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Thanks to:

Much of this material is based on:
David Goldberg, Genetic Algorithms in 
Search, Optimization, and Machine Learning, 
Addison-Wesley, 1989 (still one of the best 
introductions!)
Darrell Whitley, “Genetic Algorithm 
Tutorial” – on the web at 
www.cs.colostate.edu/~genitor/MiscPubs/tutorial.pdf
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Overview of Tutorial

Quick intro – What IS a genetic 
algorithm?

Classical, binary chromosome
Where used, & when better to use 
something else
A little theory – why a GA works
GA in Practice -- some modern variants



GEC Summit, Shanghai, June, 2009

Genetic Algorithms:

Are a method of search, often applied to 
optimization or learning
Are stochastic – but are not random search
Use an evolutionary analogy, “survival of fittest”
Not fast in some sense; but sometimes more 
robust; scale relatively well, so can be useful
Have extensions including Genetic Programming 
(GP) (LISP-like function trees), learning 
classifier systems (evolving rules), linear GP 
(evolving “ordinary” programs), many others
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The Canonical or Classical GA

Maintains a set or “population” of strings
at each stage 
Each string is called a chromosome, and 
encodes a “candidate solution”–
CLASSICALLY, encodes as a binary 
string (but now in almost any conceivable 
representation)
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Criterion for Search

Goodness (“fitness”) or optimality of a string’s 
solution determines its FUTURE influence on 
search process -- survival of the fittest
Solutions which are good are used to generate 
other, similar solutions which may also be good 
(even better)
The POPULATION at any time stores ALL we 
have learned about the solution, at any point
Robustness (efficiency in finding good solutions 
in difficult searches) is key to GA success
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Classical GA: 
The Representation

1011101010 – a possible 10-bit string 
(“CHROMOSOME”) representing a possible solution to 
a problem

Bits or subsets of bits might represent choice of some feature, 
for example.  Let’s represent choice of shipping container for 
some object:

bit position meaning
1-2 steel, aluminum, wood or cardboard
3-5 thickness (1mm-8mm)
6-7 fastening (tape, glue, rope, plastic wrap)
8 stuffing (paper or plastic “peanuts”)
9 corner reinforcement (yes, no)
10 handles (yes, no)
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Terminology

Each position (or each set of positions that encodes some 
feature) is called a LOCUS (plural LOCI)

Each possible value at a locus is called an ALLELE
We need a simulator, or evaluator program, that can tell us 

the (probable) outcome of shipping a given object in any 
particular type of container
may be a COST (including losses from damage) (for 
example, maybe 1.4 means very low cost, 8.3 is very bad 
on a scale of 0-10.0), or
may be a FITNESS, or a number that is larger if the 
result is BETTER
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How Does a GA Operate?

For ANY chromosome, must be able to 
determine a FITNESS (measure of performance 
toward an objective) using a simulator or 
analysis tool, etc.
Objective may be maximized or minimized; 
usually say fitness is to be maximized, and if 
objective is to be minimized, define fitness from 
it as something to maximize
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GA Operators:
Classical Mutation

Operates on ONE “parent” chromosome
Produces an “offspring” with changes.
Classically, toggles one bit in a binary 
representation
So, for example: 1101000110 could 
mutate to: 1111000110
Each bit has same probability of mutating



GEC Summit, Shanghai, June, 2009

Classical Crossover

Operates on two parent chromosomes
Produces one or two children or offspring
Classical crossover occurs at 1 or 2 points:
For example:  (1-point) (2-point)

1111111111 or  1111111111
X 0000000000 0000000000

1110000000 1110000011
and 0001111111      0001111100
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Selection

Traditionally, parents are chosen to mate with 
probability proportional to their fitness: 
proportional selection
Traditionally, children replace their parents
Many other variations now more commonly 
used (we’ll come back to this)
Overall principle:  survival of the fittest



GEC Summit, Shanghai, June, 2009

Synergy – the KEY

Clearly, selection alone is no good …
Clearly, mutation alone is no good …
Clearly, crossover alone is no good …
Fortunately, using all three simultaneously 

is sometimes spectacular!
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Contrast with Other Search 
Methods

“indirect” -- setting derivatives to 0
“direct” -- hill climber
enumerative – search ‘em all
random – just keep trying, or can avoid 
resampling
simulated annealing – single-point method, reals, 
changes all loci randomly by decreasing 
amounts, mostly keeps the better answer, …
Tabu (another common method)
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BEWARE of Claims about ANY 
Algorithm’s Asymptotic Behavior –

“Eventually” is a LONG Time

LOTS of methods can guarantee to find the best 
solution, with probability 1, eventually…

Enumeration
Random search (better without resampling)
SA (properly configured)
Any GA that avoids “absorbing states” in a Markov 
chain

The POINT:  you can’t afford to wait that long, 
if the problem is anything interesting!!!
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When Might a GA
Be Any Good?

