
GEC Summit, Shanghai, June, 2009

Introduction to
Genetic Algorithms
A Tutorial by Erik D. Goodman
Professor, Electrical and Computer Engineering

Professor, Mechanical Engineering
Co-Director, Genetic Algorithms Research and Applications Group (GARAGe)

Michigan State University
goodman@egr.msu.edu

Executive Committee Member, ACM SIGEVO
Vice President, Technology
Red Cedar Technology, Inc.

2009 World Summit on Genetic and Evolutionary Computation
Shanghai, China

GEC Summit, Shanghai, June, 2009

Thanks to:

Much of this material is based on:
David Goldberg, Genetic Algorithms in
Search, Optimization, and Machine Learning,
Addison-Wesley, 1989 (still one of the best
introductions!)
Darrell Whitley, “Genetic Algorithm
Tutorial” – on the web at
www.cs.colostate.edu/~genitor/MiscPubs/tutorial.pdf

GEC Summit, Shanghai, June, 2009

Overview of Tutorial

Quick intro – What IS a genetic
algorithm?

Classical, binary chromosome
Where used, & when better to use
something else
A little theory – why a GA works
GA in Practice -- some modern variants

GEC Summit, Shanghai, June, 2009

Genetic Algorithms:

Are a method of search, often applied to
optimization or learning
Are stochastic – but are not random search
Use an evolutionary analogy, “survival of fittest”
Not fast in some sense; but sometimes more
robust; scale relatively well, so can be useful
Have extensions including Genetic Programming
(GP) (LISP-like function trees), learning
classifier systems (evolving rules), linear GP
(evolving “ordinary” programs), many others

GEC Summit, Shanghai, June, 2009

The Canonical or Classical GA

Maintains a set or “population” of strings
at each stage
Each string is called a chromosome, and
encodes a “candidate solution”–
CLASSICALLY, encodes as a binary
string (but now in almost any conceivable
representation)

GEC Summit, Shanghai, June, 2009

Criterion for Search

Goodness (“fitness”) or optimality of a string’s
solution determines its FUTURE influence on
search process -- survival of the fittest
Solutions which are good are used to generate
other, similar solutions which may also be good
(even better)
The POPULATION at any time stores ALL we
have learned about the solution, at any point
Robustness (efficiency in finding good solutions
in difficult searches) is key to GA success

GEC Summit, Shanghai, June, 2009

Classical GA:
The Representation

1011101010 – a possible 10-bit string
(“CHROMOSOME”) representing a possible solution to
a problem

Bits or subsets of bits might represent choice of some feature,
for example. Let’s represent choice of shipping container for
some object:

bit position meaning
1-2 steel, aluminum, wood or cardboard
3-5 thickness (1mm-8mm)
6-7 fastening (tape, glue, rope, plastic wrap)
8 stuffing (paper or plastic “peanuts”)
9 corner reinforcement (yes, no)
10 handles (yes, no)

GEC Summit, Shanghai, June, 2009

Terminology

Each position (or each set of positions that encodes some
feature) is called a LOCUS (plural LOCI)

Each possible value at a locus is called an ALLELE
We need a simulator, or evaluator program, that can tell us

the (probable) outcome of shipping a given object in any
particular type of container
may be a COST (including losses from damage) (for
example, maybe 1.4 means very low cost, 8.3 is very bad
on a scale of 0-10.0), or
may be a FITNESS, or a number that is larger if the
result is BETTER

GEC Summit, Shanghai, June, 2009

How Does a GA Operate?

