

The challenges of devising next generation automotive benchmarks

Patrick Leteinturier & Laurent Beaurenaut Infineon Technologies AG

Never stop thinking

Automotive System Trends

Market requirements

Benchmark requirements

Workload characterization

New Benchmark

Summary

Key Market Drivers

CO2 Reduction

Safety

Pollution Reduction

Fun to Drive

Global CO₂ Targets

It's the law: 35 mpg CAFE Automotive News Dec. 19th 2007 Cars: 35 mpg by 2020

EU agrees to steep fines to cut car CO₂ from 2012 Automotive News Dec. 20th 2007 Cars: 120gCO2/km by 2012 +10 g coming from biofuels ...

Conversion table for regular gasoline engine

gCO2/km	155	140	130	120	110	100	90
L / 100km	6.72	6.08	5.65	5.21	4.78	4.34	3.91
MPG	35.00	38.69	41.66	45.13	49.24	54.16	60.18

Automotive System Trends

Market requirements

Benchmark requirements

Workload characterization

New Benchmark

Summary

General Architectural Trends and Requirements for Semiconductors

Trend	Application Examples	IC Requirements
Software-enabled functionality	Replacement of dedicated hardware with software algorithms running on µC	Strong microcontroller cores with RT capabilities, broad peripheral set and eFlash
Decentralization to Centralization	µC-enabled global controls	High performance processors with network connectivity
Centralization to Decentralization	Smart sensor networks, dedicated board nets	Broad IP portfolio (sensors, µC, power) HVCMOS and advanced packaging technology
Analog/Digital Tradeoff	Replacement of signal processing and communication from analog to digital	A/D and D/A conversion, signal conditioning and processing
X-by-Wire	Mechatronical solutions for steering, breaking instead of mechanical systems	RT capabilities, failsafe electronics

Software-Enabled Functionality Increased Microcontroller Performance

Semiconductor Industry provides a 30% to 60% annual performance increase at same cost Software platform, reuse of software modules across application and customers

Migration of functions from hardware to software

Hardware independent Software

Wider use of automatic code generation

Software standardization e.g. Operating system, Drivers with application level interfaces (OSEK, AutoSar, IEC61508, ISO26262...)

Robust, transparent software e.g. encapsulation, software self test

μC family concept with performance increase and easy migration path

Automotive System Trends

Market requirements

Benchmark requirements

Workload characterization

New Benchmark

Summary

Benchmarks that Predict Performance in Real-world Applications

Not MHz

∧ Only provides relative performance analysis

Not Dhrystone

- No regulation
- No memory or cache effects
- ∧ Optimizes to nothing

Usage Models

- ▲ Is a substitute of the real application to model the system performance and memory size utilization
- ▲ Analyze, tune, and validate new processor architectures
- ▲ Design and analysis of system-level implementation

Vision of the benchmark

- The vision is to establish this new benchmark as an automotive tool to specify and measure performance between:
- 1. OEMs
- 2. Tier1s
- 3. Silicon vendors
- 4. 3rd party tool vendors

The relevance of the benchmark

- The automotive is more going toward the system benchmark
 - 1. Static Benchmark
 - Test of given algorithm
 - 2. Dynamic Benchmark
 - Test of response, switch context...
 - 3. Functional Benchmark
 - Test of complete function CAN, LIN, PWM, ADC
 - 4. Auto code Benchmark

Automotive System Trends

Market requirements

Benchmark requirements

Workload characterization

New Benchmark

Summary

Proposal EEMBC Automotive Suite V2

- Two big needs
- 1. Work load extraction
- 2. Application Representative Benchmark generator

Application Characterization

Embedded Software

To assess performance of a µC for an application is important to have a good knowledge of:

- Control Algorithm
 Plant Algorithm
- 3. Scenario

Work load characterization

- At Source Code level
 - 1. This analyses the source code
 - 2. Without care of the use cases

At Trace code level

- 1. This analyses a given code trace
- 2. For a give plant and a given scenario
- 3. E.g. Full load, Idle, Engine Acceleration..

Benchmark Characterization

Multiple parameters:

- 1. Instruction distribution
- 2. Inherent instruction-level parallelism (ILP)
- 3. Branch predictability
- 4. Inherent floating-point (FU) usage
- 5. Minimum cache size to minimize misses

Instruction distribution at Application level

At Source Code level

Automotive System Trends Market requirements Benchmark requirements Workload characterization

New Benchmark

Algorithm selection

Arithmetic Fundamentals

Bit manipulation
Basic Calculation, Saturation & Rounding
Polynomial equations and limited dev.
Table look-up & Interpolation
Zeros of a 2nd order equation
Trigonometric
Logarithmic, Exponential, X Power Y
Vector and Matrix functions

Control

Finite state machine

PID

Kalman + LQG

Filters

De-bounces Schmidt trigger Finite Impulse Response (FIR) Filter Infinite Impulse Response (IIR) Filter Fast Fourier Transform (FFT) Inverse Fast Fourier Transform (iFFT) Discrete Cosine Transform (DCT) Inverse Discrete Cosine Transform (iDCT)

Statistics

Autocorrelation Convolution Mean Value, Variance, Standard deviation Linear regression Random sequence

Instruction distribution

At Reference Algorithm level

Level of definition

Algorithm parameters (Format, dimension..)

Algorithm data set

Instruction distribution

EEMBC Automotive V1

Inherent ILP

Inherent instruction-level parallelism

EEMBC Automotive V1

Benchmark Fitting / Tuning

25

Benchmark Fitting / Tuning

- Customer Code
- Benchmark Code
 - ▲ Algorithm selection
 - ▲ Algorithm parameters
 - ▲ Algorithm data set
 - ▲ Algorithm blending
 - ▲ Fitting to application envelop
 - ▲ Link to OS

Benchmark Fitting / Tuning

Today Fitting / Tuning is a manual process in the future this could be semi-automatic or fully-automatic

Software architecture (Static view)

Agenda

Automotive System Trends Market requirements Benchmark requirements Workload characterization New Benchmark

Summary

Summary

→ It is possible to create a benchmark to substitute the application code and be representative.

This benchmark is a tool share performance information between OEMs, Tier1s, Silicon vendors, SW vendors and Tool suppliers...

This benchmark is a tool to better architect HW and SW for next generation Automotive Electronics.

Acknowledgement

EEMBC: The Embedded Microcontroller Benchmark Consortium

http://www.eembc.org

Markus Levy EEMBC President

Shay Gal-On EEMBC Director of Software Engineering

2008-01-0382

The challenges of devising next generation automotive benchmarks

Thank you for your attention Q&A