Highly multimodal functions
Discrete or discontinuous functions
High-dimensionality functions, including many 
combinatorial ones
Nonlinear dependencies on parameters 
(interactions among parameters) -- “epistasis”
makes it hard for others
Often used for approximating solutions to NP-
complete combinatorial problems
DON’T USE if a hill-climber, etc., will work well
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The Limits to Search

No search method is best for all problems – per 
the No Free Lunch Theorem
Don’t let anyone tell you a GA (or THEIR 
favorite method) is best for all problems!!!
Needle-in-a-haystack is just hard, in practice
Efficient search must be able to EXPLOIT 
correlations in the search space, or it’s no better 
than random search or enumeration
Must balance with EXPLORATION, so don’t 
just find nearest local optimum
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Examples of Successful Real-
World GA Application

Antenna design
Drug design
Chemical classification
Electronic circuits (Koza)
Factory floor scheduling 
(Volvo, Deere, others)
Turbine engine design 
(GE)
Crashworthy car design 
(GM/Red Cedar)
Protein folding

Network design
Control systems design
Production parameter 
choice
Satellite design
Stock/commodity 
analysis/trading
VLSI partitioning/ 
placement/routing
Cell phone factory tuning
Data Mining
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EXAMPLE!!!
Let’s Design a Flywheel

GOAL:  To store as much energy as 
possible (for a given diameter 
flywheel) without breaking apart
On the chromosome, a number 
specifies the thickness (height) of 
the “ring” at each given radius
Center “hole” for a bearing is fixed
To evaluate:  simulate spinning it 
faster and faster until it breaks; 
calculate how much energy is stored 
just before it breaks
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Flywheel Example

So if we use 8 rings, the chromosome might look like:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

If we mutate HERE, we might get:
6.3 3.7 4.1 3.5 5.6 4.5 3.6 4.1
And that might look like (from the side):
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Recombination (“Crossover”)

If we recombine two designs, we might get:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

x
3.6 5.1 3.2 4.3 4.4 6.2 2.3 3.4

3.6 5.1 3.2 3.5 5.6 4.5 3.6 4.1

This new design might be BETTER or WORSE!



GEC Summit, Shanghai, June, 2009

Typical GA Operation -- Overview

Initialize population at random

Evaluate fitness of new 
chromosomes

Perform crossover and 
mutation on parents

Select parents to breed 
based on fitness

Good
Enough? DoneYes

No
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A GA Evolves the Flywheel:

One                Choice of            Choice

Material            Materials           (side view)
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Prior to Lohn’s evolution
of a design, a contract had 
been awarded for 
designing the antenna.
Result: this quadrifilar
helical antenna (QHA).

Radiator

Under the ground 
plane: matching and 

phasing network

Another Example:  NASA ST5 Quadrifilar
Helical Antenna:

Given a Desired Pattern, Design the Antenna
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2nd Set of Evolved Antennas
(Now Flying on 3 Satellites)



GEC Summit, Shanghai, June, 2009

“Genetic Algorithm” --
Meaning?

“classical or canonical” GA -- Holland 
(taught in ‘60’s, book in ‘75) -- binary 
chromosome, population, selection, 
crossover (recombination), low rate of 
mutation
More general GA:  population, selection, 
(+ recombination) (+ mutation) -- may be 
hybridized with LOTS of other stuff
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Representation Terminology

Classically, binary string: individual or 
chromosome
What’s on the chromosome is GENOTYPE
What it means in the problem context is the 
PHENOTYPE (e.g., binary sequence may map to 
integers or reals, or order of execution, or inputs 
to a simulator, etc.)
Genotype and problem environment determine 
phenotype, but phenotype may look very 
different
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Discretization – Representation 
Meets Mutation!