For ANY chromosome, must be able to
determine a FITNESS (measure of performance
toward an objective) using a simulator or
analysis tool, etc.
Objective may be maximized or minimized;
usually say fitness is to be maximized, and if
objective is to be minimized, define fitness from
it as something to maximize

GEC Summit, Shanghai, June, 2009

GA Operators:
Classical Mutation

Operates on ONE “parent” chromosome
Produces an “offspring” with changes.
Classically, toggles one bit in a binary
representation
So, for example: 1101000110 could
mutate to: 1111000110
Each bit has same probability of mutating

GEC Summit, Shanghai, June, 2009

Classical Crossover

Operates on two parent chromosomes
Produces one or two children or offspring
Classical crossover occurs at 1 or 2 points:
For example: (1-point) (2-point)

1111111111 or 1111111111
X 0000000000 0000000000

1110000000 1110000011
and 0001111111 0001111100

GEC Summit, Shanghai, June, 2009

Selection

Traditionally, parents are chosen to mate with
probability proportional to their fitness:
proportional selection
Traditionally, children replace their parents
Many other variations now more commonly
used (we’ll come back to this)
Overall principle: survival of the fittest

GEC Summit, Shanghai, June, 2009

Synergy – the KEY

Clearly, selection alone is no good …
Clearly, mutation alone is no good …
Clearly, crossover alone is no good …
Fortunately, using all three simultaneously

is sometimes spectacular!

GEC Summit, Shanghai, June, 2009

Contrast with Other Search
Methods

“indirect” -- setting derivatives to 0
“direct” -- hill climber
enumerative – search ‘em all
random – just keep trying, or can avoid
resampling
simulated annealing – single-point method, reals,
changes all loci randomly by decreasing
amounts, mostly keeps the better answer, …
Tabu (another common method)

GEC Summit, Shanghai, June, 2009

BEWARE of Claims about ANY
Algorithm’s Asymptotic Behavior –

“Eventually” is a LONG Time

LOTS of methods can guarantee to find the best
solution, with probability 1, eventually…

Enumeration
Random search (better without resampling)
SA (properly configured)
Any GA that avoids “absorbing states” in a Markov
chain

The POINT: you can’t afford to wait that long,
if the problem is anything interesting!!!

GEC Summit, Shanghai, June, 2009

When Might a GA
Be Any Good?

Highly multimodal functions
Discrete or discontinuous functions
High-dimensionality functions, including many
combinatorial ones
Nonlinear dependencies on parameters
(interactions among parameters) -- “epistasis”
makes it hard for others
Often used for approximating solutions to NP-
complete combinatorial problems
DON’T USE if a hill-climber, etc., will work well

GEC Summit, Shanghai, June, 2009

The Limits to Search

No search method is best for all problems – per
the No Free Lunch Theorem
Don’t let anyone tell you a GA (or THEIR
favorite method) is best for all problems!!!
Needle-in-a-haystack is just hard, in practice
Efficient search must be able to EXPLOIT
correlations in the search space, or it’s no better
than random search or enumeration
Must balance with EXPLORATION, so don’t
just find nearest local optimum

GEC Summit, Shanghai, June, 2009

Examples of Successful Real-
World GA Application

Antenna design
Drug design
Chemical classification
Electronic circuits (Koza)
Factory floor scheduling
(Volvo, Deere, others)
Turbine engine design
(GE)
Crashworthy car design
(GM/Red Cedar)
Protein folding

Network design
Control systems design
Production parameter
choice
Satellite design
Stock/commodity
analysis/trading
VLSI partitioning/
placement/routing
Cell phone factory tuning
Data Mining

GEC Summit, Shanghai, June, 2009

EXAMPLE!!!
Let’s Design a Flywheel

GOAL: To store as much energy as
possible (for a given diameter
flywheel) without breaking apart
On the chromosome, a number
specifies the thickness (height) of
the “ring” at each given radius
Center “hole” for a bearing is fixed
To evaluate: simulate spinning it
faster and faster until it breaks;
calculate how much energy is stored
just before it breaks

GEC Summit, Shanghai, June, 2009

Flywheel Example

So if we use 8 rings, the chromosome might look like:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

If we mutate HERE, we might get:
6.3 3.7 4.1 3.5 5.6 4.5 3.6 4.1
And that might look like (from the side):

GEC Summit, Shanghai, June, 2009

Recombination (“Crossover”)

If we recombine two designs, we might get:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

x
3.6 5.1 3.2 4.3 4.4 6.2 2.3 3.4

3.6 5.1 3.2 3.5 5.6 4.5 3.6 4.1

This new design might be BETTER or WORSE!

GEC Summit, Shanghai, June, 2009

Typical GA Operation -- Overview

Initialize population at random

Evaluate fitness of new
chromosomes

Perform crossover and
mutation on parents

Select parents to breed
based on fitness

Good
Enough? DoneYes

No

GEC Summit, Shanghai, June, 2009

A GA Evolves the Flywheel:

One Choice of Choice

Material Materials (side view)

GEC Summit, Shanghai, June, 2009

Prior to Lohn’s evolution
of a design, a contract had
been awarded for
designing the antenna.
Result: this quadrifilar
helical antenna (QHA).

Radiator

Under the ground
plane: matching and

phasing network

Another Example: NASA ST5 Quadrifilar
Helical Antenna:

Given a Desired Pattern, Design the Antenna

GEC Summit, Shanghai, June, 2009

2nd Set of Evolved Antennas
(Now Flying on 3 Satellites)

GEC Summit, Shanghai, June, 2009

“Genetic Algorithm” --
Meaning?

“classical or canonical” GA -- Holland
(taught in ‘60’s, book in ‘75) -- binary
chromosome, population, selection,
crossover (recombination), low rate of
mutation
More general GA: population, selection,
(+ recombination) (+ mutation) -- may be
hybridized with LOTS of other stuff

GEC Summit, Shanghai, June, 2009

Representation Terminology

Classically, binary string: individual or
chromosome
What’s on the chromosome is GENOTYPE
What it means in the problem context is the
PHENOTYPE (e.g., binary sequence may map to
integers or reals, or order of execution, or inputs
to a simulator, etc.)
Genotype and problem environment determine
phenotype, but phenotype may look very
different

GEC Summit, Shanghai, June, 2009

Discretization – Representation
Meets Mutation!

If problem is binary decisions, bit-flip mutation is fine
BUT if using binary numbers to encode integers, as in
[0,15] [0000, 1111], problem with Hamming cliffs:

One mutation can change 6 to 7: 0110 0111,
BUT
Need 4 bit-flips to change 7 to 8: 0111 1000
That’s called a “Hamming cliff”

May use Gray (or other distance-one) codes to
improve properties of operators: for example: 000,
001, 011, 010, 110, 111, 101, 100

GEC Summit, Shanghai, June, 2009

Mutation Revisited

On “parameter encoded” representations
Binary ints

Gray codes and bit-flips
Or binary ints & 0-mean, Gaussian changes, etc.

Real-valued domain
Can discretize to binary -- typically powers of 2
with lower, upper limits, linear/exp/log scaling
End result (classically) is a bit string

BUT many now work with real-valued GAs, non-bit-
flip (0-mean, Gaussian “noise”) mutation operators

GEC Summit, Shanghai, June, 2009

Defining Objective/Fitness
Functions

Problem-specific, of course
Many involve using a simulator
Don’t need to know (or even HAVE) derivatives
May be stochastic
Need to evaluate thousands of times, so can’t be TOO
COSTLY

For real-world, evaluation time is typical bottleneck
Even a SIMPLE fitness criterion may be complex to
calculate

GEC Summit, Shanghai, June, 2009

Back to the “What” Function?

In problem-domain form -- “absolute” or “raw”
fitness, or evaluation or performance or objective
function
Relative fitness (to population), may require
inverting and/or offsetting, scaling the objective
function, yielding the fitness function. Fitness
should be MAXIMIZED, whereas the objective
function might need to be MAXIMIZED OR
MINIMIZED.

GEC Summit, Shanghai, June, 2009

Selection

In a classical, “generational” GA:
Based on fitness, choose the set of individuals
(the “intermediate” population) that will soon:

survive untouched, or
be mutated, replaced, or
in pairs, be crossed over and possibly
mutated, with offspring replacing parents

One individual may appear several times in the
intermediate population (or the next population)

GEC Summit, Shanghai, June, 2009

Scaling of Relative Fitnesses

Trouble: as evolution progresses, relative
fitness differences get smaller (as
chromosomes get more similar to each
other – population is converging). Often
helpful to SCALE relative fitnesses to keep
about same ratio of best guy/average guy,
for example.

GEC Summit, Shanghai, June, 2009

OR, use Another Type of
Selection

Proportional, using relative fitness (examples):
“roulette wheel” -- classical Holland -- chunk of wheel ~
relative fitness
stochastic uniform sampling -- better sampling -- integer
parts GUARANTEED; still proportional

OR, NOT requiring relative fitness, nor fitness scaling:
tournament selection
rank-based selection (proportional to rank or all above
some threshold)
elitist (mu, lambda) or (mu+lambda) from ES

GEC Summit, Shanghai, June, 2009

Explaining Why a GA Works –
Intro to GA Theory

Just touching the surface with two
classical results:

Schema theorem – how search effort is
allocated
Implicit parallelism – each evaluation
provides information on many possible
candidate solutions

GEC Summit, Shanghai, June, 2009

What is a GA DOING? (Schemata
and Hyperstuff)

Schema -- adds “*”, means “don’t care”
One schema, two schemata
Definition: ORDER of schema H = o(H): # of non-*’s
Def.: Defining Length of schema, Δ(Η): distance between
first and last non-* in a schema; for example:
Δ (**1*01*0**) = 5 (= number of positions where 1-pt
crossover can disrupt it).
(NOTE: diff. xover diff. relationship to defining length)
Strings or chromosomes are order L schemata, where L is
length of chromosome (in bits or loci). Chromosomes are
INSTANCES (or members) of lower-order schemata

Vertices are order ? schemata

Edges are order ? schemata

Planes are order ? schemata

Cubes (a type of hyperplane)
are order ? schemata

8 different order-1 schemata
(cubes): 0***, 1***, *0**,
*1**, **0*, **1*, ***0, ***1

Cube and Hypercube

GEC Summit, Shanghai, June, 2009

Hypercubes, Hyperplanes, Etc.

A string is an instance of how many
schemata (a member of how many
hyperplane partitions)? (not counting the
“all *’s,” per Holland)
If L=3, then, for example, 111 is an
instance of how many (and which)
schemata: 7 schemata
23-1

GEC Summit, Shanghai, June, 2009

GA Sampling of Hyperplanes

So, in general, string of length L is an instance
of 2L-1 schemata

But how many schemata are there in the whole
search space?

(how many choices each locus?)
Since one string instances 2L-1 schemata, how

much does a population tell us about schemata
of various orders?

Implicit parallelism: one string’s fitness tells us
something about relative fitnesses of more than
one schema.

GEC Summit, Shanghai, June, 2009

How Do Schemata Propagate?

Via instances -- only STRINGS appear in pop –
you’ll never actually see a schema
But, in general, want schemata whose instances
have higher average fitnesses (even just in the
current population in which they’re instanced)
to get more chance to reproduce. That’s how we
make the fittest survive!

GEC Summit, Shanghai, June, 2009

Proportional Selection Favors
“Better” Schemata

Select the INTERMEDIATE population, the
“parents” of the next generation, via fitness-
proportional selection
Let M(H,t) be number of instances (samples) of
schema H in population at time t. Then fitness-
proportional selection yields an expectation of:

f
tHftHMintermedtHM),(),(),(=+

GEC Summit, Shanghai, June, 2009

Now, What Does
CROSSOVER Do to Schemata

One-point Crossover Examples
11******** and 1********1

Two-point Crossover Examples (rings)
The closer together loci are, less likely to be
disrupted by crossover. A “compact
representation” tends to keep alleles together
under a given form of crossover (minimizes
probability of disruption).

GEC Summit, Shanghai, June, 2009

Linkage and Defining Length

Linkage -- “coadapted alleles”
(generalization of a compact representation
with respect to schemata)
Example, convincing you that probability
of disruption by 1-point crossover of
schema H of length Δ(H) is Δ(H)/(L-1):

1****01**1

GEC Summit, Shanghai, June, 2009

The Fundamental Theorem of Genetic
Algorithms -- “The” Schema Theorem

Holland published in ANAS in 1975, had taught it
much earlier (by 1968, for example, when I
started Ph.D. at UM)

It provides lower bound on change in sampling rate
of a single schema from generation t to t+1.
We’ll consider it in several steps, starting from
the change caused by selection alone:

f
tHftHMintermedtHM),(),(),(=+

GEC Summit, Shanghai, June, 2009

Schema Theorem Derivation (cont.)

