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Optimal Reinsurance with Multiple Tranches ∗

Semyon Malamud†, Huaxia Rui‡, and Andrew Whinston§

Abstract

Motivated by common practices in the reinsurance industry and in insurance
markets such as Lloyd’s, we study the general problem of optimal insurance con-
tracts design in the presence of multiple insurance providers. We show that the op-
timal risk allocation rule is characterized by a hierarchical structure of risk sharing
where all agents take on risks only above the endogenously determined thresholds,
or agent-specific deductibles. Linear risk sharing between two adjacent thresholds
is shown to be optimal when all agents have CARA utilities. Furthermore, we
show that the optimal thresholds can be efficiently calculated through the fixed
point of a contraction mapping.
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1 Introduction

The modern theory of efficient risk sharing goes back to the fundamental paper by

Borch (1962), who characterized efficient risk sharing among several agents (typically

more than two) with heterogeneous preferences. Based on this research, Wilson (1968)

further developed the theory of syndicates. Both Borch and Wilson based their analysis

on an important assumption that a complete set of state-contingent contracts is available

for risk allocation. In many real-life situations, however, insurers are willing to take only

risks that do not exceed a certain level. This situation is particularly true for insurance

contracts, for which the corresponding insurance reimbursements (coverage functions)

are always assumed to be non-negative and lower than the total loss. As has been

shown by Arrow (1971, 1973) and Raviv (1979), such a feature of insurance policy may

significantly alter the structure of optimal risk allocation. Namely, the efficient risk-

sharing rule between two agents (i.e., the insured and the single insurerance provider)

is generally characterized by the presence of a deductible. The goal of this paper is to

extend Raviv’s (1979) seminal characterization of optimal insurance design to the case

of multiple insurers.

For insurance against loss that can potentially be very large, multiple insurance

providers are typically involved to achieve more efficient risk sharing.1 A well-known

example is the so-called subscription model at Lloyd’s, the world’s leading insurance

market providing specialist insurance services to businesses.2 At Lloyd’s, almost any

1By distributing large risk across many entities, insurance companies, large and small, can offer
coverage limits to meet their policyholders’ needs. This is very important for a more competitive
insurance market.

2In his speech on the future of the insurance industry, Lord Levene, the former chairman of Lloyd’s,
said that “The first point which I want to make about the future of insurance is that the subscription
model is not just alive and well — it is thriving. Lloyd’s made record profits in 2009. Throughout
the financial crisis, it maintained A+ ratings. Over three hundred years, it has never failed to pay a
valid claim.” Source: http://www.lloyds.com/Lloyds/Press-Centre/Speeches/2011/03/The-Future-of-
the-Insurance-Industry.
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single risk is insured by multiple insurers. As is stated on its website, “much of Lloyd’s

business works by subscription, where more than one syndicate takes a share of the

same risk.”3 This is also a well-established practice among insurers generally.4 Another

example of allocating risk among multiple insurance providers is when an insurance

company purchases insurance from multiple reinsurers.5 Reinsurance is an indispensable

and significant part of the insurance industry and “many reinsurance placements are not

placed with a single reinsurer but are shared between a number of reinsurers.”6

Despite its practical importance, there has been limited amount of research on opti-

mal risk sharing in the presence of more than two insurance providers and the practical

constraint that the insurance reimbursement is nonnegative and cannot exceed the size

of the loss. The industry practice, which typically involves both proportional and excess

of loss contracts with multiple agents offering insurance coverage, seems to be ad-hoc and

lacks a strong theoretical basis.7 This paper fills the gap in the literature by studying the

optimal design of insurance contracts with multiple agents offering insurance coverage

that satisfies the practical constraints. We also take into account of the intertemporal

nature of insurance, which is a realistic aspect given that there is always a (sometimes

significant) delay between the insurance premium payment and the arrival of an insur-

ance event. We endogenize this by introducing intertemporal utility maximization for all

agents. The framework in this paper applies both to the insurance scenario and the rein-

3Source: http://www.lloyds.com/lloyds/about-us/what-is-lloyds.

4See, for example, page 167 of Thoyts (2010) for more discussion.

5According to Reinsurance Association of America, “reinsurance is a transaction in which one in-
surance company indemnifies, for a premium, another insurance company against all or part of the loss
that it may sustain under its policy or policies of insurance.”

6Source:http://en.wikipedia.org/wiki/Reinsurance.

7Reinsurance policies can be categorized according to whether they are proportional or non-
proportional with excess of loss contract being the prime example of the later. An insurance company
often purchases several insurance policies of different types from multiple reinsuers and combine these
policies to form multiple layers of insurance protection. Chapter 7 of Thoyts (2010) explains with
detailed examples how different types of reinsurance policies work.
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surance scenario. For ease of illustration, we call the agent seeking insurance coverage,

whether a client of an insurance company or an insurance company itself, the insured,

and the agents offering insurance coverage, whether insurance companies or reinsurance

companies, the insurers.