If problem is binary decisions, bit-flip mutation  is fine
BUT if using binary numbers to encode integers, as in 
[0,15] [0000, 1111], problem with Hamming cliffs:

One mutation can change 6 to 7:  0110 0111, 
BUT
Need 4 bit-flips to change 7 to 8:  0111 1000
That’s called a “Hamming cliff”

May use Gray (or other distance-one) codes to 
improve properties of operators: for example: 000, 
001, 011, 010, 110, 111, 101, 100
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Mutation Revisited

On “parameter encoded” representations
Binary ints

Gray codes and bit-flips
Or binary ints & 0-mean, Gaussian changes, etc.

Real-valued domain
Can discretize to binary -- typically powers of 2 
with lower, upper limits, linear/exp/log scaling
End result (classically) is a bit string

BUT many now work with real-valued GAs, non-bit-
flip (0-mean, Gaussian “noise”) mutation operators
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Defining Objective/Fitness 
Functions

Problem-specific, of course
Many involve using a simulator
Don’t need to know (or even HAVE)  derivatives
May be stochastic
Need to evaluate thousands of times, so can’t be TOO 
COSTLY

For real-world, evaluation time is typical bottleneck
Even a  SIMPLE fitness criterion may be complex to 
calculate 
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Back to the “What” Function?

In problem-domain form -- “absolute” or “raw”
fitness, or evaluation or performance or objective
function
Relative fitness (to population), may require 
inverting and/or offsetting, scaling the objective 
function, yielding the fitness function.  Fitness
should be MAXIMIZED, whereas the objective 
function might need to be MAXIMIZED OR 
MINIMIZED.
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Selection

In a classical, “generational” GA:
Based on fitness, choose the set of individuals 
(the “intermediate” population) that will soon:

survive untouched, or
be mutated, replaced, or
in pairs, be crossed over and possibly 
mutated, with offspring replacing parents

One individual may appear several times in the 
intermediate population (or the next population)
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Scaling of Relative Fitnesses

Trouble:  as evolution progresses, relative 
fitness differences get smaller (as 
chromosomes get more similar to each 
other – population is converging).  Often 
helpful to SCALE relative fitnesses to keep 
about same ratio of best guy/average guy, 
for example.
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OR, use Another Type of 
Selection

Proportional, using relative fitness (examples):
“roulette wheel” -- classical Holland -- chunk of wheel ~ 
relative fitness
stochastic uniform sampling -- better sampling -- integer 
parts GUARANTEED; still proportional

OR, NOT requiring relative fitness, nor fitness scaling:
tournament selection
rank-based selection (proportional to rank or all above 
some threshold)
elitist (mu, lambda) or (mu+lambda) from ES
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Explaining Why a GA Works –
Intro to GA Theory

Just touching the surface with two 
classical results:

Schema theorem – how search effort is 
allocated
Implicit parallelism – each evaluation 
provides information on many possible 
candidate solutions
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What is a GA DOING?  (Schemata 
and Hyperstuff)

Schema -- adds “*”, means “don’t care”
One schema, two schemata
Definition: ORDER of schema H = o(H):   # of non-*’s
Def.:  Defining Length of schema, Δ(Η): distance between
first and last non-* in a schema; for example:  
Δ (**1*01*0**) = 5       (= number of positions where 1-pt 
crossover can disrupt it).
(NOTE:  diff. xover diff. relationship to defining length)
Strings or chromosomes are order L schemata, where L is 
length of chromosome (in bits or loci).  Chromosomes are 
INSTANCES (or members) of lower-order schemata



Vertices are order ? schemata

Edges are order ? schemata

Planes are order ? schemata

Cubes (a type of hyperplane) 
are order ? schemata

8 different order-1 schemata 
(cubes):  0***, 1***, *0**, 
*1**, **0*, **1*, ***0, ***1

Cube and Hypercube
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Hypercubes, Hyperplanes, Etc.

A string is an instance of how many 
schemata (a member of how many 
hyperplane partitions)? (not counting the 
“all *’s,” per Holland)
If L=3, then, for example, 111 is an 
instance of how many (and which) 
schemata:  7 schemata
23-1
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GA Sampling of Hyperplanes

So, in general, string of length L is an instance 
of 2L-1 schemata

But how many schemata are there in the whole 
search space?

(how many choices each locus?)
Since one string instances 2L-1 schemata, how 

much does a population tell us about schemata 
of various orders? 

Implicit parallelism: one string’s fitness tells us 
something about relative fitnesses of more than 
one schema.
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How Do Schemata Propagate?

Via instances -- only STRINGS appear in pop –
you’ll never actually see a schema
But, in general, want schemata whose instances 
have higher average fitnesses (even just in the 
current population in which they’re instanced) 
to get more chance to reproduce.  That’s how we 
make the fittest survive!
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Proportional Selection Favors 
“Better” Schemata

Select the INTERMEDIATE population, the 
“parents” of the next generation, via fitness-
proportional selection
Let M(H,t) be number of instances (samples) of 
schema H in population at time t.  Then fitness-
proportional selection yields an expectation of:

f
tHftHMintermedtHM ),(),(),( =+



GEC Summit, Shanghai, June, 2009

Now, What Does
CROSSOVER Do to Schemata

One-point Crossover Examples
11******** and 1********1

Two-point Crossover Examples (rings)
The closer together loci are, less likely to be 
disrupted by crossover.  A “compact 
representation” tends to keep alleles together 
under a given form of crossover (minimizes 
probability of disruption).
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Linkage and Defining Length

Linkage -- “coadapted alleles”
(generalization of a compact representation
with respect to schemata)
Example, convincing you that probability 
of disruption by 1-point crossover of 
schema H of length Δ(H) is Δ(H)/(L-1):

1****01**1
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The Fundamental Theorem of Genetic 
Algorithms -- “The” Schema Theorem

Holland published in ANAS in 1975, had taught it 
much earlier (by 1968, for example, when I 
started Ph.D. at UM)

It provides lower bound on change in sampling rate 
of a single schema from generation t to t+1.  
We’ll consider it in several steps, starting from 
the change caused by selection alone:

f
tHftHMintermedtHM ),(),(),( =+
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Schema Theorem Derivation (cont.)

Now we want to add the effect of crossover:
A fraction pc of pop undergoes crossover, so:

Conservative assumption: crossover within the 
defining length of H is always disruptive to H, 
and will ignore gains (we’re after a LOWER 
bound -- won’t be as tight, but simpler).  Then:

])1(),([),()1()1,( ),(),( gainslossestHMptHMptHM
f

tHf
cf

tHf
c +−+−=+

)]1(),([),()1()1,( ),(),( sdisruptiontHMptHMptHM
f

tHf
cf

tHf
c −+−≥+
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Schema Theorem Derivation (cont.)

Whitley adds a non-disruption case that Holland ignored:
If cross an instance of H with another, anywhere, we get no 

disruption.  Chance of doing that, drawing second 
parent at random, is P(H,t) = M(H,t)/popsize:  so prob. 
of disruption by x-over is:

Then can simplify the inequality, dividing by popsize and 
rearranging re pc:

So far, we have ignored mutation and assumed second 
parent is chosen at random.  But it’s interesting, already.

)),(1(1
)( tHPL

H −−
Δ

))],(1(1[),()1,( 1
)(),( tHPptHPtHP L

H
cf

tHf −−≥+ −
Δ
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Schema Theorem Derivation (cont.)

Now, we’ll choose the second parent based on 
fitness, too:

Now, add effect of mutation.  What is probability 
that a mutation affects schema H?  (Assuming 
mutation always flips bit or changes allele):

Each fixed bit of schema (o(H) of them) changes 
with probability pm, so they ALL stay 
UNCHANGED with probability: 

)]),(1(1[),()1,( ),(
1
)(),(

f
tHf

L
H

cf
tHf tHPptHPtHP −−≥+ −

Δ

)()1( Ho
mp−
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Schema Theorem Derivation (cont.)

Now we have a more comprehensive 
schema theorem:

People often use Holland’s earlier, simpler, 
but less accurate bound, first 
approximating the mutation loss factor as 
(1-o(H)pm), assuming pm<<1.

)(),(
1
)(),( )1)](),(1(1[),()1,( Ho

mf
tHf

L
H

cf
tHf ptHPptHPtHP −−−≥+ −

Δ
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Schema Theorem Derivation (cont.)