Now we want to add the effect of crossover:
A fraction pc of pop undergoes crossover, so:

Conservative assumption: crossover within the
defining length of H is always disruptive to H,
and will ignore gains (we’re after a LOWER
bound -- won’t be as tight, but simpler). Then:

])1(),([),()1()1,(),(),(gainslossestHMptHMptHM
f

tHf
cf

tHf
c +−+−=+

)]1(),([),()1()1,(),(),(sdisruptiontHMptHMptHM
f

tHf
cf

tHf
c −+−≥+

GEC Summit, Shanghai, June, 2009

Schema Theorem Derivation (cont.)

Whitley adds a non-disruption case that Holland ignored:
If cross an instance of H with another, anywhere, we get no

disruption. Chance of doing that, drawing second
parent at random, is P(H,t) = M(H,t)/popsize: so prob.
of disruption by x-over is:

Then can simplify the inequality, dividing by popsize and
rearranging re pc:

So far, we have ignored mutation and assumed second
parent is chosen at random. But it’s interesting, already.

)),(1(1
)(tHPL

H −−
Δ

))],(1(1[),()1,(1
)(),(tHPptHPtHP L

H
cf

tHf −−≥+ −
Δ

GEC Summit, Shanghai, June, 2009

Schema Theorem Derivation (cont.)

Now, we’ll choose the second parent based on
fitness, too:

Now, add effect of mutation. What is probability
that a mutation affects schema H? (Assuming
mutation always flips bit or changes allele):

Each fixed bit of schema (o(H) of them) changes
with probability pm, so they ALL stay
UNCHANGED with probability:

)]),(1(1[),()1,(),(
1
)(),(

f
tHf

L
H

cf
tHf tHPptHPtHP −−≥+ −

Δ

)()1(Ho
mp−

GEC Summit, Shanghai, June, 2009

Schema Theorem Derivation (cont.)

Now we have a more comprehensive
schema theorem:

People often use Holland’s earlier, simpler,
but less accurate bound, first
approximating the mutation loss factor as
(1-o(H)pm), assuming pm<<1.

)(),(
1
)(),()1)](),(1(1[),()1,(Ho

mf
tHf

L
H

cf
tHf ptHPptHPtHP −−−≥+ −

Δ

GEC Summit, Shanghai, June, 2009

Schema Theorem Derivation (cont.)

That yields:

But, since pm<<1, we can ignore small cross-
product terms and get:

That is what many people recognize as the
“classical” form of the schema theorem.

What does it tell us?

])(1][1[),()1,(1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ

])(1[),()1,(1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ

GEC Summit, Shanghai, June, 2009

Using the Schema Theorem

Even a simple form helps balance initial selection
pressure, crossover & mutation rates, etc.:

Say relative fitness of H is 1.2, pc = .5, pm = .05 and
L = 20: What happens to H, if H is long?
Short? High order? Low order?

Pitfalls: slow progress, random search, premature
convergence, etc.

Problem with Schema Theorem – important at
beginning of search, but less useful later...

])(1[),()1,(1
)(),(

mL
H

cf
tHf pHoptHPtHP −−≥+ −

Δ

GEC Summit, Shanghai, June, 2009

Building Block Hypothesis

Define a Building block as: a short, low-order, high-
fitness schema

BB Hypothesis: “Short, low-order, and highly fit
schemata are sampled, recombined, and resampled
to form strings of potentially higher fitness… we
construct better and better strings from the best
partial solutions of the past samplings.”