Our first result implies that the practical constraints on insurance contracts, together

with insurers’ heterogeneity, naturally give rise to optimal claims splitting through a

tranche structure, with different tranches characterized as the regions for which these

constraints are binding for different groups of insurers. The total uncertain loss is di-

vided into several tranches, whose boundaries are the insurer-specific deductibles. Differ-

ent insurers provide partial coverage for losses inside multiple tranches. This prioritized

tranche-sharing structure with multiple deductibles is very intriguing. It arises because

of insurers’ risk aversion and the heterogeneity of their marginal valuations. The in-

sured optimally insures the first tranche above the minimal deductible with the insurer

requiring the lowest marginal premium. Because this insurer is risk averse, the marginal

premium increases with the level of losses. Just as the level of losses reaches the next

deductible level, the first insurer’s marginal premium reaches that of the second-highest

ranked insurer, and it becomes optimal for the insured to buy co-insurance of the subse-

quent tranche from this second-highest ranked insurer. Continuing the process gradually,

as the level of losses increases, insurers with higher marginal premia start participating

in the trade, until the whole range of loss is exhausted.

To efficiently compute the optimal deductible levels and the co-insurance scheme

within each tranche, one needs to compute the endogenously determined minimal marginal

rate of intertemporal substitution (MMRIS) of each agent. Our second result is that the

insurers’ MMRIS can be calculated through the fixed point of an explicitly constructed

contraction mapping. This result is crucial, both for the computation of optimal indem-

nities and for studying the dependence of deductibles on microeconomic characteristics.
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In particular, we use this result to compute numerical examples of the optimal insurance

contracts.

The rest of this paper is organized as follows: In Section 2, we review the relevant

literature. In Section 3, we formulate the optimal insurance design problem and char-

acterize optimal indemnities for a finite number of insurers. In Section 4, we show how

the optimal contracts can be computed using the fixed point of a contraction mapping

and provide several important comparative statics results. In Section 5, we conclude the

paper and point out some future research directions. All proofs are in the Appendix.

2 Related Literature

This paper extends the classical results of Borch (1962) and Wilson (1968) and can there-

fore be applied to a large variety of economic problems such as Walrasian equilibrium

allocations in complete markets under constraints. In particular, since we allow for het-

erogeneous discount factors, our results are related to those of Gollier and Zeckhauser

(2005), who studied the effect of such a heterogeneity on efficient intertemporal allo-

cations.8 We show that the practical constraints on insurance contracts together with

heterogeneity in discount factors may lead to the failure of classical aggregation results.

In the literature on optimal insurance design, the study most closely related to ours

is that of Raviv (1979). He considered the same optimal insurance problem as ours, but

with a single insurer and provided necessary and sufficient conditions for the optimality

of a deductible. Thus, our results on the optimal insurance design can be viewed as

an extension of Raviv (1979) to the case of multiple insurers. In addition, in contrast

to Arrow (1971) and Raviv (1979), we also study the intertemporal aspect of optimal

insurance design. This allows us to express the optimal allocation in terms of the marginal

8See also a recent paper by Kazumori and Wilson (2009) that studied general efficient intertemporal
allocations and extended Wilson (1968) to a dynamic setting.
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rates of intertemporal substitution and to link them to various agents’ characteristics.

Numerous papers have studied the optimality of deductibles in optimal insurance de-

sign in various settings, extending the original model of Raviv (1979). See, for example,

Doherty and Schlesinger (1983), Huberman, Mayers and Smith (1983), Blazenko (1985),

Gollier (1987), Gollier (1996), Gollier and Schlesinger (1995,1996), Gollier (2004), and

Dana and Scarsini (2007). Eeckhoudt, Gollier, and Schlesinger (1991) studied the de-

pendence of the optimal deductible on the distribution of losses. Researchers in all of

these studies assumed that there is a single insurer. The only class of models with multi-

ple insurers that has been extensively studied in the insurance literature corresponds to

risk sharing among insurers through a secondary complete capital market, which is not

always available in many actual situations. See Aase (2014) for an overview and Citanna

and Siconolfi (2015) for more recent development.

Cohen and Einav (2007) and Cutler, Finkelstein and McGarry (2008) found empiri-

cal support for the importance of preferences heterogeneity in insurance design and its

impact on the optimal deductible choice.

3 The Model

The model’s participants consist of an insurance buyer (the insured) and a set of N

insurance sellers (the insurers). The insurance buyer faces the risk of a random loss,

described by a nonnegative bounded random variable X with the largest potential loss

esssupX = X̄. In addition, the insurance buyer is endowed with other (not explicitly

modeled) assets, generating a non-stochastic cash flow (w0 , w1).
9 The insurance buyer

9The assumption of non-stochastic cash flows can be relaxed as long as w1i is independent of X.
Indeed, in this case we can redefine the utilities ũi(c) = E[ui(w1i + c)], and then rewrite the problem
in their terms. The assumption of independence does make sense for many real world settings where
insurance is acquired against specific risks (e.g., a local natural disaster). However, if insurers’ income is
correlated with X, the structure of the risk sharing may change completely. We leave it as an interesting
topic for future research. Our techniques can also be directly extended to allow for hedging and raising
cash using a bond market.
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is an intertemporal expected utility maximizer, with von Neumann-Morgenstern utility

U and a discount factor δ.

To (partially) insure against potential random loss X, the insured designs a basket

Fi(X) , i = 1, · · · , N of insurance contracts (also known as indemnity schedules, or, cov-

erage functions), contingent on the realization of the loss X. Because we are interested

in the risk sharing problem, we assume that there is no asymmetric information and

therefore the true probability distribution of X is known to all market participants.10 A

basket of coverage functions is called admissible if, for all i, