] and as such exhibits nice mathematical properties.
In particular, Krokhmal, Palmquist and Uryasev [60] and Rockafellar
and Uryasev [61] show that convex formulations exist and that CVaR
minimization can be formulated as a linear program, via scenario-based
constraints obtained through sampling from the data distribution. The
core of the approach is to calculate the VaR and CVaR simultaneously
while optimizing the objective [60]. A challenge with this approach is
to determine the appropriate critical value that represents the practi-
tioner's risk appetite to use in the formulation, because c.v. somewhat
reflects CVaR itself. The determination of the ‘right’ c.v. is thus typically
done iteratively (for example, to avoid infeasibility due to a too-high
c.v.). CVaR has been applied as a risk-averse, distribution-based
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approach to many settings, with a focus on portfolio optimization and
supply chain management [9-11,62-64].

Robust optimization (RO) was first suggested by Soyster [65] to
handle data uncertainty in convex optimization problems without
knowledge of underlying probability distributions. Soyster's model
minimizes the maximum possible loss, that is, assumes each uncertain
parameter in a convex programming problem to equal its worst-case
value within an uncertainty set. Ben-Tal and Nemirovski [66,67] ex-
tended this idea into a powerful approach to deal with ellipsoidal un-
certainty sets and parameterize the allowed maximum number of
parameter deviations to consider for worst-case analysis. Bertsimas and
Sim [68] exploited this approach further for solving linear and mixed-
integer programs under uncertainty, and significantly enhanced the
underlying theory in this context. The premise underlying [66,67] and
[68] is that in general, it is highly unlikely that all parameters will
assume their worst case values simultaneously. Bertsimas and Sim in-
troduced a robustness measure I', which quantifies the number of para-
meters in the constraint that can deviate simultaneously to their worst-
case values without affecting feasibility of the solution. Planning for a
larger T, thus, indicates a plan with a greater degree of robustness. The
strength of Bertsimas and Sim's approach is the robust counter part of a
nominal problem that is a linear (or mixed-integer) program remains a
linear (or mixed-integer) program, albeit possibly with a larger number
of variables and constraints. The most basic formulation is associated
with a nominal problem min c"xs.t.Ax < b, with uncertainty in the A
parameters, such that each parameter a; assumes a realization d;, in
the uncertainty set [a; — a/}j, a; + a/}j], for some parameter aAlj, where
the underlying distribution of a; is unknown. The robust version of this
formulation, with the I' capturing the number of parameters that can
assumed to realize their worst-case values simultaneously, is re-written
(for integer values of I') as:

min cTx

s. t. Zj agx; + ()} <b Vi

max
{SilSiCJi,ISi =13}

For details of the full formulation for non-integer I' and its linear-
ization, we refer the reader to Bertsimas and Sim [68]. Also, because
the definition of the robustness measure I' can be non-intuitive, the
authors provide a method for relating I' to the probability of constraint
violation (similar to a in the CCP). Note that the solutions obtained
from this method can be, obviously, largely influenced by the choice of
the robustness measure I', as well as the choice of uncertainty sets
lay — dyj, ay + dj].

The original works of Ben-Tal and Nemirovski [69], Bertsimas and
Sim [68], Ben-Tal et al. [70]; and more recently, Brown and Bertsimas
[71] and Bandi and Bertsimas [16], also provide methods to construct
good uncertainty sets, to appropriately match the robustness parameter
I’ with the probability of constraint violation.

Some extensions: As we will also demonstrate through the case-stu-
dies, the CCP and the RO suffer from two key limitations. First, setting
the value of the risk measure of the robust approach of interest — de-
fined in terms of number of parameters (I'), constraint violation (a) or
tail risk (CVaR) — may not always be intuitive to the manager. Instead,
the manager may be more comfortable specifying the target robustness
in terms of the key performance indices — such as, maximizing the level
of robustness within a specified loss in objective. Specifically, the
method aims to maximize the probability of constraint satisfaction
possible (called @) or maximize the number of parameters (called A)
protected, both within the manager's specified budget 8. Second, the
robustness metrics may not directly correlate with the “true’ level of
robustness achieved with respect to the manager's KPIs, usually mea-
sured through simulation. We discuss in detail two extensions of CCP
and RO whose purpose is to overcome these two difficulties. The first
method is called Extended Chance-Constrained Programming (ECCP);
and the second is called the Extended RO )A — EV model.

Extended CCP (ECCP): In practice, a manager's perspective towards
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robustness is not always to achieve a specified level of robustness but
rather to find a solution that “controls’ uncertainty while at the same
time optimizing another quantity, e.g. minimizing costs or maximizing
revenue. Managers may find it difficult to specify the robustness in
terms of a probability of violation, especially for multiple constraints
with uncertain parameters. They may be more comfortable with setting
a ‘robustness budget’ 8 — that is, the extent to which the key perfor-
mance metric's value may be decreased in order to obtain a solution
which is more robust than the nominal solution. Marla [72] and Marla,
Vaze and Barnhart [73] propose to adapt the CCP model in this direc-
tion and suggest introducing a constraint that restricts the loss in the
performance metric value by a cost budget § while maximizing the
robustness measure a. Specifically tailored to linear programs, their
robust formulation sets the protection level a as a variable, while
finding the most protected solution within a robustness budget &
compared to an optimal solution x* to the nominal problem:
minc’xs.tAx <b. The ECCP formulation therefore is:
maxa, S.t c’x <c'x* + §;P(Ax < b) > a. For details of the linear-
ization of the formulation under right-hand-side uncertainty and special
set-partitioning constraints, we refer the reader to Marla [72] and
Marla, Vaze and Barnhart [73].

A — EV (Extended RO) model: This model builds upon the uncertainty
set specifications of the robust optimization approach of Bertsimas and Sim,
that is, each parameter a; assumes a realization dj;, in the uncertainty set
lay — dy, a; + djj]. Marla [72] suggests that it may be difficult for the
manager to a priori specify a number of coefficients I to be protected, because
it can be unintuitive, and besides it can be cumbersome for large-scale pro-
blems with many constraints, because it is difficult to define a robust measure
I for each individual constraint. The selection of an overall robustness budget
with respect to the cost may be more intuitive for the decision maker to
specify and also eliminates the need to define a priori the robust measure T
for each constraint. They propose an alternate model, in the same spirit as
ECCP for CCP, tailored to large-scale binary integer programs, that sets an
allowable ‘robustness budget’ § with respect to the cost of the optimal solu-
tion x* to the nominal problem and maximize the number of coefficients A
protected within that budget [72,73]. This formulation therefore is:
maxA, s.t c'x < cx* + 6; Zj a;x; + max {djlz;l) } < b; Vi. For de-

{Ej Zjj<A}
tails of the linearization of this formulation, we refer the reader to Marla [72]

and Marla, Vaze and Barnhart [73]. The robustness measure of this method is
the ‘budget’ 8.

The methods discussed so far each have different capabilities and
limitations. The RO approach (and also the A — EV model for mixed-
integer programs) is applicable to a large variety of problems due to low
data requirements and model simplicity; whereas CCP (and ECCP) and
CVaR require more information about uncertainty as well as more
complex formulations. However, if additional information (qualitative
or quantitative, partial or full) about the underlying uncertainty is
available, there are limited ways in which RO can capture it (some very
recent methods are presented in [74]). Additionally, each approach is
different in the way it trades off the objective function with its ro-
bustness metric, indicating qualitative differences in the robustness of
solutions generated.

There is a growing body of research [75] that has very recently
begun to connect the three fundamental types of approaches that we
discuss in this work. For example, the interfaces between these three
approaches have resulted in a proliferation of work on areas such as
distributionally robust optimization [76-80], and an exploration of the
connections between CCP, RO and CVaR in works such as Chen et al.
[81].

A number of these approaches also exhibit similar tradeoffs between
model interpretability, statistical understanding and formulation
tractability as those we discuss in this work. Hence, the general insights
that we discuss here extends in general to a broader, evolving class of
approaches.
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3. Case Study 1 - Corporate Portfolio Optimization

Problem setting. A manager at a major corporation must decide how
to allocate a sales and marketing budget B among twenty-six business
units. It is possible to only allocate the budget once a year. For each
business unit i, sixteen quarters of past historical investments x; and
corresponding quarterly revenues r; are available. Also, for each busi-
ness unit, minimum and maximum feasible investment amounts [; and
u;, based on historical investments and business constraints, are known.
The manager is interested in two key-performance indicators (KPIs): (i)
high mean return, and (ii) low variance of return, which we use as the
robustness metric.

Nominal Model. The causal relationship between investment and the
corresponding revenue is typically seen to follow an S-curve [82,83].
The manager's observations, existence of limited data, and modeling
considerations, all dictate that we can approximate the investment-re-
turn relationship to be linear in the portion of the S-curve between [;
and u; [84]. That is, we describe the revenue r; by r; = a; + b;x; where g;
and b; are parameters that describe the return for an investment x;. g;
and b; are estimated using least squares regression, and the corre-
sponding estimates @; and b; and the associated covariance matrix C;
and standard deviation matrix G; (C; = G;G/) are found. (Note that we
find no significant correlation among different business units i.) The
nominal model is described by (1)-(4).

max Y = Y (@ + bx;)

iel iel (€]
s. t. Z x; <B

iel (2
L<xi<u Viel 3)
x>0 Viel ()]

Motivation for modeling uncertainty. The nominal solution re-
commends investment in decreasing order of deterministic (average)
return rate, within the specified bounds. It is however, well known that
diversification in a portfolio can decrease the risk associated with the
investment. Further, after simulating the mean-variance tradeoff of the
expected revenue (using a normal distribution centered in a and b with
variance-covariance matrix C), the manager deemed it was not robust
enough, due to the high variance (Fig. 1).

Robust Models. We model uncertainty using the RO approach, the
CCP and the CVaR approaches. The A-EV model and ECCP model are
not applicable to this problem as they were developed for cases when
the basic RO model is a binary integer program and the basic CCP
model is a linear program, respectively. These formulations are in
Appendix A.

N w B w [«)] ~
1

Frequencyin 10 -3

[EnY
I

o -
1,150 1,200 1,250 1,300 1,350 1,400 1,450 1,500 1,550 1,600 1,650

Return

Fig. 1. Frequency curve for nominal portfolio return indicating high variance in
return.
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3.1. RO applied to corporate portfolio optimization

Uncertainty model: For this approach, we define for each parameter a
range of uncertainty around the average estimate, as [a; — &, a; + &3],
[b; — bAl b; + 191-] using the covariance C; = G;G/ V i; derived from the
past 16 quarters of investments. We choose d; to be the standard de-
viation of a;, computed from G;. The rationale behind using the standard
deviation is discussed in more detail in [86]. As described in the ori-
ginal work [68], the robust formulation yields a larger linear program
compared to the nominal model. The linearized formulation is in
Appendix A.1.

Conservatism of the approach: We use the guidelines for specifying
the budget of uncertainty I', provided by Bertsimas and Sim [68], which
mathematically connect I' to an upper bound on the probability of
constraint violation. Using I', the robust program aims to approximate
the variance of the distribution of the portfolio return. However,
translating the business performance indicator to the metric I is non-
intuitive. The actual (realized) probability of violation was always
much lower than that predicted by the bound in [68], rendering the
approach highly conservative and risk-averse. This is because the bound
is derived from analyzing the worst case configuration of symmetric
distributions (which assign high mass of probability to the extreme
values in the range of uncertainty). This confirms observations made by
Sakamoto [26], and Bryant [86] for linear and integer programs. The
weakness of the bound, especially for integer programs, makes it dif-
ficult to choose a suitable I' a priori, to relate the manager's metric
specified in terms of probability of constraint violation, without in-
curring conservatism in the objective.

Tractability: Because the realized probability of constraint violation
(as evaluated by simulation) is poorly related to I', choosing I via the
bound presented in [68] is not effective. In this problem instance, be-
cause we have a limited number of uncertain parameters, we test for all
possible integer values of I', and test solution robustness via simulation.
This strategy can degrade tractability for larger instances but is rea-
sonable for this problem size.

Addressing solution conservatism: We solve the corporate portfolio
optimization problem using the RO approach, using @ and b as esti-
mated, and with & to equal G and separately to equal G/3; and the RO
parameter I' estimated from the bound in [68]. We then evaluate the
solutions using simulation, assuming a normal distribution centered at
a and b with standard deviation given by G;Vi. Our empirical results
show that the RO approach produces solutions (evaluated using simu-
lation) with better tradeoffs between the mean and standard deviation
of profit when the uncertainty range input to the model is for a smaller
range G/3 (Fig. 2 right) than the actually realized range G (Fig. 2 left).

In the case of this problem, in practice, the manager confirmed that
the original solution obtained using the standard deviation G was too
conservative. The solutions derived from using G/3 instead did produce
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Fig. 3. Sensitivity of the mean-variance to uncertainty range in the RO ap-
proach.

a satisfactory solution to the manager as there is a substantial im-
provement in variance without significant cuts in expected return (see
Fig. 2).

Similarly, we evaluate the solutions found with G as the uncertainty
range using simulation, under hypothetical scenarios drawn from dis-
tributions with the same mean but standard deviations specified by 2G
and 3G, to understand the conservatism. Plots of the mean-variance
tradeoff for these different distributions are shown in Fig. 3. We find
that the increase in the robustness metric (reduction in variance) with
decrease in mean is greatest for the curve “3G-normal distribution”,
that is, when data turns out to be, in fact, from a distribution with
standard deviation 3G. On the other hand, for a small drop in variance,
the curve “G-normal distribution” has a much larger drop in the mean;
that is, this solution is conservative when the data turns out to be from
the distribution with standard deviation G. This behavior is again
confirmed for various distributions in Fig. 11. This behavior is more
evident for light-tailed distributions, such as the normal distribution
(observed in historical data for this problem), than in the case of heavy-
tailed distributions (tested in our experiments through simulation),
because the values at the boundaries of uncertainty exploited in the
formula provided in [68] are more likely to be realized.

3.2. Chance-Constrained Programming of Charnes and Cooper

Uncertainty model: The mean and variance of the uncertain para-
meters, derived from the historical data available, are required to
model uncertainty. We assume that a; and b; are drawn from a bivariate
normal distribution with means a; and b; and covariance C; (hence
implicitly assuming that the business units are independent). The form
of the chance-constraint is then: P(a; + b;x; > c. v.) > awhere c.v. is a

minimum return from the portfolio specified by the manager. The
chance-constraint is converted into the deterministic constraint (5) as

10 - Nominal ™ Robust (range G/3)
o
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c
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>
=
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S
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Return

Fig. 2. Robust and nominal solution comparison: (i) with same uncertainty range G as input into optimization (left) (ii) with one-third uncertainty range G/3 as input

into optimization (right).
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follows.
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Defining model parameters: The parameter a or the probability of
constraint violation, and the threshold c.v. of minimum return, are to be
specified by the manager. In this case, it is easy to translate the man-
ager's KPI into a numerical value @, as the probability of violation is a
measure that is fairly intuitive for the manager to interpret. However,
there are challenges involved in setting @ and c.v. a priori as some va-
lues might lead to infeasibility.

Low solution conservatism: The input percentile violation a, and the
average return of the portfolio from the optimization approximate well
the values obtained through simulation and do not exhibit solution
conservatism, unlike the solutions of the robust optimization approach.
One could argue that this is because the model used for optimization is
closer to the model used for simulation in this later case. However,
though we assume a normal distribution of uncertainty for the model,
we were still able to obtain solutions that are robust, and that exhibit
low conservatism, even when tested under other slightly different hy-
pothetical distributions via simulation. Qualitatively, the solutions are
comparable to the most robust solution obtained using the robust op-
timization approach, with input range G/3. However the parameters were
easier to tune and required less effort from the manager, which shows that
using approximate distributions can add value when used with caution.
This also indicates that some equivalence can be achieved between
these two approaches, but with careful tuning of multiple parameters
representing uncertainty descriptions as well as robustness parameters.

3.3. CVaR (Conditional Value-at-Risk)

Uncertainty model: The CVaR constraint here is modeled through
Sample Average Approximation (SAA) over multiple scenarios.
Specifically, we capture uncertainty using scenario-based constraints
added to the nominal formulation. The constraints, for each scenario
j =1,...,M, are described in (6)-(8), with a being the quantile of value-
at-risk we want to protect for. A detailed knowledge of the underlying
distributions for uncertain parameters is required to generate the re-
quired number of scenarios, as described in Rockefellar and Uryasev
[87]. The idea is to maximize the expected return while ensuring that
CVaR is above a certain critical value (for a chosen a, defined as c.v.(a)).
Because we want to ensure a minimum return even in the lower tail of
the distribution, we define § = VaR(a) (the value-at-risk, modeled as a
variable), and use constraint (7) to measure the average value of return
in the tail. Constraint (8) sets the minimum return in the tail to be at
least a minimum value c.v.(a).

Zj=0 vVji=1, ..M ©)
G2P- 0, (@+bp)Vj=1, ..M
i (2]
1 M
B+—-)z2cv()Vj=1, ..M

Defining model parameters: We specify a tail probability a of the
profit function, the critical value c.v.(a), and generate scenarios based
on the underlying distributions; to generate constraints that are added
into the linear program. Translating the business indicator into a nu-
merical value for the critical value is not straightforward, as the value
of CVaR is not intuitive to translate to simpler metrics of interest to the
manager.

Tractability considerations: The number of scenarios (constraints)
needed to converge to the value of CVaR is not known a priori —
therefore, we have to iterate while increasing the number of scenarios.
Tractability may thus be a challenge because we might have to ex-
periment with the number of scenarios, increasing them iteratively
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before finding the right value. Fig. 4 demonstrates the shows that as the
number of scenarios (constraints) increase, the CVaR function value for
the expected return begins to flatten, and may need many more sce-
narios before convergence; impeding tractability. Moreover, the con-
vergence of the return from the CVaR formulation is highly non-linear,
indicating the complexity in achieving a convergent estimate of the
return.

3.4. Insights

Translating the manager's robustness KPI (here, the variance of the
portfolio return) into an input of one of the three models (I, a, and/or
c.v.) is not straightforward and trial and error was required. It is easier
in the CCP model because the risk measure (probability of violation) is
more intuitive to the manager. Nevertheless, generating robust solu-
tions is an iterative, interactive process, whatever model is chosen.
Indeed iteration among values of model parameters is required to
achieve the ‘right’ tradeoff between expected return and volatility/ro-
bustness, which may be differently defined by each organization or
manager. Interaction between the analyst and manager is crucial in this
process, as the manager decides if the nominal or robust approach so-
lutions are ‘good enough’, with sometimes KPI's that (s)he cannot even
describe precisely.

In this case study, the robust solutions produced by the different
methods result in the diversification of the portfolio and the generation
of solutions that were all considered “reasonable” by the manager (in
contrast with the solution to the nominal problem). It demonstrates that
incorporating uncertainty a priori adds value. The solutions, however,
were very similar in performance, because the uncertainty is relatively
small, though not insignificant.

The RO approach is the easiest to use, because of its limited data
requirements and its (relatively) automatic mathematical reformula-
tion. We do not recommended to use the probability bound of con-
straint violation proposed in [68] directly though, as the bound is ob-
tained from analyzing extreme distributions and it usually leads to over-
conservative solutions for non-extreme ones (as was the case in this case
study).

The CCP and CVaR approaches require assumptions about the un-
derlying data distributions to generate scenarios and/or to derive close
form formulae. We observe that solutions using these approaches are
robust even under small perturbations of the data distributions, and
exhibit less conservatism than the basic RO approach that only uses
range information on uncertainty. Therefore, when reasonable as-
sumptions with regard to the underlying data distributions may be
appropriate, these two approaches might be preferred (the CCP being
easier to implement in this context). However, the analyst should use
these corresponding solutions with caution because despite the fact that
they are robust to small perturbations of the data distribution, they
might become more volatile with larger perturbations. In contrast, for
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this application (and possibly other problems of small size), is does not
hurt much computationally to try all possible integer choices for T.
Combining this with scaling down the uncertainty sets by a factor
y = 1, for a limited, yet meaningful, number of values for vy, should
allow to overcome conservatism of the RO approach and if no reason-
able assumption can be made on the underlying data distributions, this
approach should probably be preferred.

4. Case Study 2 - Pharmaceutical Supply Chain Optimization

Problem setting. The supply chain planner at a major pharmaceutical
company must design the optimal configuration of the strategic supply
chain for the next ten years [88]. The configuration cannot be modified
during the operational period. The company manufactures 17 broad
classes of products using different technologies at different manu-
facturing plants. Allowed changes to the existing network include
closing or opening a plant, improving the technology used at a plant,
moving a product from one plant to another, or in some cases, adding or
discontinuing a product. The products are subject to inspection by the
Food and Drug Administration (FDA), which can ‘fail’ a batch of pro-
ducts based on sampled testing. For each product-plant combination,
there is a hazard rate of failed inspections based on the technology used
and the production location. The KPIs of interest are to maximize the
realized profit, and to minimize the probability of failed inspections
(this is the robustness metric used for simulation).

Nominal model. Let P be the set of products to be produced, S be the
set of locations available for production, T be the set of technologies to
be used for producing products p € P; E be the set of discrete time
periods into which time horizon is divided. Let H(t, s, e) be the hazard
rate, which is subject to uncertainty, and equals the probability that an
inspection of technology t at site s during period e results in a failure;
H(t, s, e) be the expected value of H(t, s, e), that is, the mean hazard
rate of failed inspections; R(p, e) be the revenue generated by producing
product p during period e; C(p, t, s, e) be the cost of producing p using
technology t at site s during period e; CV be the critical value of the
revenue at risk, estimated by statistical methods; and x(p, ¢, s, e) be
decision variables that take on value 1 if product p is produced using
technology t at site s during period e. The nominal model formulation
(9)-(12) maximizes the expected profit, subject to the constraint that
the expected revenue that is at risk being limited by a critical threshold
CV; all products being produced; and all x variables being binary.

max z R(p, t,s,e)x(p, t, s, e) — Z C(p, t,s,e)x(p,t,s,e)

xeX Pisse (9)

s. t. Z H(t, s, e)R(p, e)x(p, t,5,e) < CV

pil.s.e (10)
Zx(p,t,s,e)s 1Vop e
LS (11)
x(p,t,s,e)ef{0,1} V p, t, s, e (12)

Motivation for modeling uncertainty. H(t, s, e) values are estimated
from historical data using Bayesian statistical methods and the true
realizations are inherently subject to uncertainty. Especially, in this
data, it is found that with small changes in the values H(t, s, e), the
configuration of the supply chain that is optimal as obtained by solving
the nominal problem (9)-(12) changes drastically. Since we are inter-
ested in a long-term decision, the analyst tests the performance of the
model with hazard rates that might change during the ten-year period.
We found that the optimal supply chain configuration obtained by
solving the nominal problem generated an expected profit of $61,000
(numbers have been scaled); however, if all hazard rates increase by
even 2%, the optimal profit (objective function) drops by 40% and the
number of product types produced drops from 17 to 14. This indicates
very high sensitivity, which is caused by the fact that investments with
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high mean return also have high variability. The robust formulations
are in Appendix B.

4.1. The RO approach

The range of uncertainty in the hazard rates is set to equal the
standard deviation of the hazard rate H (t, s, €). According to the un-
certainty model of this approach, let a (t, s, e) be the range of un-
certainty around the mean hazard rate . From historical data, the
standard deviation in H(t, s, e) is found to be 0.04 units. According to
the RO approach, the budget of uncertainty I' protects against the case
when any I' of the hazard rates attain their worst-case values, and with
the remaining parameters staying at their averages. The model finds a
solution that maximizes profit for that scenario. The linearized for-
mulation is provided in Appendix B.1. As in Case study 1, the choice of
I’ was first guided by the bound provided in [68], via the definition of a
probability of constraint violation.

Conservatism of the RO approach. Because the true underlying dis-
tributions of the risk parameters are unknown, to test robustness, we
simulate scenarios where hazard rates originate from several types of
distributions, all with the same standard deviation (used as the un-
certainty range) of 0.04 (Table 1 Theoretical and actual probabilities of
violation from the RO approach).

In each of these cases, the value of the robustness budget I' com-
puted using the bound in [68] generates solutions that are far more
conservative and have a much lower probability of violation than was
used as input. Correspondingly, they also have a much lower mean
profit, resulting in solutions that are robust but far more conservative
than the manager prefers. It appears here again overly conservative to
set the I' according to the bound specified in [68].

Setting parameters: In this setting, it is impractical to try all possible
values of I' as we suggested in case study 1. But this raises the following
questions: How do we relate I' to the amount of protection the manager
wants, and more importantly, to the KPIs of robustness if the bound in
[68] is inappropriate? Is there a more intuitive robustness measure
(instead of I') that the manager can adopt? How do we address the issue
of conservatism of the solution without enumerating all choices of T
(and over several rescaled uncertainty sets)?

Addressing solution conservatism of the RO approach: One way to
control conservatism is to tighten the bound presented in [68]. Gallay
[89] discusses that the mathematical bound relating I to the probability
of constraint violation in [68] can be modified by using the number of
basic variables N’ rather than the total number of variables N; gen-
erating a tighter bound as shown in Fig. 5. This is because only the
parameters that are active contribute to the uncertainty in the solution.
It is difficult to estimate N’ before solving the model, but the nominal
problem solution and the rank of the matrix can be used to approximate
N’ [89].

Alternatively, (or in combination), we can control conservatism by
controlling the range of uncertainty; specifically by choosing a convex
subset of the original uncertainty range. For example, in Fig. 6 (left), we

Table 1
Theoretical and actual probabilities of violation from the RO approach.

Theoretical bound for
probability of violation

Hypothetical distribution of
underlying uncertainty

Actual probability of
violation from

(%) simulation (%)

Truncated normal 5 0

Triangular 5 0

Uniform 5 0

Beta (0.5,0.5) 5 0.003

Beta (0.2,0.2) 5 0.005

Beta (0.01,0.01) 5 0.08

Extreme discrete (bi-modal, 5 0.11

50% at each extreme)
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Fig. 5. Controlling solution conservatism using the number of active uncertain parameters.

see that different mean-variance tradeoff curves for the return are
generated with uncertainty ranges of 0.04 (the original uncertainty
range) and 0.02 (a convex subset of the uncertainty range). Note that
the top right point on each curve denotes the nominal solution, with
$61,000 of profit and 315 units of variance. Solving for various values
of I with a range of 0.04, we trace the red curve, decreasing variance as
well as the mean with increasing I

Observe that the change in the mean-variance relationship is highly
non-linear, and robustness is increased by decreasing the variance, with
the tradeoff being the reduction in the mean. However observe that the
reduction in the mean can be quite over-conservative with reduction in
variance, and may not be acceptable to the decision-maker. The black
curve traces, for uncertainty range 0.02, the RO model solved for the
same values of I'. This allows, for the same values of I', a different and
less-conservative change in the mean relative to the reduced variance
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and allows the decision-maker a more acceptable level of conservatism.
While we show here a smaller set of values of uncertainty ranges such
as half the convex subset, this is generalizable to all convex subsets,
such as ranges of 0.03 or 0.01. This shows how, by changing the range
of uncertainty input to the model, we can modify the tradeoff curve
such that the conservatism in objective value (but also the robustness)
is decreased.

Controlling conservatism can be further enhanced using minimal
(qualitative) knowledge of type of distributions (e.g. heavy-tailed vs.
light-tailed). If the distribution is light tailed, the probability of para-
meters realizing values at the bounds of their uncertainty ranges is low.
Setting the uncertainty range to a convex subset of the observed range
can result in a less conservative solution, than in the case of a heavier-
tailed distribution of uncertainty. These strategies provide a way to
tune level of robustness with an iterative process of optimization and
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Fig. 6. Mean-variance tradeoff of profit: Less conservative tradeoff curve generated using modified (smaller) uncertainty sets. RO model solutions (left) and A-EV
model solutions (right). In Figure left, T varies from 0, 8.18, 20, 31.78, 51, 80, and 120; and § in Figure right takes values 199, 1199, 4199, 6199, and 10,199.
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simulation; and generate solutions that are robust in a less conservative
way.

4.2. Alternative approach: the A — EV model

The A — EV model is applicable in this case study for the following
reasons: a) the weakness of bounds specified in Bertsimas and Sim [68]
make it difficult to specify the robustness parameter I' a priori; b) it is
non-intuitive for the manager to specify the number of coefficients to
protect against extreme values. Instead, Marla and Barnhart's A — EV
model allows the manager to specify the maximum loss in the objective
8 that he is willing to take in order to obtain a robust solution; and
maximizes the number of coefficients that can realize their worst-case
values under the robustness budget §; and c¢) This allows control over
the level of conservatism through the allowable change in mean profit.

Uncertainty model: The uncertainty model remains consistent with
the definition of uncertainty ranges defined by the RO approach. Each
uncertain parameter is assumed to vary within a range around its
nominal value, and a subset of parameters realize their worst-case va-
lues. However the size of the subset is a variable determined by the
model.

The A — EV formulation chooses the solution that protects the
highest number of uncertain parameters at their worst-case, while en-
suring that the objective function is within a difference of 8 from its
nominal value. It overcomes the limitation of having to specify the
value of T a priori.

Because this model is also based on a subset of uncertain parameters
realizing their worst-case values, it can exhibit conservatism similar to
that seen in the RO approach. The conservatism is again higher when
the underlying distributions have thin tails rather than heavy tails. We
recommend that the conservatism can be controlled by choosing un-
certainty sets that are convex subsets of the original uncertainty set, as
seen in Fig. 6. Note that this observation is similar to that in Case Study
1, in Fig. 2 and Fig. 3

The tradeoffs between mean and variance of the profit made by the
RO and A — EV approaches differ slightly from each other, as we dis-
cuss in the following sections.

4.3. Chance-Constrained Programming

The chance-constrained formulation for (9)-(12) enforces the con-
straint that the hazard of the return (revenue-at-risk) is less than a
critical value, with probability a. a is pre-specified by the manager, and
the goal is to maximize profit under the probabilistic constraint (13).
The intuitive nature of the CCP constraint makes it easier for the
manager to specify a value of a, as in Case Study 1. In the CCP model,
constraints (6) are substituted with constraints (13), which contains
multiple uncertain parameters H(t, s, e) (assumed to be uncorrelated).

P Z H(t,s, e)R(p, e)x(p, t,s,e) <CV|>a
p.t.s.e (13)

Typically, such constraints are handled using scenario approxima-
tions [41], by sampling a large enough set of realizations of the H(t, s, e)
parameter from the (joint) probability distribution. Each of these sce-
narios is translated into a constraint, all of which together equal (13).
However, a very large number of scenarios are required, because of the
large dimensionality of H(t, s, e); and this causes tractability issues for
the integer program. Hence, we resort to approximations for (13), as
described in (14)—(15). Specifically, instead of sampling scenarios, we
add an additional constraint (15), which assumes that the Sth quantile
realizations of each of the uncertain parameters H(t, s, e), (denoted by
Fittis.)(8)) occur simultaneously. Thus, the left-hand-side of (15) ap-
proximately captures the risk from the kind of realizations of H(t, s, e)
we want to protect against. This does not capture all possible scenarios
of realizations, but is reasonable for this specific problem, as sensitivity
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was found specifically for cases where hazard rates increase to some
quantiles of their distributions. Fzy ¢cp(a) in the right-hand-side of (15)
represents the quantile a of the critical value CV against which we
protect.

Z H(t, s, e)R(p, e)x(p, t,s,e) < CV

p.t.s.e (1 4)
2 Fittisa OR@. ©x(p. 1, 5. €) < Faj ccp(0)
p.t.s.e (1 5)

Because of the approximate constraint, it is difficult to determine a
priori what protection level a the manager should target. We encounter
cases of infeasibility for values of a such as 99 or 97%, as there exists no
solution that can provide as high a protection level. Therefore multiple
trials are required to find a feasible solution, and moreover, it is also
difficult to predict the tradeoff between the objective (profit) and the
protection level a specified. We address this issue using the ECCP
method.

4.4. Extended Chance-Constrained Programming (ECCP)

In the ECCP model [72,73], instead of specifying a probability of
constraint violation, the manager is asked to specify a loss in profit & (s)
he is willing to accept (called robustness budget), with the formulation
maximizing the probability that revenue-at-risk does not exceed the
critical value. Because we specify a budget § we avoid the infeasibilities
associated in the CCP with a priori specifying a in the CCP approach.
We find that fewer iterations are required to control the tradeoff be-
tween the mean and variance of the profit, because it is controlled via
the budget § specified by the manager. The formulation solves in the
same order of time as a single iteration of the original CCP approach.

4.5. Conditional-Value-at-Risk (CVaR)

The CVaR model minimizes the expected revenue at risk, when the
realized revenue at risk is greater than the VaR corresponding to the ath
level of protection. We convert the CVaR constraint (16) to a de-
terministic linear program, similar to the corporate portfolio case.

CVaR(a, x) = E Z H(t, s, e)R(p, e)x(p, t, 5, €)

piLs,e

D H(t,s, R, o)x(p, 1, 5, €) > VaR(a, x)
p.Ls,e (16)

Accuracy-tractability tradeoff: Because uncertain parameters are not
correlated and there is a fair certainty about their distributions, we are
able to generate a set of scenarios describing possible realizations. The
number of scenarios required to capture uncertainty in all uncertain
parameters is in the tens of thousands. The deterministic CVaR for-
mulation has one constraint per scenario. However, similar to the
corporate portfolio case study, we observe a trade-off between accuracy
and tractability. In fact, for more than 400 scenarios, the CVaR for-
mulation proves intractable for realistic instances of this problem, and
the solutions with fewer scenarios are unreliable. Therefore CVaR is not
considered an alternative for this problem and we do not discuss it in
this paper.

4.6. Insights

The various methods (the RO, A-EV, CCP and ECCP approaches)
generate robust solutions with a lower variance than the nominal so-
lution, as was required by the manager. Fig. 7 shows the different so-
lutions obtained using the four approaches applied to this problem. The
nominal solution is the point where mean = 61,000 and var-
iance = 315. Using these different approaches, we find robust solutions
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Fig. 7. Mean-variance trade-offs made by different approaches.

that have a lower variance than the nominal solution. For each of these
solutions, a decrease in the mean profit is incurred (the price of ro-
bustness).

By tuning the robustness parameters I' or a or robustness budgets §
(for the A — EV and ECCP), each method can generate a series of so-
lutions, described by the curves shown in Fig. 7, each for various values
of the robustness parameter corresponding to that approach. The points
on the curves represent specific solutions obtained using these methods.
Applied appropriately, using the right parameter values, solutions can
be tuned further to obtain the level of conservatism (or the objective
function-robustness tradeoff) desired by the manager.