-- David Goldberg, 1989
(GA’s can be good at assembling BB’s, but GA’s are

also useful for many problems for which BB’s are
not available)

GEC Summit, Shanghai, June, 2009

Using the Schema Theorem to Exploit
the Building Block Hypothesis

For newly discovered building blocks to be
nurtured (made available for combination with
others), but not allowed to take over the
population (why?):
Mutation rate should be:
(but contrast with SA, ES, (1+λ), …)
Crossover rate should be:
Selection should be able to:
Population size should be (oops – what can we
say about this?… so far… infinity is large…):

GEC Summit, Shanghai, June, 2009

Traditional Ways to Do GA
Search…

Population “large”
Mutation rate (per locus) ~ 1/L
Crossover rate moderate (<0.3) or high
(per DeJong, .7, or up to 1.0)
Selection scaled (or rank/tournament, etc.)
such that Schema Theorem allows new
BB’s to grow in number, but not lead to
premature convergence

GEC Summit, Shanghai, June, 2009

Schema Theorem and
Representation/Crossover Types

If we use a different type of representation
or different crossover operator:

Must formulate a different schema
theorem, using same ideas about
disruption of some form of “schemata”

GEC Summit, Shanghai, June, 2009

Uniform Crossover & Linkage
2-pt crossover is superior to 1-point
Uniform crossover chooses allele for each locus at
random from either parent
Uniform crossover is thus more disruptive than 1-pt or
2-pt crossover
BUT uniform is unbiased relative to linkage
If all you need is small populations and a “rapid
scramble” to find good solutions, uniform xover
sometimes works better – but is this what you need a GA
for? Hmmmm…
Otherwise, try to lay out chromosome for good linkage,
and use 2-pt crossover (or Booker’s 1987 reduced
surrogate crossover, (described later))

GEC Summit, Shanghai, June, 2009

The N3 Argument (Implicit or
Intrinsic Parallelism)

Assertion: A GA with pop size N can usefully
process on the order of N3 hyperplanes
(schemata) in a generation.

(WOW! If N=100, N3 = 1 million)
To elaborate, assume:

Random population of size N.
Need φ instances of a schema to claim we are
“processing” it in a statistically significant way
in one generation.

GEC Summit, Shanghai, June, 2009

The N3 Argument (cont.)

Example: to have 8 samples (on average) of 2nd

order schemata in a pop., (there are 4 distinct
(CONFLICTING) schemata in each 2-position pair
– for example, *0*0**, *0*1**, *1*0**, *1*1**),
we’d need 4 bit patterns x 8 instances = 32 popsize.

In general, the highest ORDER of schema, , that is
“processed” is log (N/φ); in our case, log(32/8) =
log(4) = 2. (log means log2)

θ

GEC Summit, Shanghai, June, 2009

The N3 Argument (cont.)

Instead of general case, Fitzpatrick & Grefenstette argued:
Assume
Pick φ=8, which implies
By inspection (plug in N’s, get ’s, etc.), the number of
schemata processed is greater than N3. For example,
N=64, # schemata order 3 or less is > 2**61 > 64**3 =
2**18 = 256K.
So, as long as our population size is REASONABLE (64 to
a million) and L is large enough (problem hard enough),
the argument holds.
But this deals with the initial population, and it does not
necessarily hold for the latter stages of evolution. Still, it
may help to explain why GA’s can work so well…

206 22and64 ≤≤≥ NL
17θ3 ≤≤

θ

GEC Summit, Shanghai, June, 2009

Exponentially Increasing Sampling
and the K-Armed Bandit Problem

Question: How much sampling should above-average
schemata get?

Holland showed, subject to some conditions, using analysis
of problem of allocating choices to maximize reward
returned from slot machines (“K-Armed Bandit
Problem”) that:

• Should allocate an exponentially increasing fraction of
trials to above-average schemata

• The schema theorem says that, with careful choice of
population size, fitness measure, crossover and mutation
rates, a GA can do that:

• (Schema Theorem says M(H,t+1) >= k M(H,t))
That is, H’s instances in population grow exponentially, as
long as small relative to pop size and k>1 (H is a “building
block”).

GEC Summit, Shanghai, June, 2009

Want More GA Theory?

Vose and Liepins (’91) produced best-known
model, looking at a GA as a Markov chain – the
fraction of population occupying each possible
genome at time t is the state of the system. It’s
“correct”, but difficult to apply for practical
guidance.

Shapiro and others have developed a model based
on principles of statistical mechanics

Lots of others work on aspects of GA theory
Attend other GEC Summit tutorials or the FOGA

Workshop for more theory!

GEC Summit, Shanghai, June, 2009

What are Common Problems
when Using GAs in Practice?

Hitchhiking:
BB1.BB2.junk.BB3.BB4:
junk adjacent to building
blocks tends to get “fixed” –
can be a problem

Deception: a 3-bit
deceptive function

Epistasis: nonlinear effects,
more difficult to capture if
spread out on chromosome

0
1
2
3
4
5
6
7
8
9

10

'000 '001 '010 '011 '100 '101 '110 '111

GEC Summit, Shanghai, June, 2009

In PRACTICE – GAs Do a JOB

DOESN’T mean necessarily finding global optimum
DOES mean trying to find better approximate answers
than other methods do, within the time available!
People use any “dirty tricks” that work:

Hybridize with local search operations
Use multiple populations/multiple restarts, etc.
Use problem-specific representations and operators

The GOALS:
Minimize # of function evaluations needed
Balance exploration/exploitation so get best answer can during
time available (AVOIDING premature convergence)

GEC Summit, Shanghai, June, 2009

Other Forms of GA

Generational vs. “Steady-State”
“Generation gap”: 1.0 means replace ALL
by newly generated “children”
at lower extreme, generate 1 (or 2)
offspring per generation (called “steady-
state”) – no real “generations” – children
ready to become parents on next operation

GEC Summit, Shanghai, June, 2009

More Forms of GA

Replacement Policy:
1. Offspring replace parents
2. K offspring replace K worst ones
3. Offspring replace random individuals in

intermediate population
4. Offspring are “crowded” in
5. “Elitism” – always keep best K

GEC Summit, Shanghai, June, 2009

Crowding

Crowding (DeJong) helps form “niches” and reduce
premature takeover by fit individuals

For each child:
Pick K candidates for replacement, at random,
from intermediate population
Calculate pseudo-Hamming distance from child to
each
Replace individual most similar to child

Effect?

GEC Summit, Shanghai, June, 2009

Example GA Packages –
GENITOR (Whitley)

Steady-state GA
Two-point crossover, reduced surrogates
Child replaces worst-fit individual
Fitness is assigned according to rank (so
no scaling is needed)
(elitism is automatic)

GEC Summit, Shanghai, June, 2009

Example GA Packages –
CHC (Eshelman)

Elitism -- (μ+λ) from ES: generate λ offspring from
μ parents, keep best μ of the μ+λ parents and
children.
Uses incest prevention (reduction) – pick mates on
basis of their Hamming dissimilarity
HUX – form of uniform crossover, highly disruptive
Rejuvenate with “cataclysmic mutation” when
population starts converging, which is often (small
populations used)
No mutation

GEC Summit, Shanghai, June, 2009

Hybridizing GAs – a Good Idea!

IDEA: combine a GA with local or problem-
specific search algorithms

HOW: typically, for some or all individuals, start
from GA solution, take one or more steps
according to another algorithm, use resulting
fitness as fitness of chromosome.

If also change genotype, “Lamarckian;” if don’t,
“Baldwinian” (preserves schema processing)

Helpful in many constrained optimization
problems to “repair” infeasible solutions to
nearby feasible ones

GEC Summit, Shanghai, June, 2009

Other Representations/Operators:
Permutation/Optimal Ordering

Chromosome has EXACTLY ONE copy
of each int in [0,N-1]
Must find optimal ordering of those ints
1-pt, 2-pt, uniform crossover ALL useless
Mutations: swap 2 loci, scramble K
adjacent loci, shuffle K arbitrary loci, etc.

GEC Summit, Shanghai, June, 2009

Crossover Operators for
Permutation Problems

What properties do we want:
1) Want each child to combine
building blocks from both parents in a
way that preserves high-order
schemata in as meaningful a way as
possible, and
2) Want all solutions generated to be
feasible solutions.

GEC Summit, Shanghai, June, 2009

Operators for Permutation-Based
Representations, Using TSP Problem:

Example: PMX -- Partially Matched Crossover

2 sites picked, intervening section specifies
“cities” to interchange between parents:
A = 9 8 4 | 5 6 7 | 1 3 2 10
B = 8 7 1 | 2 3 10 | 9 5 4 6
A’ = 9 8 4 | 2 3 10 | 1 6 5 7
B’ = 8 10 1 | 5 6 7 | 9 2 4 3

(i.e., swap 5 with 2, 6 with 3, and 7 with 10 in both
children.)
Thus, some ordering information from each parent
is preserved, and no infeasible solutions are
generated
Only one of many specialized operators developed

GEC Summit, Shanghai, June, 2009

Other Approaches for
Combinatorial Problems

Choose a less direct representation that
allows using traditional operators:
Assign an arbitrary integer to each
position on chromosome
Order phenotype by sorting the integers
Then ordinary crossover, mutation work
fine, produce legal genotypes

GEC Summit, Shanghai, June, 2009

Parallel GAs
(Independent of Parallel Hardware)

Three primary models: coarse-grain (island), fine-
grain (cellular), and micro-grain (trivial)

Trivial (not really a parallel GA – just a parallel
implementation of a single-population GA): pass
out individuals to separate processors for
evaluation (or run lots of local tournaments, no
master) – still acts like one large population

GEC Summit, Shanghai, June, 2009

Coarse-Grain (Island) Parallel GA

N “independent” subpopulations, acting as if
running in parallel (timeshared or actually on
multiple processors)

Occasionally, migrants go from one to another,
in pre-specified patterns

Strong capability for avoiding premature
convergence while exploiting good
individuals, if migration rates/patterns well
chosen

GEC Summit, Shanghai, June, 2009

Fine-Grain Parallel GAs

Individuals distributed on cells in a tessellation,
one or few per cell (often, toroidal checkerboard)
Mating typically among near neighbors, in some
defined neighborhood
Offspring typically placed near parents
Can help to maintain spatial “niches,” thereby
delaying premature convergence
Interesting to view as a cellular automaton

GEC Summit, Shanghai, June, 2009

Refined Island Models –
Heterogeneous/ Hierarchical GAs

For many problems, useful to use different
representations/levels of refinement/types of
models, allow them to exchange “nuggets”
GALOPPS was first package to support this
Injection Island architecture arose from this,
now used in HEEDS, etc.
Hierarchical Fair Competition is newest
development (Jianjun Hu), breaking populations
by fitness bands

GEC Summit, Shanghai, June, 2009

Multi-Level GAs

Island GA populations are on lower level, their
parameters/operators/ neighborhoods on
chromosome of a single higher-level population
that controls evolution of subpopulations (for
example, DAGA2, 1995)
Excellent performance – reproducible
trajectories through operator space, for example

GEC Summit, Shanghai, June, 2009

Examples of Population-to-Population
Differences in a Heterogeneous GA

Different GA parameters (pop size, crossover
type/rate, mutation type/rate, etc.)

2-level or without a master pop

Examples of Representation Differences:
Hierarchy – one-way migration from least refined
representation to most refined
Different models in different subpopulations
Different objectives/constraints in different subpops
(sometimes used in Evolutionary Multiobjective
Optimization (“EMOO”))

GEC Summit, Shanghai, June, 2009

Multiobjective GAs

Often want to address multiple objectives
Can use a GA to explore the Pareto
FRONT
Many approaches; Deb’s or Coello’s
books are good places to start

GEC Summit, Shanghai, June, 2009

How Do GAs Go Bad?

Premature convergence
Unable to overcome deception
Need more evaluations than time permits
Bad match of representation/mutation/crossover,
making operators destructive
Biased or incomplete representation
Problem too hard
(Problem too easy, makes GA look bad)

GEC Summit, Shanghai, June, 2009

So, in Conclusion…

GAs can be easy to use, but not necessarily easy
to use WELL
Don’t use them if something else will work – it
will probably be faster
GAs can’t solve every problem, either…
GAs are only one of several strongly related
“branches” of evolutionary computation – and
they all commonly get hybridized
There’s lots of expertise at GECCO – talk to
people for ideas about how to address YOUR
problem using evolutionary computation