That yields:

But, since pm<<1, we can ignore small cross-
product terms and get:

That is what many people recognize as the 
“classical” form of the schema theorem.

What does it tell us?

])(1][1[),()1,( 1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ

])(1[),()1,( 1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ
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Using the Schema Theorem

Even a simple form helps balance initial selection 
pressure, crossover & mutation rates, etc.:

Say relative fitness of H is 1.2, pc = .5, pm = .05 and 
L = 20:  What happens to H, if H is long?  
Short?  High order?  Low order?

Pitfalls: slow progress, random search, premature 
convergence, etc.

Problem with Schema Theorem – important at 
beginning of search, but less useful later...

])(1[),()1,( 1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ
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Building Block Hypothesis

Define a Building block as:  a short, low-order, high-
fitness schema

BB Hypothesis:  “Short, low-order, and highly fit 
schemata are sampled, recombined, and resampled
to form strings of potentially higher fitness… we 
construct better and better strings from the best 
partial solutions of the past samplings.”

-- David Goldberg, 1989
(GA’s can be good at assembling BB’s, but GA’s are 

also useful for many problems for which BB’s are 
not available)
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Using the Schema Theorem to Exploit 
the Building Block Hypothesis

For newly discovered building blocks to be 
nurtured (made available for combination with 
others), but not allowed to take over the 
population (why?):
Mutation rate should be:                                        
(but contrast with SA, ES, (1+λ), …)
Crossover rate should be:
Selection should be able to:
Population size should be (oops – what can we 
say about this?… so far… infinity is large…):
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Traditional Ways to Do GA 
Search…

Population “large”
Mutation rate (per locus) ~ 1/L
Crossover rate moderate (<0.3) or high 
(per DeJong, .7, or up to 1.0)
Selection scaled (or rank/tournament, etc.) 
such that Schema Theorem allows new 
BB’s to grow in number, but not lead to 
premature  convergence
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Schema Theorem and 
Representation/Crossover Types

If we use a different type of representation 
or different crossover operator:

Must formulate a different schema 
theorem, using same ideas about 
disruption of some form of “schemata”
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Uniform Crossover & Linkage
2-pt crossover is superior to 1-point
Uniform crossover chooses allele for each locus at 
random from either parent
Uniform crossover is thus more disruptive than 1-pt or 
2-pt crossover
BUT uniform is unbiased relative to linkage
If all you need is small populations and a “rapid 
scramble” to find good solutions, uniform xover
sometimes works better – but is this what you need a GA 
for?  Hmmmm…
Otherwise, try to lay out chromosome for good linkage, 
and use 2-pt crossover (or Booker’s 1987 reduced 
surrogate crossover, (described later))
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The N3 Argument (Implicit or 
Intrinsic Parallelism)

Assertion:  A GA with pop size N can usefully 
process on the order of N3 hyperplanes
(schemata) in a generation.

(WOW! If N=100, N3 = 1 million)
To elaborate, assume:

Random population of size N. 
Need φ instances of a schema to claim we are 
“processing” it in a statistically significant way 
in one generation.
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The N3 Argument (cont.)

Example:  to have 8 samples (on average) of 2nd

order schemata in a pop., (there are 4 distinct 
(CONFLICTING) schemata in each 2-position pair 
– for example, *0*0**, *0*1**, *1*0**, *1*1**), 
we’d need 4 bit patterns x 8 instances = 32 popsize.

In general, the highest ORDER of schema,   ,  that is 
“processed” is log (N/φ); in our case, log(32/8) = 
log(4) = 2. (log means log2)

θ
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The N3 Argument (cont.)

Instead of general case, Fitzpatrick & Grefenstette argued:
Assume 
Pick φ=8, which implies 
By inspection (plug in N’s, get   ’s, etc.), the number of 
schemata processed is greater than N3.  For example, 
N=64, # schemata order 3 or less is > 2**61 > 64**3 = 
2**18 = 256K.
So, as long as our population size is REASONABLE (64 to 
a million) and L is large enough (problem hard enough), 
the argument holds.  
But this deals with the initial population, and it does not 
necessarily hold for the latter stages of evolution.  Still, it 
may help to explain why GA’s can work so well…

206 22and64 ≤≤≥ NL
17θ3 ≤≤

θ
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Exponentially Increasing Sampling 
and the K-Armed Bandit Problem

Question:  How much sampling should above-average 
schemata get?

