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Abstract
In recent years, neural network accelerators have been

shown to achieve both high energy efficiency and high per-
formance for a broad application scope within the important
category of recognition and mining applications.

Still, both the energy efficiency and performance of such
accelerators remain limited by memory accesses. In this paper,
we focus on image applications, arguably the most important
category among recognition and mining applications. The
neural networks which are state-of-the-art for these applica-
tions are Convolutional Neural Networks (CNN), and they
have an important property: weights are shared among many
neurons, considerably reducing the neural network memory
footprint. This property allows to entirely map a CNN within
an SRAM, eliminating all DRAM accesses for weights. By
further hoisting this accelerator next to the image sensor, it is
possible to eliminate all remaining DRAM accesses, i.e., for
inputs and outputs.

In this paper, we propose such a CNN accelerator, placed
next to a CMOS or CCD sensor. The absence of DRAM ac-
cesses combined with a careful exploitation of the specific
data access patterns within CNNs allows us to design an ac-
celerator which is 60× more energy efficient than the previous
state-of-the-art neural network accelerator. We present a full
design down to the layout at 65 nm, with a modest footprint
of 4.86 mm2 and consuming only 320 mW, but still about 30×
faster than high-end GPUs.

1. Instructions
In the past few years, accelerators have gained increasing at-
tention as an energy and cost effective alternative to CPUs
and GPUs [20, 57, 13, 14, 60, 61]. Traditionally, the main
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downside of accelerators is their limited application scope, but
recent research in both academia and industry has highlighted
the remarkable convergence of trends towards recognition and
mining applications [39] and the fact that a very small corpus
of algorithms—i.e., neural network based algorithms—can
tackle a significant share of these applications [7, 41, 24].
This makes it possible to realize the best of both worlds: ac-
celerators with high performance/efficiency and yet broad
application scope. Chen et al. [3] leveraged this fact to pro-
pose neural network accelerators; however, the authors also
acknowledge that, like many processing architectures, their
accelerator efficiency and scalability remains severely limited
by memory bandwidth constraints.

That study aimed at supporting the two main state-of-the-art
neural networks: Convolutional Neural Networks (CNNs) [35]
and Deep Neural Networks (DNNs) [32, 48]. Both types of
networks are very popular, with DNNs being more general
than CNNs due to one major difference: in CNNs, it is as-
sumed that each neuron (of a feature map, see later Section
3 for more details) shares its weights with all other neurons,
making the total number of weights far smaller than in DNNs.
For instance, the largest state-of-the-art CNN has 60 millions
weights [29] versus up to 1 billion [34] or even 10 billions [6]
for the largest DNNs. Such weight sharing property directly
derives from the CNN application scope, i.e., vision recogni-
tion applications: since the set of weights feeding a neuron
characterizes the feature this neuron should recognize, sharing
weights is simply a way to express that any feature can appear
anywhere within an image [35], i.e., translation invariance.

Now, this simple property can have profound implications
for architects: It is well known that the highest energy expense
is related to data movement, in particular DRAM accesses,
rather than computation [20, 28]. Due to its small weights
memory footprint, it is possible to store a whole CNN within a
small SRAM next to computational operators, and as a result,
there is no longer a need for DRAM memory accesses to fetch
the model (weights) in order to process each input. The only
remaining DRAM accesses become those needed to fetch the
input image. Unfortunately, when the input is as large as an
image, this would still constitute a large energy expense.

However, CNNs are dedicated to image applications, which,
arguably, constitute one of the broadest categories of recog-
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nition applications (followed by voice recognition). In many
real-world and embedded applications—e.g., smartphones,
security, self-driving cars—the image directly comes from a
CMOS or CCD sensor. In a typical imaging device, the image
is acquired by the CMOS/CCD sensor, sent to DRAM, and
later fetched by the CPU/GPU for recognition processing. The
small size of the CNN accelerator (computational operators
and SRAM holding the weights) makes it possible to hoist it
next to the sensor, and only send the few output bytes of the
recognition process (typically, an image category) to DRAM
or the host processor, thereby almost entirely eliminating en-
ergy costly accesses to/from memory.

In this paper, we study an energy-efficient design of a vi-
sual recognition accelerator to be directly embedded with any
CMOS or CCD sensor, and fast enough to process images in
real time. Our accelerator leverages the specific properties
of CNN algorithms, and as a result, it is 60× more energy
efficient than DianNao [3], which was targeting a broader set
of neural networks. We achieve that level of efficiency not
only by eliminating DRAM accesses, but also by carefully
minimizing data movements between individual processing
elements, from the sensor, and the SRAM holding the CNN
model. We present a concrete design, down to the layout,
in a 65 nm CMOS technology with a peak performance of
194 GOP/s (billions of fixed-point OPerations per second) at
4.86 mm2, 320.10 mW , and 1 GHz. We empirically evaluate
our design on ten representative benchmarks (neural network
layers) extracted from state-of-the-art CNN implementations.
We believe such accelerators can considerably lower the hard-
ware and energy cost of sophisticated vision processing, and
thus help make them widespread.

The rest of this paper is organized as follows. In Section 2
we precisely describe the integration conditions we target for
our accelerator, which are determinant in our architectural
choices. Section 3 is a primer on recent machine-learning
techniques where we introduce the different types of CNN lay-
ers. We give a first idea of the mapping principles in Section 4
and, in Sections 5 to 7, we introduce the detailed architecture
of our accelerator (ShiDianNao, Shi for vision and DianNao
for electronic brain) and discuss design choices. In Section 8,
we show how to map CNNs on ShiDianNao and schedule the
different layers. In Section 9, the experimental methodology
is described. In Section 10, we implemented ShiDianNao
and compared the results to the state-of-the-art in terms of
performance and hardware costs. In Section 12, conclusions
are given. Related work is discussed in Section 11.

2. System Integration
Figure 1 shows a typical integration solution for cheap cameras
(closely resembling an STM chipset [55, 56]): An image pro-
cessing chip is connected to cameras (in typical smartphones,
two) streaming their data through standard Camera Serial In-
terfaces (CSIs). Video processing pipelines, controlled by a
microcontroller unit, implement a number of essential func-

Acc

Video
pipelines

Micro-
Controller

SRAM
256KB

GPIO&

I2C

BUS

at (384,768)

"cat"

CSI-2 I/F

CSI-2 I/F

CSI-2 I/F

Sensors Image processor Host

Figure 1: Possible integration of our accelerator in a commer-
cial image processing chip.

tions such as Bayer reconstruction, white balance and barrel
correction, noise and defect filtering, autofocus control, video
stabilization, and image compression. More advanced pro-
cessors already implement rudimentary object detection and
tracking functions, such as face recognition [56].

The figure shows also the approximate setting of our ShiDi-
anNao accelerator, with high-level control from the embedded
microcontroller and using for image input the same memory
buffers. Contrary to the fairly elementary processing of the
video pipelines, our accelerator is meant to achieve very signif-
icantly more advanced classification tasks. One should notice
that, to contain cost and energy consumption, this type of com-
mercial image processors go a long way to avoid full-image
buffering (which, of course, for 8-megapixel images would
require several megabytes of storage): input and outputs of
the system are through serial streaming channels, there is no
interface to external DRAM, and the local SRAM storage is
very limited (e.g., 256 KB [55]). These constraints are what
we are going to use to design our system: our recognition sys-
tem must also avoid full-frame storage, exclude any external
DRAM interface, and process sequentially a stream of partial
frame sections as they flow from the sensors to the applica-
tion processor. We will later show (Section 10.2) that a local
storage of 256 KB appears appropriate also for our accelerator.

3. Primer on Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [35] and Deep Neural
Networks (DNNs) [32] are known as two state-of-the-art ma-
chine learning algorithms. Both of them belong to the family
of Multi-Layer Perceptrons (MLPs) [21] and may consist of
four types of layers: convolutional, pooling, normalization,
and classifier layers. However, the two network types differ
from each other in their convolutional layers—the type of lay-
ers dominate the execution time of both types of networks [3].
In a CNN convolutional layer, synaptic weights can be reused
(shared) by certain neurons, while there is no such reuse in
a DNN convolutional layer (see below for details). The data
reuse in CNN naturally favors hardware accelerators, because
it reduces the number of synaptic weights to store, possibly
allowing them to be simultaneously kept on-chip.

General Architecture. Figure 2 illustrates the architecture
of LeNet-5 [35], a representative CNN widely used in doc-
ument recognition. It consists of two convolutional layers
(C1 and C3 in Figure 2), two pooling layers (S2 and S4 in
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Figure 2: A representative CNN architecture—LeNet5 [35]. C:
Convolutional layer; S: Pooling layer; F: Classifier layer.

Figure 2), and three classifier layers (F5, F6 and F7 in Figure
2). Recent studies also suggest the use of normalization layers
in deep learning [29, 26].

Convolutional Layer. A convolutional layer can be viewed
as a set of local filters designed for identifying certain char-
acteristics of input feature maps (i.e., 2D arrays of input pix-
els/neurons). Each local filter has a kernel having Kx×Ky
coefficients, and processes a convolutional window capturing
Kx×Ky input neurons in one input feature map (or multiple
same-sized windows in multiple input feature maps). A 2D
array of local filters produces an output feature map, where
each local filter corresponds to an output neuron, and convo-
lutional windows of adjacent output neurons are sliding by
steps of Sx (x-direction) and Sy (y-direction) in the same input
feature map. Formally, the output neuron at position (a,b) of
the output feature map #mo is computed with

Omo
a,b = f

(
∑

mi∈Amo

(
β

mi,mo +
Kx−1

∑
i=0

Ky−1

∑
j=0

ω
mi,mo
i, j × Imi

aSx+i,bSy+ j

))
, (1)

where ωmi,mo is the kernel between input feature map #mi and
output feature map #mo, β mi,mo is the bias value for the pair of
input and output feature maps, Amo is the set of input feature
maps connected to output feature map #mo, and f ( ·) is the
non-linear activation function (e.g., tanh or sigmoid).

Pooling Layer. A pooling layer directly downsamples an
input feature map by performing maximum or average op-
erations to non-overlapping windows of input neurons (i.e.,
pooling window, each with Kx×Ky neurons) in the feature
map. Formally, the output neuron at position (a,b) of the
output feature map #mo is computed with

Omo
a,b = max

0≤i<Kx,0≤ j<Ky

(
Imi
a+i,b+ j

)
, (2)

where mo = mi because the mapping between input and output
feature maps is one-to-one. The case shown above is that of
max pooling, while average pooling is similar except that the
maximum operation is replaced with the average operation.
Traditional CNNs also additionally perform a non-linear trans-
formation on the above output, while recent studies no longer
suggest that [36, 26].

Normalization Layers. Normalization layers introduce
competition between neurons at the same position of different
input feature maps, which further improves the recognition ac-
curacy of CNN. There exist two types of normalization layers:
Local Response Normalization (LRN) [29] and Local Contrast
Normalization (LCN) [26]. In an LRN layer, the output neuron
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Figure 3: Typical implementations of neural networks.
at position (a,b) of output feature map #mi can be computed
with

Omi
a,b = Imi

a,b/

(
k+α×

min(Mi−1,mi+M/2)

∑
j=max(0,mi−M/2)

(I j
a,b)

2

)β

, (3)

where Mi is the total number of input feature maps, M is the
maximum number of input feature maps connected to one
output feature map, and α , β and k are constant parameters.

In an LCN layer, the output neuron at position (a,b) of
output feature map #mi can be computed with

Omi
a,b = vmi

a,b/max
(
mean(δa,b),δa,b

)
, (4)

where δa,b is computed with
δa,b =

√
∑

mi,a,b
(vmi

a+p,b+q)
2, (5)

vmi
a,b (subtractive normalization) is computed with

vmi
a,b = Imi

a,b− ∑
j,a,b

ωa,b× I j
a+p,b+q, (6)

ωa,b is a normalized Gaussian weighting window satisfying
∑a,b ωa,b = 1, and Imi

a,b is the input neuron at position (a,b) of
the input feature map #mi.

Classifier Layer. After a sequence of other layers, a CNN
integrates one or more classifier layers to compute the final
result. In a typical classifier layer, output neurons are fully con-
nected to input neurons with independent synapses. Formally,
the output neuron #no is computed with

Ono = f

(
β

no +∑
ni

ω
ni,no× Ini

)
, (7)

where ωni,no is the synapse between input neuron #ni and
output neuron #no, β no is the bias value of output neuron #no,
and f ( ·) is the activation function.

Recognition vs. Training. A common misconception about
neural networks is that they must be trained on-line to achieve
high recognition accuracy. In fact, for visual recognition,
off-line training (explicitly splitting training and recognition
phases) has been proven sufficient, and this fact has been
widely acknowledged by machine learning researchers [16, 3].
Off-line training by the service provider is essential for inex-
pensive embedded sensors, with their limited computational
capacity and power budget. We will naturally focus our design
on the recognition phase alone of CNNs.

4. Mapping Principles
Roughly, a purely spatial hardware implementation of a neural
network would devote a separate accumulation unit for each
neuron and a separate multiplier for each synapse. From the
early days of neural networks in the 80’s and 90’s, architects
have imagined that concrete applications would contain too
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Figure 4: Accelerator architecture.

many neurons and synapses to be implemented as a singe deep
and wide pipeline. Even though an amazing progress has since
been achieved in transistor densities, current practical CNNs
clearly still exceed the potentials for a pure spatial implemen-
tation [57], driving the need for some temporal partitioning of
the complete CNN and sequential mapping of the partitions
on the physical computational structure.

Various mapping strategies have been attempted and re-
viewed (see Ienne et al. for an early taxonomy [25]): products,
prototypes, and paper designs have probably exhausted all
possibilities, including attributing each neuron to a processing
element, each synapes to a processing element, and flowing in
a systolic fashion both kernels and input feature maps. Some
of these principal choices are represented in Figure 3. In this
work, we have naturally decided to rely on (1) the 2D nature
of our processed data (images) and (2) the limited size of the
convolutional kernels. Overall, we have chosen the mapping
in Figure 3(d): our processing elements (i) represent neurons,
(ii) are organized in a 2D mesh, (iii) receive, broadcasted, ker-
nel elements ωi, j, (iv) receive through right-left and up-down
shifts the input feature map, and finally (v) accumulate locally
the resulting output feature map.

Of course, the details of the mapping go well beyond the
intuition of Figure 3(d) and we will devote the complete Sec-
tion 8 to show how all the various layers and phases of the
computation can fit our architecture. Yet, for now, the figure
should give the reader a sufficient broad idea of the mapping to
follow the development of the architecture in the next section.

5. Accelerator Architecture: Computation

As illustrated in Figure 4, our accelerator consists of the fol-
lowing main components: two buffers for input and output
neurons (NBin and NBout), a buffer for synapses (SB), a neu-
ral functional unit (NFU) plus an arithmetic unit (ALU) for
computing output neurons, and a buffer and a decoder for
instructions (IB). In the rest of this section, we introduce the
computational structures, and in the next ones we describe the
storage and control structures.

Our accelerator has two functional units, an NFU accom-
modating fundamental neuron operations (multiplications, ad-
ditions and comparisons) and an ALU performing activation
function computations. We use 16-bit fixed-point arithmetic
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operators rather than conventional 32-bit floating-point opera-
tors in both computational structures, and the reasons are two-
fold. First, using 16-bit fixed-point operators brings in negligi-
ble accuracy loss to neural networks, which has been validated
by previous studies [3, 10, 57]. Second, using smaller opera-
tors significantly reduces the hardware cost. For example, a
16-bit truncated fixed-point multiplier is 6.10× smaller and
7.33× more energy-efficient than a 32-bit floating-point multi-
plier in TSMC 65 nm technology [3].

5.1. Neural Functional Unit

Our accelerator processes 2D feature maps (images), thus
its NFU must be optimized to handle 2D data (neuron/pixel
arrays). The functional unit of DianNao [3] is inefficient for
this application scenario, because it treats 2D feature maps as
a 1D vector and cannot effectively exploit the locality of 2D
data. In contrast, our NFU is a 2D mesh of Px×Py Processing
Elements (PEs), which naturally suits the topology of 2D
feature maps.

An intuitive way of neuron-PE mapping is to allocate a
block of Kx×Ky PEs (Kx×Ky is the kernel size) to a single
output neuron, computing all synapses at once. This has a
couple of disadvantages: Firstly, this arrangement leads to
fairly complicated logic (a large MUX mesh) to share data
among different neurons. Moreover, if PEs are to be used
efficiently, this complexity is compounded by the variability
of the kernel size. Therefore, we adopt an efficient alternative:
we map each output neuron to a single PE and we time-share
each PE across input neurons (that is, synapses) connecting to
the same output neuron.

We present the overall NFU structure in Figure 5. The NFU
can simultaneously read synapses and input neurons from
NBin/NBout and SB, and then distribute them to different PEs.
In addition, the NFU contains local storage structures into
each PE, and this enables local propagation of input neurons
between PEs (see Inter-PE data propagation in Section 5.1).
After performing computations, the NFU collects results from
different PEs and sends them to NBout/NBin or the ALU.

Processing elements. At each cycle, each PE can perform
a multiplication and an addition for a convolutional, classi-
fier, or normalization layer, or just an addition for an average
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pooling layer, or a comparison for a max pooling layer, etc.
(see Figure 6). PEi, j, which is the PE at the i-th row and j-th
column of the NFU, has three inputs: one input for receiving
the control signals; one input for reading synapses (e.g., ker-
nel values of convolutional layers) from SB; and one input
for reading neurons from NBin/NBout, from PEi+1, j (right
neighbor), or from PEi+1, j (bottom neighbor), depending on
the control signal. The PEi, j has two outputs: one output for
writing computation results to NBout/NBin; one output for
propagating locally-stored neurons to neighbor PEs (so that
they can efficiently reuse the data, see below). In executing
a CNN layer, each PE continuously accommodates a single
output neuron, and will switch to another output neuron only
when the current one has been computed (see Section 8 for
detailed neuron-PE mappings).

Inter-PE data propagation. In convolutional, pooling, and
normalization layers of CNNs, each output neuron requires
data from a rectangular window of input neurons. Such win-
dows are in general significantly overlapping for adjacent
output neurons (see Section 8). Although all required data are
available from NBin/NBout, repeatedly reading them from the
buffer to different PEs requires a high bandwidth. We esti-
mate the internal bandwidth requirement between the on-chip
buffers (NBin/NBout and SB) and the NFU (see Figure 7)
using a representative convolutional layer (32×32 input fea-
ture map and 5×5 convolutional kernel) from LeNet-5 [35] as
workload. We observe that, for example, an NFU having only
25 PEs requires >52 GB/s bandwidth. The large bandwidth
requirement may lead to large wiring overheads, or significant
performance loss (if we limit the wiring overheads).

To support efficient data reuse, we allow inter-PE data prop-
agation on the PE mesh, where each PE can send locally-stored
input neurons to its left and lower neighbors. We enable this
by having two FIFOs (horizontal and vertical: FIFO-H and
FIFO-V) in each PE to temporarily store the input values it
received. FIFO-H buffers data from NBin/NBout and from
the right neighbor PE; such data will be propagated to the
left neighbor PE for reuse. FIFO-V buffers the data from
NBin/NBout and from the upper neighbor PE; such data will
be propagated to the lower neighbor PE for reuse. With inter-
PE data propagation, the internal bandwidth requirement can
be drastically reduced (see Figure 7).
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5.2. Arithmetic Logic Unit (ALU)

The NFU does not cover all computational primitives in a
CNN, thus we need a lightweight ALU to complement the
PEs. In the ALU, we implement 16-bit fixed-point arithmetic
operators, including division (for average pooling and nor-
malization layers) and non-linear activation functions such as
tanh() and sigmoid() (for convolutional and pooling layers).
We use a piecewise linear interpolation ( f (x) = aix+bi, when
x ∈ [xi,xi+1] and where i = 0, . . . ,15) to compute activation
function values; this is known to bring only negligible accu-
racy loss to CNNs [31, 3]. Segment coefficients ai and bi are
stored in registers in advance, so that the approximation can
be efficiently computed with a multiplier and an adder.

6. Accelerator Architecture: Storage

We use on-chip SRAM to simultaneously store all data (e.g.,
synapses) and instructions of a CNN. While this seems surpris-
ing from both machine learning and architecture perspectives,
recent studies have validated the high recognition accuracy of
CNNs using a moderate number of parameters. The message
is that 4.55 KB–136.11 KB storage is sufficient to simultane-
ously store all data required for many practical CNNs and,
with only around 136 KB of on-chip SRAM, our accelerator
can get rid of all off-chip memory accesses and achieve tan-
gible energy-efficiency. In our current design, we implement
a 288 KB on-chip SRAM, which is sufficient for all 10 prac-
tical CNNs listed in Table 1. The cost of 128 KB SRAM is
moderate: 1.65 mm2 and 0.44 nJ per read in TSMC 65 nm
process.

Table 1: CNNs.

CNN Largest Layer
Size (KB)

Synapses
Size (KB)

Total Storage
(KB)

Accuracy
(%)

CNP [46] 15.19 28.17 56.38 97.00
MPCNN [43] 30.63 42.77 88.89 96.77
Face Recogn. [33] 21.33 4.50 30.05 96.20
LeNet-5 [35] 9.19 118.30 136.11 99.05
Simple conv. [53] 2.44 24.17 30.12 99.60
CFF [17] 7.00 1.72 18.49 —
NEO [44] 4.50 3.63 16.03 96.92
ConvNN [9] 45.00 4.35 87.53 96.73
Gabor [30] 2.00 0.82 5.36 87.50
Face align. [11] 15.63 29.27 56.39 —
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We further split the on-chip SRAM into separate buffers
(e.g., NBin, NBout, and SB) for different types of data. This
allows us to use suitable read widths for the different types,
which minimizes time and energy of each read request. Specif-
ically, NBin and NBout respectively store input and output
neurons, and exchange their functionality when all output neu-
rons have been computed and become the input neurons of
the next layer. Each of them has 2×Py banks, in order to
support SRAM-to-PE data movements, as well as inter-PE
data propagations (see Figure 8). The width of each bank is
Px×2 bytes. Both NBin and NBout must be sufficiently large
to store all neurons of a whole layer. SB stores all synapses of
a CNN and has Py banks.

7. Accelerator Architecture: Control

7.1. Buffer Controllers

Controllers of on-chip buffers support efficient data reuse and
computation in the NFU. We detail the NB controller (used
by both NBin and NBout) as an example and omit a detailed
description of the other (similar and simpler) buffer controllers
for the sake of brevity. The architecture of NB controller is
depicted in Figure 9; the controller efficiently supports six
read modes and a single write mode.

Without loss of generality, let’s assume that NBin stores the
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Figure 10: Read modes of NB controller.
input neurons of a layer and NBout is used to store the output
neurons of the layer. Recall that NBin has 2×Py banks and
the width of each bank is Px×2 bytes (i.e., Px 16-bit neurons).
Figure 10 illustrates the six read modes of the NB controller:
(a) Read multiple banks (#0 to #Py−1).
(b) Read multiple banks (#Py to #2Py−1).
(c) Read one bank.
(d) Read a single neuron.
(e) Read neurons with a given step size.
(f) Read a single neuron per bank (#0 to #Py− 1 or #Py to

#2Py−1).
We select a subset of read modes to efficiently serve each type
of layers. For a convolutional layer, we use modes (a) or (b) to
read Px×Py neurons from the NBin banks #0 to #Py−1 or #Py
to #2Py−1 (Figure 8(1)), mode (e) to deal with the rare (but
possible) cases in which the convolutional window is sliding
with a step size larger than 1, mode (c) to read Px neurons from
an NB bank (Figure 8(3)), and mode (f) to read Py neurons
from NB banks #Py to #2Py−1 or #0 to #Py−1 (Figure 8(2)).
For a pooling layer, we also use modes (a), (b), (c), (e), and
(f), since it has similar sliding windows (of input neurons) as
a convolutional layer. For a normalization layer, we still use
modes (a), (b), (c), (e), and (f) because the layer is usually
decomposed into sub-layers behaving similar to convolutional
and pooling layers (see Section 8). For a classifier layer, we
use mode (d) to load the same input neuron for all output
neurons.

The write mode of NB controller is relatively more straight-
forward. In executing a CNN layer, once a PE has performed
all computations of an output neuron, the result will be tem-
porarily stored in a register array of NB controller (see output
register array in Figure 9). After collecting results from all
Px×Py PEs, the NB controller will write them to NBout all
at once. In line with the position of each output neuron in
the output feature map, the Px×Py output neurons are orga-
nized as a data block with Py rows, each is Px× 2-bit wide,
and corresponds to a single bank of NB. When output neurons
in the block lie in the 2kPx, . . . ,((2k+ 1)Px− 1)-th columns
(k = 0,1, . . . ) of the feature map (i.e., blue columns in the
feature map of Figure 11), the data block would be written
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to the first Py banks of NB. Otherwise (when they lie in grey
columns in the feature map of Figure 11), the data block will
be written to the second Py banks of NB.

7.2. Control Instructions

We use control instructions to flexibly support CNNs with
different settings of layers. An intuitive and straightforward
approach would be to put directly cycle-by-cycle control sig-
nals for all blocks in instructions (97 bits per cycle). However,
a typical CNN might need more than 50K cycles on an accel-
erator with 64 PEs; this would require an SRAM exceeding
600 KB (97×50K) in order to keep all instructions on-chip,
which is inefficient for an embedded sensor.

We choose an efficient alternative, which leverages algorith-
mic features of CNN layers to provide compact and lossless
representations of redundant control signals: We define a two-
level Hierarchical Finite State Machine (HFSM) to describe
the execution flow of the accelerator (see Figure 12). In the
HFSM, first-level states describe abstract tasks processed by
the accelerator (e.g., different layer types, ALU task). Associ-
ated with each first-level state, there are several second-level
states characterizing the corresponding low-level execution
events. For example, the second-level states associated with
the first-level state Conv (convolutional layer) correspond to
execution phases that an input-output feature map pair requires.
Due to the limited space, we are not able to provide here all de-
tails of the HFSM. In a nutshell, the combination of first- and
second-level states (an HFSM state as a whole) is sufficient
to characterize the current task (e.g., layer type) processed by
the accelerator, as well as the execution flow within a certain
number of accelerator cycles. In addition, we can also partially
deduce what the accelerator should do in the next few cycles,
using the HFSM state and transition rules.

We use a 61-bit instruction to represent each HFSM state
and related parameters (e.g., feature map size), which can
be decoded into detailed control signals for a certain number
of accelerator cycles. Thanks to this scheme, with virtually
no loss of flexibility in practice, the aforementioned 50K-
cycle CNN only requires a 1 KB instruction storage and a
lightweight decoder occupying only 0.03 mm2 (0.37% the area
cost of a 600 KB SRAM) in our 65 nm process.

8. CNN Mapping
In this section, we show how different types of CNN layers
are mapped to the accelerator design.

8.1. Convolutional Layer

A convolutional layer constructs multiple output feature maps
with multiple input feature maps. When executing a con-
volutional layer, the accelerator continuously performs the
computations of an output feature map, and will not move to
the next output feature map until the current map has been
constructed. When computing each output feature map, each
PE of the accelerator continuously accommodates a single
output neuron, and will not switch to another output neuron
until the current neuron has been computed.

We present in Figure 13 an example to illustrate how differ-
ent neurons of the same output feature map are simultaneously
computed. Without losing any generality, we consider a small
design having 2× 2 PEs (PE0,0, PE1,0, PE0,1 and PE1,1 in
Figure 13), and a convolutional layer with 3× 3 kernel size
(convolutional window size) and 1×1 step size. For the sake
of brevity, we only depict and describe the flow at the first four
cycles.

Cycle #0: All four PEs respectively read the first input
neurons (x0,0, x1,0, x0,1 and x1,1) of their current kernel
windows from NBin (with Read Mode (a)), and the same
kernel value (synapse) k0,0 from SB. Each PE performs a
multiplication between the received input neuron and kernel
value, and store the result in its local register. In addition,
each PE collects its received input neuron in its FIFO-H and
FIFO-V for future inter-PE data propagation.
Cycle #1: PE0,0 and PE0,1 respectively read their required
data (input neurons x1,0 and x1,1) from the FIFO-Hs of
PE1,0 and PE1,1 (i.e., inter-PE data propagation at horizon
direction). PE1,0 and PE1,1 respectively read their required
data (input neurons x2,0, x2,1) from NBin (with Read Mode
(f)), and collect them in their FIFO-Hs for future inter-PE
data propagation. All PEs share the kernel value k1,0 read
from SB.
Cycle #2: Similar to Cycle #1, PE0,0 and PE0,1 respectively
read their required data (input neurons x2,0 and x2,1) from
the FIFO-Hs of PE1,0 and PE1,1 (i.e., inter-PE data propaga-
tion at horizon direction). PE1,0 and PE1,1 respectively read
their required data (input neurons x3,0 and x3,1) from NBin
(with Read Mode (f)). All PEs share the kernel value k2,0
read from SB. So far each PE has processed the first row
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Figure 13: Algorithm-hardware mapping between a convolu-
tional layer (convolutional window: 3× 3; step size: 1× 1)
and an NFU implementation (with 2×2 PEs).

of the corresponding convolutional window, and will move
to the second row of the convolutional window at the next
cycle.
Cycle #3: PE0,0 and PE1,0 respectively read their required
data (input neurons x0,1 and x1,1) from FIFO-Vs of PE0,1
and PE1,1 (i.e., inter-PE data propagation at vertical direc-
tion). PE0,1 and PE1,1 respectively read their required data
(input neurons x0,2 and x1,2) from NBin (with Read Mode
(c)). All PEs share the kernel value k0,1 read from SB. In
addition, each PE collects its received input neuron in its
FIFO-H and FIFO-V for future inter-PE data propagation.
In the toy example presented above, inter-PE data propaga-

tions reduce by 44.4% the number of reads to NBin (and thus
internal bandwidth requirement between NFU and NBin) for
computing the four output neurons. In practice, the number
of PEs and the kernel size can often be larger, and this benefit
will correspondingly become more significant. For example,
when executing a typical convolutional layer (C1) of LeNet-5
(kernel size 32×32 and step size 1×1) [35] on a accelerator
implementation having 64 PEs, inter-PE data propagations
reduces by 73.88% internal bandwidth requirement between
NFU and NBin (see also Figure 7).

8.2. Pooling Layer

A pooling layer downsamples input feature maps to construct
output feature maps, using maximum or average operation.
Analogous to a convolutional layer, each output neuron of
a pooling layer is computed with a window (i.e., pooling
window) of neurons in an input feature map. When executing
a pooling layer, the accelerator continuously performs the
computations of an output feature map, and will not move to
the next output feature map until the current map has been
constructed. When computing each output feature map, each
PE of the accelerator continuously accommodates a single
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Figure 14: Algorithm-hardware mapping between a pooling
layer (pooling window: 2× 2; step size: 2× 2) and an NFU
implementation (with 2×2 PEs).

output neuron, and will not switch to another output neuron
until the current neuron has been computed.

In a typical pooling layer, pooling windows of adjacent out-
put neurons are adjacent but non-overlapping, i.e., the step size
of window sliding equals to the window size. We present in
Figure 14 the execution flow of one such pooling layer, where
we consider a small accelerator having 2×2 PEs (PE0,0, PE1,0,
PE0,1 and PE1,1 in Figure 14), a 2× 2 pooling window size,
and a 2×2 step size. At each cycle, each PE reads an input
neuron (row-first and left-first in the pooling window) from
NBin (with Read Mode (e)). PEs do not mutually propagate
data because there is no data reuse between PEs.

Yet there are still rare cases in which pooling windows of
adjacent neurons are overlapping, i.e., the step size of window
sliding is smaller than the window size. Such cases can be
treated in a way similar to a convolutional layer, except that
there is no synapse in a pooling layer.

8.3. Classifier Layer

In a CNN, convolutional layers allow different input-output
neuron pairs to share synaptic weights (i.e., with the kernel),
and pooling layers do not have synaptic weights. In contrast,
classifier layers are usually fully connected, and there is no
sharing of synaptic weights among different input-output neu-
ron pairs. As a result, classifier layers often consume the
largest space in the SB (e.g., 97.28% for LeNet-5 [35]). When
executing a classifier layer, each PE works on a single out-
put neuron, and will not move to another output neuron until
the current one has been computed. While each cycle of a
convolutional layer reads a single synaptic weight and Px×Py
different input neurons for all Px×Py PEs, each cycle of a
classifier layer reads Px×Py different synaptic weights and a
single input neuron for all Px×Py PEs. After that, each PE
multiplies the synaptic weight and input neuron togther, and
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Figure 15: Decomposition of an LRN layer.
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accumulates the result to the partial sum stored at its local reg-
ister. After a number of cycles, when the dot product (between
input neurons and synapses) associated with an output neuron
has been computed, the result will be sent to the ALU for the
computation of activation function.

8.4. Normalization Layers

Normalization layers can be composed into a number of sub-
layers and fundamental computational primitives in order to be
executed by our accelerator. We illustrate detailed decomposi-
tions in Figures 15 and 16, where an LRN layer is decomposed
into a classifier sub-layer, an element-wise square, a matrix
addition, exponential functions and divisions; and an LCN
layer is decomposed into two convolutional sub-layers, a pool-
ing sub-layer, a classifier sub-layer, two matrix additions, an
element-wise square, and divisions. Convolutional, pooling,
and classifier sub-layers can be tackled with the rules described
in former subsections, and exponential functions and divisions
are accommodated by the ALU. The rest computational primi-
tives, including element-wise square and matrix addition, are
accommodated by the NFU. In supporting the two primitives,
at each cycle, each PE works on an matrix element output with
its multiplier or adder, and results of all Px×Py PEs are then
written to NBout, following the flow presented in Section 7.1.

9. Experimental Methodology

Measurements. We implemented our design in Verilog, syn-
thesized it with Synopsys Design Compiler, and placed and
routed it with Synopsys IC Compiler using the TSMC 65 nm
Gplus High VT library. We used CACTI 6.0 to estimate the
energy cost of DRAM accesses [42]. We compare our design
with three baselines:

CPU. The CPU baseline is a 256-bit SIMD (Intel Xeon
E7-8830, 2.13 GHz, 1 TB memory). We compile all
benchmarks with GCC 4.4.7 with options “-O3 -lm -
march=native”, enabling the use of SIMD instructions such
as MMX, SSE, SSE2, SSE4.1 and SSE4.2.
GPU. The GPU baseline is a modern GPU card (NVIDIA
K20M, 5 GB GDDR5, 3.52 TFlops peak in 28 nm technol-
ogy); we use the Caffe library, since it is widely regarded
as the fastest CNN library for GPU [1].
Accelerator. To make the comparison fair and adapted

Table 2: Benchmarks (C stands for a convolutional layer, S for
a pooling layer, and F for a classifier layer).

Layer Kernel Size Layer Size Layer Kernel Size Layer Size
#@size #@size #@size #@size

C
N

P
[4

6]

Input 1@42x42

M
PC

N
N

[4
3]

Input 1@32x32
C1 6@7x7 6@36x36 C1 20@5x5 20@28x28
S2 6@2x2 6@18x18 S2 20@2x2 20@14x14
C3 61@7x7 16@12x12 C3 400@5x5 20@10x10
S4 16@2x2 16@6x6 S4 20@2x2 20@5x5
C5 305@6x6 80@1x1 C5 400@3x3 20@3x3
F6 160@1x1 2@1x1 F6 6000@1x1 300@1x1

F7 1800@1x1 6@1x1

Layer Kernel Size Layer Size Layer Kernel Size Layer Size
#@size #@size #@size #@size

Fa
ce

R
ec

og
.[

33
] Input 1@23x28

L
eN

et
-5

[3
5]

Input 1@32x32
C1 20@3x3 20@21x26 C1 6@5x5 6@28x28
S2 20@2x2 20@11x13 S2 6@2x2 6@14x14
C3 125@3x3 25@9x11 C3 60@5x5 16@10x10
S4 25@2x2 25@5x6 S4 16@2x2 16@5x5
F5 1000@1x1 40@1x1 F5 1920@5x5 120@1x1

F6 10080@1x1 84@1x1
F7 840@1x1 10@1x1

Layer Kernel Size Layer Size Layer Kernel Size Layer Size
#@size #@size #@size #@size

Si
m

pl
e

C
on

v
[5

3]
Input 1@29x29

C
FF

[1
7]

Input 1@32x36
C1 5@5x5 5@13x13 C1 4@5x5 4@28x32
C2 250@5x5 50@5x5 S2 4@2x2 4@14x16
F3 5000@1x1 100@1x1 C3 20@3x3 14@12x14
F4 1000@1x1 10@1x1 S4 14@2x2 14@6x7

F5 14@6x7 14@1x1
F6 14@1x1 1@1x1

Layer Kernel Size Layer Size Layer Kernel Size Layer Size
#@size #@size #@size #@size

N
E

O
[4

4]

Input 1@24x24

C
on

vN
N

[9
]