However, each modeling approach trades off objective function
(profit) and robustness metric (variance) differently. As seen in Fig. 7,
there is a smoother tradeoff using CCP, ECCP and more step-like tra-
deoff curve using the RO and A — EV approaches. This is seen when the
data is drawn from multiple distributions, such as the normal, uniform,
or discrete uniform distribution, as seen in Fig. 12 (Appendix B.4). The
‘steps’ in the tradeoff curve [68] are because of the metric I', which is
defined in terms of the range of uncertainty input into the model. Our
first observation is that each of the methods traverses a significantly
different tradeoff curve between the mean and the standard deviation.
For example, in the range [54,000, 61,000] for the mean (where 61,000
is the nominal solution), the CCP and ECCP models have significantly
less conservative tradeoffs than the RO and the A — EV models - that is,
the drop in mean required for each unit of reduction in variance is
lower for the CCP and ECCP than for the RO and the A — EV models.
The conservatism in the tradeoffs of the RO and A — EV models can be
controlled by using input ranges that are convex subsets of the standard
deviation, as seen in Figs. 13 and 14, compared to Fig. 12, at points
close to the nominal solution value. This indicates that the methods
fundamentally trade off the objective function (mean return) and ro-
bustness metric significantly differently.

Our second observation, therefore, is that obtaining solutions with
an acceptable objective function-robustness metric tradeoff is an
iterative process, as it involves changing the parameter values, un-
certainty ranges, or probability of violations, without tight bounds or
guidelines. Moreover, the manager's input is required at each stage to
determine the appropriateness of the tradeoff.

Third, among the four models tested, the alternative models
(A — EV, ECCP) can make robust modeling more intuitive, by allowing
the manager to control the level of conservatism in objective directly
instead of testing of via constraint protection parameters. However, it is
difficult to predict a priori which method is ‘better’. In addition, this is
also difficult to gauge a posteriori unless we are able to evaluate the
solutions using simulation and compare the true performance of the
solutions.
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5. Case Study 3 - Aircraft Routing

Problem setting. Given a published schedule to be operated by an
airline, the airline schedule planner's routing problem is the following.
The goal is to find a feasible sequence of flight legs, called aircraft
routings or rotations, to be operated by each aircraft so that main-
tenance restrictions on aircraft are satisfied [90]. Each routing (corre-
sponding to an aircraft) consists of a sequence of flights followed by A-
checks at a maintenance station, which are to be performed every 60 h
of flying [91]. Each flight is required to be operated by exactly one
aircraft and there is a limited fleet size available. Details of the data and
formulations are in Marla, Vaze and Barnhart [73].

KPIs. Uncertainty arises from the fact that delays occur in the net-
work, and delayed flights can further cause delays in downstream
flights. This can disrupt the aircraft rotations, render them infeasible if
flights are excessively delayed, and potentially result in flight cance-
lations. The primary robustness metric is the propagated delay, that is,
the delay that is experienced by a flight that is delayed because of the
previous flight arriving late. Multiple robustness metrics, representing
the interests of different stakeholders, are of interest: the 15-minute, 30-
minute, 45-minute and 90-minute on-time performance of flights, the
number and percentage of passengers missing connections, and the
percentage of flight cancelations are of particular interest.

Nominal model. In the nominal problem we use a composite variable
modeling approach [92] where each variable is a feasible maintenance
route for an aircraft. Composite variables are used because of the ability
to capture complex maintenance constraints (involving flying and
elapsed time) through the variable specification rather than through
additional model constraints. Thus each composite variable includes a
set of flights to be operated by an aircraft followed by aircraft main-
tenance. It takes on value 1 if that route is chosen to be operated and 0
otherwise. The nominal problem formulation's objective is to choose a
feasible selection of routes, with constraints being (i) the need to operate
all flights (set-partitioning constraint), (ii) balance aircraft flow (net-
work-flow constraint) and (iii) not using more aircraft than available
(capacity constraint). For details, refer [93] and [92]. The number of
variables (routes) is of the order of tens of thousands to hundreds of
thousands for the instances of interest. It is key to observe here, that like
most network-based problems, this problem is likely to have multiple
optimal (and feasible) solutions given nearly any objective function, due
to the nature of networks and set-partitioning constraints. This feature
plays an important role in our discussion in this section.

Motivation for modeling uncertainty. On solving the nominal for-
mulation, which is geared towards feasibility, multiple feasible solu-
tions can be generated. Each of the solutions has an equal probability of
being used by the airline, but can differ significantly from other solu-
tions in terms of delays and passenger service levels. Fig. 8 shows the
performance of multiple feasible routings that are all alternatives that
could be used by the airline in the absence of explicitly modeling ro-
bustness [73]. In particular, when comparing the performance of the
solutions over multiple scenarios over the course of one month of
various airline disruptions, the authors note that the performance of the
solutions is very similar on low-delay scenarios such as scenario 10
(horizontal-axis), but varies considerably in high-delay scenarios such
as scenario 5.

Uncertainty models. There may be ‘simple’ ways of capturing un-
certainty. For example, suppose we add slack, or virtual gaps, to each
flight to absorb delay. This might be a rule-of-thumb approach adopted
by the airline. However, this poses the following problems — it is dif-
ficult to find out where to add the slack, and by how much. Ad-hoc
placement of slack, especially in highly resource-constrained problems
like airline schedules would often require more resources (planes) than
are available.

Robust Models and challenges: The challenges in building robust
models using the approaches we consider in this paper are two-fold:
First, translating the business indicator (flight or passenger delays) into
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Fig. 8. Variability in performance of multiple nominal optimal solutions.

a standard risk measure (such as variance, value-at-risk or CVaR) is
non-intuitive. Hence, it is not straightforward to decide which methods
are better applicable. Second, to model this problem, we first have to
understand the phenomenon of delays and introduce new parameters
into the formulation that reflect delays.

Robust modeling: Marla, Vaze and Barnhart [73] first use the phe-
nomenon of propagated delays to characterize uncertainty. The key
understanding behind this model is that delay experienced by a flight is
a function of the entire aircraft route (captured as a composite variable
in the formulation) and not of a single flight, because upstream flights
can cause propagation of delay to downstream flights. They model
uncertainty as the amount of delay experienced by a flight when op-
erated as part of specific aircraft route (note that each flight can be a
part of several routes due to the network structure, but only one has to
be chosen in the optimization). The uncertain parameters, then are the
worst-case or probabilistic delay levels experienced by a flight i when
operated as part of route r. This uncertainty can be physically inter-
preted through the following parameter(s) in the set-partitioning con-
straints: if a flight i incurs excessive delay (delay above a certain
threshold) because of being operated as part of route r, we denote the
chances of such excessive delay probabilistically (in the CCP paradigm)
or the chances of such excessive delay in the worst-case (in the RO
paradigm). For details, we refer the reader to Marla [72] and Marla,
Vaze and Barnhart [73]. Empirically, route delay distributions are
found to be approximately bi-modal, that is, they are small for the most
part, but can be very large about 5-10% of the time.

5.1. The RO approach

The set-partitioning model parameters that capture if flight i is
operated as part of route r are modified to also capture if flight i ex-
periences a worst-case delay greater than a threshold if it is operated as
part of route r. The nominal value of the parameter is 1 if flight i is part
of route r. The uncertainty is asymmetrically distributed about the
nominal value of 1 for the set-partitioning constraint parameters. The
protection level T' defined by the RO approach is associated with the
‘number of aircraft routes to protect against realizing their worst-case
propagated delay’. This means the formulation chooses those routes
that minimize the level of propagation by protecting against the case
when I strings attain their worst-case delay propagation levels.

Finding: Non-monotonicity of solutions from Bertsimas and Sim's RO
approach. As the value of I' increases, we find that solutions do not
necessarily become more robust. For example, Fig. 9 shows the simu-
lated performance of solutions with respect to propagated delays, for
different values of robustness parameter I'. I'=2 shows improved (de-
creased) delay with respect to I'=1, however, I = 3 is a worse solution
than T’ = 2, with increased delay. Thus, a non-monotonicity in solution
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Fig. 9. Non-monotonicity in solutions with increase in robustness parameter
values (Source: [33]).

behavior is observed. This is observed for several metrics (KPIs) of in-
terest, both for propagated delays, as well as total flight delays that we
optimize in the RO model as robustness metrics. Similar behavior is
observed in network-based routing and scheduling problems for ap-
plications involving UAV routing and task scheduling by Sakamoto [85]
and Bryant [86]; who report that as the value of I' increases, the true
robustness metric as measured through simulation can deteriorate,
rendering the model counter-intuitive.