Holland showed, subject to some conditions, using analysis 
of problem of allocating choices to maximize reward 
returned from slot machines (“K-Armed Bandit 
Problem”) that:

• Should allocate an exponentially increasing fraction of 
trials to above-average schemata

• The schema theorem says that, with careful choice of 
population size, fitness measure, crossover and mutation 
rates, a GA can do that:

• (Schema Theorem says M(H,t+1) >= k M(H,t))
That is, H’s instances in population grow exponentially, as 
long as small relative to pop size and k>1 (H is a “building 
block”).
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Want More GA Theory?

Vose and Liepins (’91) produced best-known 
model, looking at a GA as a Markov chain – the 
fraction of population occupying each possible 
genome at time t is the state of the system.  It’s 
“correct”, but difficult to apply for practical 
guidance.

Shapiro and others have developed a model based 
on principles of statistical mechanics

Lots of others work on aspects of GA theory
Attend other GEC Summit tutorials or the FOGA 

Workshop for more theory!
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What are Common Problems 
when Using GAs in Practice?

Hitchhiking:  
BB1.BB2.junk.BB3.BB4: 
junk adjacent to building 
blocks tends to get “fixed” –
can be a problem

Deception:  a 3-bit 
deceptive function

Epistasis:  nonlinear effects, 
more difficult to capture if 
spread out on chromosome

0
1
2
3
4
5
6
7
8
9

10

'000 '001 '010 '011 '100 '101 '110 '111
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In PRACTICE – GAs Do a JOB

DOESN’T mean necessarily finding global optimum
DOES mean trying to find better approximate answers 
than other methods do, within the time available!
People use any “dirty tricks” that work:

Hybridize with local search operations
Use multiple populations/multiple restarts, etc.
Use problem-specific representations and operators

The GOALS:  
Minimize # of function evaluations needed
Balance exploration/exploitation so get best answer can during 
time available (AVOIDING premature convergence)
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Other Forms of GA

Generational vs. “Steady-State”
“Generation gap”: 1.0 means replace ALL 
by newly generated “children”
at lower extreme, generate 1 (or 2) 
offspring per generation (called “steady-
state”) – no real “generations” – children 
ready to become parents on next operation
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More Forms of GA

Replacement Policy:
1. Offspring replace parents
2. K offspring replace K worst ones
3. Offspring replace random individuals in 

intermediate population
4. Offspring are “crowded” in
5. “Elitism” – always keep best K
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Crowding

Crowding (DeJong) helps form “niches” and reduce 
premature takeover by fit individuals

For each child:
Pick K candidates for replacement, at random, 
from intermediate population
Calculate pseudo-Hamming distance from child to 
each
Replace individual most similar to child

Effect?
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Example GA Packages –
GENITOR (Whitley)

Steady-state GA
Two-point crossover, reduced surrogates
Child replaces worst-fit individual
Fitness is assigned according to rank (so 
no scaling is needed)
(elitism is automatic)
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Example GA Packages –
CHC (Eshelman)

Elitism -- (μ+λ) from ES:  generate λ offspring from
μ parents, keep best μ of the μ+λ parents and 
children.
Uses incest prevention (reduction) – pick mates on 
basis of their Hamming dissimilarity
HUX – form of uniform crossover, highly disruptive
Rejuvenate with “cataclysmic mutation” when 
population starts converging, which is often (small 
populations used)
No mutation
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Hybridizing GAs – a Good Idea!

IDEA:  combine a GA with local or problem-
specific search algorithms

HOW:  typically, for some or all individuals, start 
from GA solution, take one or more steps 
according to another algorithm, use resulting 
fitness as fitness of chromosome.

If also change genotype, “Lamarckian;” if don’t, 
“Baldwinian” (preserves schema processing)

Helpful in many constrained optimization 
problems to “repair” infeasible solutions to 
nearby feasible ones
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Other Representations/Operators:
Permutation/Optimal Ordering

Chromosome has EXACTLY ONE copy 
of each int in [0,N-1]
Must find optimal ordering of those ints
1-pt, 2-pt, uniform crossover ALL useless
Mutations:  swap 2 loci, scramble K 
adjacent loci, shuffle K arbitrary loci, etc.
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Crossover Operators for 
Permutation Problems

What properties do we want:
1) Want each child to combine 
building blocks from both parents in a 
way that preserves high-order 
schemata in as meaningful a way as 
possible, and
2) Want all solutions generated to be 
feasible solutions.
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Operators for Permutation-Based 
Representations, Using TSP Problem:

Example:  PMX -- Partially Matched Crossover

2 sites picked, intervening section specifies 
“cities” to interchange between parents:
A =     9 8 4 | 5 6  7  | 1 3 2 10
B =     8 7 1 | 2 3 10 | 9 5 4  6
A’ =    9 8 4 | 2 3 10 | 1 6 5  7
B’ =  8 10 1 | 5 6  7  | 9 2 4  3

(i.e., swap 5 with 2, 6 with 3, and 7 with 10 in both 
children.)
Thus, some ordering information from each parent 
is preserved, and no infeasible solutions are 
generated
Only one of many specialized operators developed



GEC Summit, Shanghai, June, 2009

Other Approaches for 
Combinatorial Problems

Choose a less direct representation that 
allows using traditional operators:
Assign an arbitrary integer to each 
position on chromosome
Order phenotype by sorting the integers
Then ordinary crossover, mutation work 
fine, produce legal genotypes
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Parallel GAs
(Independent of Parallel Hardware)

Three primary models:  coarse-grain (island), fine-
grain (cellular), and micro-grain (trivial)

Trivial (not really a parallel GA – just a parallel
implementation of a single-population GA):  pass 
out individuals to separate processors for 
evaluation (or run lots of local tournaments, no 
master) – still acts like one large population
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Coarse-Grain (Island) Parallel GA

N “independent” subpopulations, acting as if 
running in parallel (timeshared or actually on 
multiple processors)

Occasionally, migrants go from one to another, 
in pre-specified patterns

Strong capability for avoiding premature 
convergence while exploiting good 
individuals, if migration rates/patterns well 
chosen
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Fine-Grain Parallel GAs

Individuals distributed on cells in a tessellation, 
one or few per cell (often, toroidal checkerboard)
Mating typically among near neighbors, in some 
defined neighborhood
Offspring typically placed near parents
Can help to maintain spatial “niches,” thereby 
delaying premature convergence
Interesting to view as a cellular automaton
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Refined Island Models –
Heterogeneous/ Hierarchical GAs

For many problems, useful to use different 
representations/levels of refinement/types of 
models, allow them to exchange “nuggets”
GALOPPS was first package to support this
Injection Island architecture arose from this, 
now used in HEEDS, etc.
Hierarchical Fair Competition is newest 
development (Jianjun Hu), breaking populations 
by fitness bands 
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Multi-Level GAs

Island GA populations are on lower level, their 
parameters/operators/ neighborhoods on 
chromosome of a single higher-level population 
that controls evolution of subpopulations (for 
example, DAGA2, 1995)
Excellent performance – reproducible 
trajectories through operator space, for example
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Examples of Population-to-Population 
Differences in a Heterogeneous GA

Different GA parameters (pop size, crossover 
type/rate, mutation type/rate, etc.)

2-level or without a master pop

Examples of Representation Differences:
Hierarchy – one-way migration from least refined 
representation to most refined
Different models in different subpopulations
Different objectives/constraints in different subpops
(sometimes used in Evolutionary Multiobjective
Optimization (“EMOO”))
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Multiobjective GAs

Often want to address multiple objectives
Can use a GA to explore the Pareto 
FRONT
Many approaches; Deb’s or Coello’s
books are good places to start
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How Do GAs Go Bad?

Premature convergence
Unable to overcome deception
Need more evaluations than time permits
Bad match of representation/mutation/crossover, 
making operators destructive
Biased or incomplete representation
Problem too hard
(Problem too easy, makes GA look bad)
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So, in Conclusion…

GAs can be easy to use, but not necessarily easy 
to use WELL
Don’t use them if something else will work – it 
will probably be faster
GAs can’t solve every problem, either…
GAs are only one of several strongly related 
“branches” of evolutionary computation – and 
they all commonly get hybridized
There’s lots of expertise at GECCO – talk to 
people for ideas about how to address YOUR 
problem using evolutionary computation