Input 3@64x36
C1 4@5x5 1@24x24 C1 12@5x5 12@60x32
S2 6@3x3 4@12x12 S2 12@2x2 12@30x16
C3 14@5x5 4@12x12 C3 60@3x3 14@28x14
S4 60@3x3 16@6x6 S4 14@2x2 14@14x7
F5 160@6x7 10@1x1 F5 14@14x7 14@1x1

F6 14@1x1 1@1x1

Layer Kernel Size Layer Size Layer Kernel Size Layer Size
#@size #@size #@size #@size

G
ab

or
[3

0]

Input 1@20x20

Fa
ce

A
lig

n.
[1

1]

Input 1@46x56
C1 4@5x5 4@16x16 C1 4@7x7 4@40x50
S2 4@2x2 4@8x8 S2 4@2x2 4@20x25
C3 20@3x3 14@6x6 C3 6@5x5 3@16x21
S4 14@2x2 14@3x3 S4 3@2x2 3@8x10
F5 14@1x1 14@1x1 F5 180@8x10 60@1x1
F6 14@1x1 1@1x1 F6 240@1x1 4@1x1

to the embedded scenario, we resized our previous work,
i.e., DianNao [3] to have a comparable amount of arith-
metic operators as our design—i.e., we implemented an
8×8 DianNao-NFU (8 hardware neurons, each processes 8
input neurons and 8 synapses per cycle) with a 62.5 GB/s
bandwidth memory model instead of the original 16×16
DianNao-NFU with 250 GB/s bandwidth memory model
(unrealistic in a vision sensor). We correspondingly shrank
the sizes of on-chip buffers by half in our re-implementation
of DianNao: 1 KB NBin/NBout and 16 KB SB. We have
verified that our implementation is roughly fitting to the orig-
inal design. For instance, we obtained an area of 1.38 mm2

for our re-implementation versus 3.02 mm2 for the original
DianNao [3], which tracks well the ratio in computing and
storage resources.

100



NBin

NBout

SB

IB

NFU

Figure 17: Layout of ShiDianNao (65 nm).

Benchmarks. We collected 10 CNNs from representative
visual recognition applications and used them as our bench-
marks (Table 2). Among all layers of all benchmarks, input
neurons consume at most 45 KB, and synapses consume at
most 118 KB, which do not exceed the SRAM capacities of
our design (Table 3).

10. Experimental Results

10.1. Layout Characteristics

We present in Tables 3 and 4 the parameters and layout char-
acteristics of the current ShiDianNao version (see Figure 17),
respectively. ShiDianNao has 8× 8 (64) PEs and a 64 KB
NBin, a 64 KB NBout, a 128 KB SB, and a 32 KB IB. The
overall SRAM capacity of ShiDianNao is 288 KB (11.1×
larger than that of DianNao), in order to simultaneously store
all data and instructions for a practical CNN. Yet, the total
area of ShiDianNao is only 3.52× larger than that of DianNao
(4.86 mm2 vs. 1.38 mm2).

10.2. Performance

We compare ShiDianNao against the CPU, the GPU, and Di-
anNao on all benchmarks listed in Section 9. The results are
shown in Figure 18. Unsurprisingly, ShiDianNao significantly
outperforms the general purpose architectures and is, on aver-
age, 46.38 × faster than the CPU and 28.94× faster than the
GPU. In particular, the GPU cannot take full advantage of its
high computational power because the small computational
kernels of the visual recognition tasks listed in Table 1 map
poorly on its 2,496 hardware threads.

More interestingly, ShiDianNao also outperforms our accel-
erator baseline on 9 out of 10 benchmarks (1.87× faster on
average on all 10 benchmarks). There are two main reasons for
that: Firstly, compared to DianNao, ShiDianNao eliminates
off-chip memory accesses during execution, thanks to a suffi-
ciently large SRAM capacity and a correspondingly slightly
higher cost. Secondly, ShiDianNao efficiently exploits the lo-
cality of 2D feature maps with its dedicated SRAM controllers
and its inter-PE data reuse mechanism; DianNao, on the other
hand, cannot make good use of that locality.

ShiDianNao performs slightly worse than the accelerator
baseline on benchmark Simple Conv. The issue is that ShiD-
ianNao works on a single output feature map at a time and
each PE works on a single output neuron of the feature map.

Table 3: Parameter settings of ShiDianNao and DianNao.

ShiDianNao DianNao

Data width 16-bit 16-bit
# multipliers 64 64
NBin SRAM size 64 KB 1 KB
NBout SRAM size 64 KB 1 KB
SB SRAM size 128 KB 16 KB
Inst. SRAM size 32 KB 8 KB

Table 4: Hardware characteristics of ShiDianNao at 1GHz,
where power and energy are averaged over 10 benchmarks.

Accelerator Area (mm2) Power (mW ) Energy (nJ)

Total 4.86 (100%) 320.10 (100%) 6048.70 (100%)
NFU 0.66 (13.58%) 268.82 (83.98%) 5281.09 (87.29%)
NBin 1.12 (23.05%) 35.53 (11.10%) 475.01 (7.85%)
NBout 1.12 (23.05%) 6.60 (2.06%) 86.61 (1.43%)
SB 1.65 (33.95%) 6.77 (2.11%) 94.08 (1.56%)
IB 0.31 (6.38%) 2.38 (0.74%) 35.84 (0.59%)

Therefore, when most of an application consists of uncom-
monly small output feature maps with fewer output neurons
than implemented PEs (e.g., 5× 5 in the C2 layer of bench-
mark Simple Conv for 8× 8 PEs in the current accelerator
design), some PEs will be idle. Although we played with the
idea of alleviating this issue by adding complicated control
logic to each PE and allowing different PEs to simultaneously
work on different feature maps, we ultimately decided against
this option as it appeared a poor trade-off with a detrimental
impact on the programming model.

Concerning the ability of ShiDianNao to process in real
time a stream of frames from a sensor, the longest time to
process a 640x480 video frame is for benchmark ConvNN
which requires 0.047 ms to process a 64× 36-pixel region.
Since each frame contains d(640− 64)/16 + 1e × d(480−
36)/16+1e= 1073 such regions (overlapped by 16 pixels),
a frame takes a little more than 50 ms to process, resulting
in a speed of 20 frames per second for the most demanding
benchmark. Since typical commercial sensors can stream
data at a desired rate and since streaming speed can thus be
matched to the processing rate, the partial frame buffer must
store only the parts of the image reused across overlapping
regions. This is of the order of a few tens of pixel rows and fits
well the 256 KB of commercial image processors. Although
apparently low, the 640×480 resolution is in line with the
fact that usually images are resized in certain range before
processing [47, 34, 23, 16].