Marla [72], Marla, Vaze and Barnhart [73], Sakamoto [85] and
Bryant [86] explain this phenomenon as follows. The RO model, when
solved for a particular value of I', ensures that the constraint at least
satisfies the chosen value of I' while minimizing the objective (cost). In
the case of large-scale network optimization problems with many
constraints (and therefore many I' values to set), discrete values of
variables and multiple optima with same cost, it is possible that mul-
tiple solutions satisfy the minimum value of I" but also can satisfy other
(higher) values of I at the same cost. In other words, multiple optimal
solutions can exist for a chosen value of I, each satisfying the minimum
probability of constraint protection related to I', but also satisfy a higher
value of T — indicating a lack of pareto-optimality (finding the maximum
I' at a given cost). Therefore, the solver can choose among multiple
optima, a higher protection (I') solution can be chosen for I' =2 rather
than for I'=3, resulting in a non-monotonicity in solution performance.
This means that the placement of slack in the network is not better than
for I'=2. This is also confirmed by observations by Iancu and Trichakis
[94].

The implications of the non-monotonicity resulting from a lack of
pareto-optimality are as follows: (i) it becomes more difficult to choose
a value of I' a priori (in addition to the weak bounds discussed in the
previous examples), resulting in a trial-and-error testing for the ‘right’
value of T, and (ii) if multiple constraints (for example, for each in-
dividual flight) with uncertainty exist, this problem is exacerbated,
because of a combinatorial manner of choosing a vector of I' values.
This strengthens our remarks from the previous case studies about the
difficulty of T value specification.

5.2. The A — EV approach

The alternative approach presented in Marla [72] and Marla, Vaze
and Barnhart [73] presents a way to prevent solution non-monotonicity
due to lack of pareto-optimality. Because the solution search is not
dependent on the input value of I' but on a budget on the objective (in
this case, a budget on propagated delay) set by the user, solutions that
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Fig. 10. Comparison of solutions from nominal, ECCP and A-EV approaches (Source: [19]).

satisfy the highest value of I' possible within the budget can be found.
Though specifying an acceptable level of propagated delay is also dif-
ficult to set a priori (and this approach is iterative with respect to the
delay budget), it is more intuitive for manager to specify this bound
from historical data. This arrangement allows solutions with better
slack placement (and thus, lower propagated delay) to dominate.
Among the solutions in Fig. 10, the A — EV model sets the cost as a
budget and finds the maximum I solution to be chosen (I'=2 in this
case) because it dominates other solutions. Additionally, solving the
A — EV model requires fewer iterations and less time than the original
RO approach [73].

5.3. The CCP model

To capture uncertainty using CCP, Marla and Barnhart [73] take
advantage of the set-partitioning nature of the nominal formulation.
Because each flight is contained in only one route in the solution, the
probabilistic CCP constraint can be made deterministic by formulating
it as a binary integer constraint, with each coefficient indicating the
probability of delay a flight incurs on the route. Through uncertainty is
in the left-hand-side of the constraint, due to the set-partitioning
nature, they can avoid the need for a cumbersome formulation invol-
ving joint probability distributions [73].

The CCP model solutions exhibit the same type of non-monotonicity
as RO approach solutions. As seen in Table 2, non-monotonicity in the
CCP model solutions occur as well: the solution with protection percent
94 is not as robust as the solution with protection percent 92.

For each input value of protection level a, the solution is seen to
satisfy the chance-constraint with at least probability a. However, non-
monotonicity arises because the constraints can be satisfied with higher
than probability a, and we do not bound from above the probability of
violation. The non-monotonicity in performance gives rise to similar
questions as in the RO approach, namely - how can we set a priori a
protection level for multiple constraints if we are unable to predict the
realized level of protection?

Table 2
Non-monotonicity in the CCP model solutions.

5.4. The ECCP approach

The alternative approach presented by Marla and Barnhart [73]
allows the model to pick solutions with the highest constraint protec-
tion (a) possible within an allowed budget of delay. Because we now
force the model to choose the solution with the higher protection level
a, non-monotonicity is avoided and solutions with higher a and better
slack placement dominate. This method is iterative with respect to the
budget of delay, but nevertheless, requires fewer iterations than the
CCP model.

5.5. CVaR approach

It is difficult to obtain a closed-form expression for CVaR for the
problem. To model CVaR using a scenario-based approach, millions of
scenarios should be generated to capture the uncertainty in the hun-
dreds of thousands of parameters representing aircraft routes. However,
we do not have enough information about the distribution, in parti-
cular, about joint probability distributions, to generate scenarios. In the
event we were able to generate the required number of scenarios, the
size of the large-scale binary program would have led to intractability.
The CVaR model is thus unsuitable for this problem.

5.6. Solution comparisons and modeling insights

In Fig. 10, we compare the solution quality of the A — EV and ECCP
model solutions against the airline's current routing. We do not include
the RO approach and the CCP approach solutions because they are
dominated by solutions from the A — EV and ECCP models. First, note
that these solutions all improve upon the airline's routing [73], and
generate solutions with lower delay. Second, the solutions to the
A — EV and the ECCP models behave differently. Because of the focus
on extreme-delay scenarios, the A — EV models (as also the RO model)
produce solutions that are good for extreme scenarios but not for
average scenarios. In fact, there exist multiple optimal solutions to the

% Flight delays

Passenger disruptions

<15 min <60 min <90 min <120 min Num disrupted % disruptions reduced
a=90 per flight 78.54 93.10 95.63 97.82 1025 6.77
a=92 per flight 77.54 92.54 95.00 97.36 1209 —9.90
a=94 per flight 79.54 93.73 96.00 98.18 987 10.20
Airline's routing 77.72 92.82 95.30 97.73 1100 0.00
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A — EV model which ‘protect’ route subsets of the same size, but such
solutions perform similarly on high delay scenarios (scenario 5) but
very differently on average delay scenarios (scenarios 2, 17). On the
other hand, the ECCP model because it captures delays probabil-
istically, focuses on high probability scenarios, and dominates over the
A-EV model over the multiple scenarios of interest.

It is not straightforward to apply general approaches that protect
using risk metrics such as ‘number of uncertain parameters at worst-
case’ or ‘probability of constraint violation’ to the aircraft routing for-
mulation; because they do not translate directly to delay metrics, and in
particular, capturing how delays occur in networks. Because delays in
networks are not static, in order to apply these methods, it is necessary
to use domain knowledge that allows us to capture dynamic network
properties such as delay propagation as parameters of the formulation.
Subsequently, generic robust optimization models capturing parameter
uncertainty may be applied.

Moreover, it is not straightforward to decide which methods of
modeling uncertainty are most suitable. This is because the robust
measures, which tend to protect constraint violation (number of coef-
ficients at worst-case I' and probability of violation a) are do not
translate easily into delay-based metrics. The RO approach and CCP
approaches are the most applicable to this problem (after modeling
problem-specific characteristics in the form of delay propagation) be-
cause they can be used for large-scale problems. CVaR and other sce-
nario-based approaches, on the other hand, are intractable for typical
problem sizes of this application.

The RO and CCP approaches require multiple iterations in identi-
fying good solutions because they are not geared to choosing the lowest
delay solution among multiple optimal solutions with the same values
of I and a. This is because these models do not pick the highest possible
values of I and o for a given constraint; and moreover, these methods
capture proxies for delays through I' and a.

The A — EV and ECCP models can search the solution space to find,
among multiple optimal solutions, those with the highest protection
defined in terms of I' or a. Therefore, these models also decrease the
need to re-iterate to find good solutions.

While the solutions from the two modeling approaches perform si-
milarly in many scenarios, they also differ significantly in specific
scenarios. The A — EV model does not differentiate among solutions
that perform similarly in the worst-case but very differently in the
average-case; whereas the ECCP model, because of its probabilistic
modeling, can find solutions with good performance in the more fre-
quently occurring cases, thus limiting the total delay minutes experi-
enced. For the real-world data of interest, the ECCP method solutions
dominate in terms of robustness (delay) over other models. This in-
dicates that worst-case-uncertainty based models should be used with
more caution when worst-case delays are rare.

6. Lessons from the case studies: Discussion

Process of building robust solutions. Unlike for deterministic problems,
the approach to generating robust solutions requires a series of steps.
For completeness, we describe these here as follows: (i) solving
the nominal problem or an existing implemented solution, (ii) simu-
lating uncertainly and assess impact on feasibility/quality of the nom-
inal solution, (iii) determining if the nominal solution needs to be im-
proved by building in more robustness, (iv) choosing a method among
multiple classes of methods such as RO, CVaR and CCP, based on the
data available, (v) computing solutions with multiple robustness para-
meters for each method applied, (vi) evaluating solution quality of
robust solutions and iterating if needed. Note that in this process, the
construction of a reliable simulation tool, and updating of data used in
the simulation tool, goes hand-in-hand with the development of the
robust modeling frameworks. It is also important to note that gen-
erating robust solutions is an iterative process, combining the robust
optimization tools and simulation.
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Role of Simulation. It is key to note that simulation is a tool for ‘what-
if’ analysis, and is complementary to the application of robust models, in
the process of generating robust solutions. For the simulation frame-
work to be effective, a reliable model of the underlying uncertainty is
required. The model of uncertainty for the simulation can be from
historical data, using a data-driven approach (as in the case of the
aircraft routing case); using exact (or approximate) distributions from
the underlying data if available (as in the pharmaceutical supply chain
case); and/or testing using hypothetical distributions (as in the corpo-
rate portfolio case). Simulation can be used to evaluate the performance
of both nominal solutions and ‘robust’ solutions, to understand the
tradeoff each methods provides in solution performance defined by
robustness or mean objective value. While simulation is a common tool
used in many industry settings, it cannot, for example, point to the
existence (or not) of more robust solutions. Therefore, it cannot be a
substitute for optimization-under-uncertainty approaches.

Different classes of robust modeling approaches can be equivalent, as
described by theory. However, realizing it in practice requires careful mod-
eling and tuning of parameters. Different classes of methods capture ro-
bustness or protection according to different definitions. As is discussed
in many of the theoretical papers, however, despite protection levels
being defined very differently in each method, there is equivalence
among these methods. We show that, while it is difficult to realize in
practice the equivalence between the methods exactly as described in
theory, this can be achieved by appropriately tuning parameters;
sometimes in non-intuitive ways. If fine-tuned appropriately and tested
extensively using a framework in which the optimization models are
accompanied by simulation, nearly all methods can perform quite well.
Each robust approach trades off objective function and robustness/re-
liability in its own way, which is finally evident after evaluation
through simulation.

For all the cases in this paper, applying approaches for optimization
under uncertainty (with carefully calibrated parameters) has generated
solutions that are more robust compared to the nominal solution; and
have added value to the customer. In particular, these solutions protect
the customer's investment in many realizations of uncertainty, while
maintaining the expected performance in line with the customer's ob-
jectives and key performance metrics.

Fine tuning the various methods of capturing uncertainty can be performed
through multiple techniques.

(a) Modeling uncertainty. Sources of uncertainty can vary significantly —
for example, in the corporate portfolio case, parameters describing
the return estimator are subject to uncertainty. In the pharmaceu-
tical supply chain case, the uncertainty is in the ‘risk’ parameters
themselves. In the aircraft routing case, we have to first model the
phenomenon of delays to create uncertain parameters for the pro-
blem. This is not a case of uncertainty in ‘problem parameters’, but
of creating parameters as a proxy for delay. While in the first two
case studies, uncertainty is two-sided, in the third, uncertainty is
one-sided (as it models delays). Modeling or defining uncertainty
parameters differently depending on the source of uncertainty, and
alternative, more efficient, formulations can be explored to re-
present the uncertainty in different ways.

(b) Often, the RO Approach and the CCP Approach will not give solu-
tions that satisfy pareto-optimality in terms of the robustness
parameter values; alternatively the A-EV (Extended RO) or
Extended CCP (ECCP) can be employed to find pareto-optimal so-
lutions

(c) Intelligently tuning parameters such as uncertainty ranges (RO and
A-EV) and quantiles of uncertainty (ECCP), and recognizing that
more parameters are tunable beyond the robustness parameters.
Because some values of uncertainty ranges can lead to over-con-
servatism, it is important to recognize that those inputs can be
tuned as well, for a more appropriate/less conservative tradeoff.
Moreover, instead of using the robustness parameters to tune
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models, robustness can be defined in terms of the robustness budget
available to the practitioner, through the A-EV and ECCP methods.
We discuss these in more detail in the next lesson.

Finding robust solutions is an iterative and interactive process.

Robust approaches aim to translate a KPI of robustness desired by
the analyst or customer into a risk measure of the approach. If the ro-
bustness metric is the same as a standard risk measure (such as var-
iance, CVaR, VaR), standard methods might be easily chosen that op-
timize based on these metrics. For non-standard KPIs (such as delays in
the aircraft routing case) or non-coherent risk measures (such as VaR) it
is hard to identify the best approach or the best way to define un-
certainty sets (as mentioned in Bertsimas and Thiele [95]).

Generating uncertainty sets and parameters for models from his-
torical data is a challenge in practice. For all the different robust
modeling approaches, using data-driven ways to describe uncertainty
sets or parameters using qualitative (is the distribution heavy-tailed or
light-tailed?) or quantitative information (90th quantile) is necessary.
Iterating among parameter values, to strike the most acceptable tra-
deoff between the multiple performance metrics, is inevitable.

Bertsimas and Sim's RO approach: From empirical experience, it is
difficult to specify a value for the risk parameter I', as it is not described
by tight bounds for the probability of violation. In fact, the approach is
seen to be highly conservative, especially so in the case of integer
programs. Therefore it is suitable for highly risk-averse users. However,
the bound also provides a helpful starting point to choose a better value
of I.

We can find the ‘most suitable’ cost-robustness tradeoff for the
manager by repeatedly solving the model for different values of I'. This
is possible for small-to-medium sizes like the corporate portfolio pro-
blem and the pharmaceutical supply chain problem. For larger-size
problems, such as aircraft routing, repeated re-solving is cumbersome
and possibly even intractable. For such problems we recommend the
use of the A — EV model. Additionally, controlling the level of con-
servatism can be done in a data-driven way, to guide the choice of
uncertainty sets (corporate portfolio and pharmaceutical supply chain
case studies).

A — EV model: When specifying I' becomes cumbersome in the RO
approach, such as for large-scale problems, we recommend the use of
the A — EV model that drives the trade-off between cost and robustness
through the budget constraint [73]. The A — EV model solutions
dominate those of the RO model solutions for fixed values of ‘robustness
budget’ and uncertainty sets.

CCP is applicable only when some knowledge of the underlying
uncertainty distribution is available, either in partial or complete form.
Quantile information from the manager and system experts may also be
used. CCP is more intuitive to interpret by the manager but more dif-
ficult to find an equivalent deterministic form (unless scenarios from
large amount of data are generated [41]). In the corporate portfolio
case, CCP resulted in a quadratic deterministic formulation; whereas in
the pharmaceutical supply chain case, an additional proxy constraint is
added, to capture left-hand-side uncertainty. Finally, in the aircraft
routing case, set-partitioning structure of the constraint containing
uncertain parameters allowed a simpler deterministic formulation [73].

ECCP model: We recommend the use of the ECCP model when it is
difficult to specify the probability of constraint violation for multiple
constraints, or when one among multiple optima of the CCP model
needs to be chosen. ECCP solutions dominate in terms of robustness,
over solutions of the CCP.

CVaR is a good approach to use for small to medium-scale problems
where a large quantity of data is available to help define the uncertainty
through possible scenarios. However, translating the business indicator
into a numerical value for the critical value is not straightforward, as
the value of CVaR is not intuitive. The solution process can be iterative
because VaR and CVaR are simultaneously optimized for. For a small
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number of uncertain parameters (corporate portfolio case), the CVaR
formulation may be possible to solve but quickly becomes intractable
for medium (pharmaceutical supply chain) or larger (aircraft routing)
problems.

Recommendation: We suggest that when it becomes difficult to set
the robustness parameters for multiple constraints, the manager can be
more easily able to make decisions by specifying a cost budget of un-
certainty, described in terms of the objective function (return, or cost)
of the deterministic formulation. We have provided pointers to alter-
native models proposed by Marla [72] and Marla, Vaze and Barnhart
[73] that define robustness in terms of ‘loss in nominal objective
function to gain robustness’. Particularly in the case of problems with
multiple optima (such as network-based settings) we recommend thor-
ough investigation of multiple optimal solutions satisfying the same
values of ' or a, but with different values of robustness metrics, or
multi-objective optimization. In these scenarios, the A — EV and ECCP
models become more relevant for application.

Criteria in choosing robust modeling approaches are ease of im-
plementation, ease of determining sources of uncertainty and ease of
characterizing them, intuitiveness of approach in problem setting, ap-
plicability of approach to the setting, level of conservatism showed, and
tractability. In practice, also, given a limited budget of investment for
software packages that implement such methods, investment for prac-
tical implementation should also be considered. Therefore, we re-
commend that practitioners certainly set up a reliable simulation
system to accompany the evaluation of robust solutions, as well as
implement method(s) in the order of ease of implementation in the
organization.

We recommend that approaches be used in the order of ease of
implementation. For example, for the case of the three classes of ap-
proaches discussed here, we recommend first the application of the RO
approach, as the framework of translating the nominal formulation to
robust formulation is simplest for all linear and integer programs.
Second, we suggest an approach like CCP which captures more details
about data (even partial information in the form of quantiles) but re-
quires more effort in formulating. However, if RO or CCP face tract-
ability or pareto-optimality issues, we recommend A — EV and ECCP as
alternatives. Finally, CVaR requires more modeling effort. We re-
commend this when large data sets are available to help describe the
uncertainty. Using this sequence of approaches helps us to first judge
the benefits of capturing uncertainty. It also indicates the possible ne-
cessity of collecting further data to explore the nature of uncertainty, in
order to investigate the use of more complex and sophisticated models
requiring more data to capture uncertainty.

It should be of reassurance to a practitioner that they can choose a
method that can be easiest implemented in their systems, or easily in-
terpretable to the manager, or more natural or intuitive to developers.
By appropriately tuning multiple parameters used as inputs to these
methods and testing them via a reliable simulation framework, tradeoff
curves between robustness parameters and mean objective values can
be generated, allowing the manager to choose a suitable operating
point.
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Appendix A. Formulations for the Corporate Portfolio Case
A.1 RO Approach Formulation and Solutions

max| min Z (@ + bixy)
x @G

(e a !
o8 koM vier
b; b; ¥
l,-Sxi<u,-\7’iEI

i

Y

ZZiSF
i

xiZO Viel

0< <7Z'<1 Vje{,2,VvViel

yizo0VvVje(l,2,viel

In the above formulation, G is the standard deviation matrix and GG’ = C, the covariance matrix as defined in Section 3.1.
To complement Fig. 3, we study the mean-variance tradeoffs when the same values of variance and covariance are input into the RO Approach,
but the underlying data actually arises from various distributions - specifically, uniform, normal and discrete distributions. As discussed in
Section 3.1, we again find (see Fig. 11) that using a convex subset of the uncertainty set results in a less conservative tradeoff between the mean and

standard deviation.

* Normal(C) ® Normal(9C)
X Discrete(C) X Uniform(9C)

A Uniform(C)
Discrete(9C)
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s
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S

)

Mean Return
=
8
wv
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1,385 A
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160 150 140 130 120 110 100 90 80

Standard Deviation of Return

Fig. 11. Mean-standard deviation tradeoff of Return.
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A.2 CCP Approach Formulation

max )’ (@ + bix;)

* el 24
Z @@ +bx) + 11 — @) /2 1, xTCi1, x > c. v.
iel \ier (25)
Zx,- S B
iel (26)
L<xi<uy Viel 27)
x;>0foralliel (28)

Here c.v.(a) is the critical value (obtained from statistical data) that the return from the portfolio should exceed, with probability a. ! indicates
the inverse cumulative standard normal function. Note that @ = 0.5 is equivalent to the nominal problem, and for a = 0.5, we obtain a second-order
convex formulation.

A.3 CVaR Approach Formulation and Solutions

max ) (@ + bix;)
X,z ; (29)

@+ bpx)+z2f Vj L. M
iel (30)

6+;§z->cv(a)
A-aM G777

(€X0)]
Z x; <B
iel (32)
L<x<w YViel (33)
x;>0foraliel (34)
=0 Vj=1, ..M (35)

(29)-(35) is the CVaR formulation of the nominal formulation (1)-(4). Here, @; and Ej represent the realizations of the uncertain parameters as
observed in scenario j of the M sampled scenarios. (30) and (31) together approximate the true CVaR equation. z; is a dummy variable that helps in
the approximation. f is the approximation of the VaR value when CVaR is constrained as shown in this formulation. The remaining constraints are
from the nominal formulation.

Appendix B. Formulations for the Pharmaceutical Supply Chain Case

B.1 RO Approach Formulation

According to this model, the parameters H(t, s, e) are assumed to realize values in a range of uncertainty b (t, s, e) around the mean hazard rates
H(t, s, ). That is, the hazard rates take values in the interval [H (¢, s, e) — PAI (t,s,e), H(t, s, e) + ﬁ (t, s, e)]. The uncertainty set in this model is
defined as the case when I' of the hazard rate parameters realize values at the worst-case bounds of their uncertainty ranges. The linearized
formulation, as described in Bertsimas and Sim [68], is as follows.

max[ Z R(p, t,s,e)x(p, t, s, e) — Z C(p, t, s, e)x(p, t,s,e)
xeX
p.ts.e (36)

s. t. Z H(t, s, e)R(p, e)x(p, t,s,e) + zI + v(t, s, e) < CV
p.t.s.e (37)

z+v(t, s, e)>y(t, s, e) YV i,s,e (38)

-y, s,e)< [Z x(p, t, s, ©)R(p, e)]PAI(t, s,e) Vi s, e

p (39)
[Z x(, t, s, e)R(p, e))ﬁ(t, s,e) <y(t s,e) Vit s, e
p (40)
x(p,t,5,6)<1 Vp, e
tz,s: (41)

16



L. Marla, et al. Operations Research Perspectives 7 (2020) 100150

x(p,t,s,e)€{0,1} Vp, ¢t s, e 42)
v(t,s,e) >0 Vis,e (43)
y(t,s,e)>0 Vt,s, e (44)

B.2 A — EV Formulation

Note that in the A — EV model, we aim to maximize the number of uncertain coefficients that can take on their worst-case values, ensuring costs
within a robustness budget 8. Therefore, for this model, we order the ranges of the uncertain coefficients A (t, s, ©)R(p, e) in increasing order. After
ordering, the rank of the (p, ¢, s, e)-th coefficient is denoted by (k, p, t, s, e). Also, the original index (p, ¢, s, e) of the variable that takes the kth position
in the sorted 1{\1 (t, s, e)R(p, e) values is denoted by (p, t, s, e, k). Thus, the value K of the index in the last position in the sorted list is described by
K = IPl + ITI + IS| + |IEl. We define A equal to the maximum number of variables x(p, ¢, s, ) in the solution with x = 1 whose coefficient values must
assume their nominal values for the solution to remain feasible.

Let P* be the optimal profit of the nominal problem (9)-(12). Let § be the user-specified incremental cost that is acceptable for increased
robustness, that is, the profit of a robust solution from the Delta formulation is at least P* — §. Let variables v(p, ¢, s, e) equal 1 if the uncertain
coefficient H(t, s, e)R(p, e) is not allowed to take on its extreme value, and takes on its nominal value in the solution of the Delta model. Variables w
(k) equal 1 for all k for which there exists a l = k with v(p, t, s, e, ) = 1. w(k) variables in the sorted order of ﬁ (t, s, e)R(p, e) values follow a step
function. This leads to the A — EV formulation, which is as follows.

min A (45)
s. t. Z R(p, t,s,e)x(p, t, s, e) — z C(p,t,s,e)x(p,t,s,e)>P*—46

pLs,e (46)
A > Z v(p, t, s, e)

pihse 47)
v(p,t,s,e) <x(p,t,s,e) Vp,t,s,e (48)
vip, t,s,e; k) <wk)Vk=1, .,K (49)
v(p, t,s,e) >x(p, t,s,e)+w(k;p, t,s,e)—1 Vp,ts,e (50)
wk+1)<wk)Vk=1, .,K (51)
w() =1 (52)
wEK+1)=0 (53)
Zx(p,t,s,e)sl Vp, e
L5 (54
x(p,t,s,e)e{0,1} Vp,ts,e (55)
v(p,t,s,e)€[0,1] Vp,ts,e (56)
wk)e{0,1}Vk=0, ..,K (57)

B.3 ECCP Formulation

maxa (58)

s. t. Z R(p, t,s,e)x(p, t, s, e) — z C(p,t,s,e)x(p,t,s,e)>P*—46
pob.s,e (59)

Z H(t, s, e)R(p, e)x(p, t,5,e) < CV
p.L,s.e (60)

K
D Fialeso BRP, x(p, 1, 5,€) < Y Fap cep (@) 0y — Yy )

pLs,e k=1 61)
Zx(p,t,s,e)gl Vp, e

L5 (62)
Ve 2 Ve (63)
Y% =0 (64)
¥ =1 (65)
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K
a < Z e — Ye-1)

k=1 (66)
x(p, t,s,e)€{0,1} Vp,ts,e 67)
»€e€fo,1} Vk=1, .,K (68)

The extended chance-constrained model builds on the chance-constraints in (14)-(15). We assume that some quantiles o, k = 1, ...,K of the
critical value CV¢cp are known, from analysis of historical data. Instead of choosing one particular value of ax, we try to attain the highest protection
level possible, within a budget § on the profit. y, are binary variables that equal 1 if the protection level ay is attained by the solution. The objective
(58) maximizes the protection level realized by the solution, which is described by (61) and (65). The protection level variables yj take the form of a
step function.

B.4 Supplementary Results under various distributions of uncertainty

Figs. 12, 13, 14

Fig. 12. Mean-standard deviation tradeoffs
using the four approaches, for normal, uniform

800 + and discrete uniform distributions. The input
to optimization uses a range of H=0.04, and
750 A . -
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Fig. 13. Mean-standard deviation tradeoffs
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