10.3. Energy

In Figure 19, we report the energy consumed by GPU, Dian-
Nao and ShiDianNao, inclusive of main memory accesses to
obtain the input data. Even if ShiDianNao is not meant to
access DRAM, we have conservatively included main mem-
ory accesses for the sake of a fair comparison. ShiDianNao
is on average 4688.13× and 63.48× more energy efficient
than GPU and DianNao, respectively. We also evaluate an
ideal version of DianNao (DianNao-FreeMem, see Figure 19),
where we assume that main memory accesses incur no en-
ergy cost. Interestingly, we observe that ShiDianNao is still
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Figure 19: Energy cost of GPU, DianNao, and ShiDianNao.

1.66× more energy efficient than DianNao-FreeMem. More-
over, when ShiDianNao is integrated in an embedded vision
sensor and frames are stored directly into its NBin, the superi-
ority is even more significant: in this setting, ShiDianNao is
87.39× and 2.37× more energy efficient than DianNao and
DianNao-FreeMem, respectively.

We illustrate in Table 4 the breakdown of the energy con-
sumed by our design. We observe that four SRAM buffers
account for only 11.43% the overall energy, and the rest is
consumed by the logic (87.29%). This is significantly different
from Chen et al.’s observation made on DianNao [3], where
more than 95% of the energy is consumed by the DRAM.

11. Related Work

Visual sensor and processing. Due to the rapid development
of integrated circuits and sensor technologies, the size and
cost of a vision sensor quickly scales down, which offers a
great opportunity to integrate higher-resolution sensors in mo-
bile ends and wearable devices (e.g., Google Glass [54] and
Samsung Gear [49]). Under emerging application scenarios
such as image recognition/search [19, 54], however, end de-
vices do not locally perform intensive visual processing on
images captured by sensors, due to the limited computational
capacity and power budget. Instead, computation-intensive
visual processing algorithms like CNNs [27, 17, 33, 30] are

performed at the sever end, leading to considerable workloads
to the server, which greatly limits the QoS and, ultimately, the
growth of end users. Our study partially bridges this gap by
shifting visual processing closer to sensors.

Neural network accelerators. Neural networks were con-
ventionally executed on CPUs [59, 2], and GPUs [15, 51, 5].
These platforms can flexibly adapt to various workloads, but
the flexibility is achieved at a large fraction of transistors, sig-
nificantly affecting the energy-efficiency of executing specific
workloads such as CNNs (see Section 3). After a first wave
of designs at the end of the last century [25], there have also
been a few more modern application-specific accelerator ar-
chitectures for various neural networks, with implementations
on either FPGAs [50, 46, 52] or ASICs [3, 16, 57]. For CNNs,
Farabet et al. proposed a systolic architecture called NeuFlow
architecture [16], Chakradhar et al. designed a systolic-like
coprocessor [2]. Although effective to handle 2D convolution
in signal processing [37, 58, 38, 22], systolic architectures do
not provide sufficient flexibility and efficiency to support dif-
ferent settings of CNNs [8, 50, 16, 2], which is exemplified by
their strict restrictions on CNN parameters (e.g., size of con-
volutional window, step size of window sliding, etc), as well
as their high memory bandwidth requirements. There have
been some neural network accelerators adopting SIMD-like
architectures. Esmaeilzadeh et al. proposed a neural network
stream processing core (NnSP) with an array of PEs, but the
released version is still designed for Multi-Layer Perceptrons
(MLPs) [12]. Peemen et al. [45] proposed to accelerate CNNs
with an FPGA accelerator controlled by a host processor. Al-
though this accelerator is equipped with a memory subsystem
customized for CNNs, the requirement of a host processor lim-
its the overall energy efficiency. Gokhale et al. [18] designed
a mobile coprocessor for visual processing at mobile devices,
which supports both CNNs and DNNs. The above studies did
not treat main memory accesses as the first-order concern, or
directly linked the computational block to the main memory
via a DMA. Recently, some of us [3] designed dedicated on-
chip SRAM buffers to reduce main memory accesses, and the
proposed DianNao accelerator cover a broad range of neural
networks including CNNs. However, in order to flexibly sup-
port different neural networks, DianNao does not implement
specialized hardware to exploit data locality of 2D feature
maps in a CNN, but instead treats them as 1D data vectors in
common MLPs. Therefore, DianNao still needs frequent mem-
ory accesses to execute a CNN, which is less energy efficient
than our design (see Section 10 for experimental comparisons).
Recent members of the DianNao family [4, 40] have been op-
timized for large-scale neural networks and classic machine
learning techniques respectively. However, they are not de-
signed for embedded applications, and their architectures are
significantly different from the ShiDianNao architecture.

Our design is substantially different from previous studies
in two aspects. First, unlike previous designs requiring mem-
ory accesses to get data, our design does not access to the main
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memory when executing a CNN. Second, unlike previous sys-
tolic designs supporting a single CNN with a fixed parameter
and layer setting [2, 8, 16, 50], or a single convolutional layer
with fixed parameters, our design flexibly accommodates dif-
ferent CNNs with different parameter and layer settings. Due
to these attractive features, our design is more energy-efficient
than previous designs on CNNs, thus particularly suits visual
recognition in embedded systems.

12. Conclusions

We designed a versatile accelerator for state-of-the-art visual
recognition algorithms. Averaged on 10 representative bench-
marks, our design is, respectively, about 50×, 30×, and 1.87×
faster than a mainstream CPU, a GPU, and our own reim-
plementation of the DianNao neural network accelerator [3].
ShiDianNao consumes only about 4700x and 60x less energy
than the GPU and DianNao, respectively. Our design has
an area of 4.86 mm2 in a 65 nm process and consumes only
320.10 mW at 1 GHz. Thanks to its high performance, its low
power consumption, as well as its small area, ShiDianNao
particularly suits visual applications at mobile ends and wear-
able devices. Our accelerator is suitable for integration in such
devices, on the streaming path from sensors to hosts. This
would significantly reduce workloads at servers, greatly en-
hance the QoS of emerging visual applications, and eventually
contribute to the ubiquitous success of visual processing.
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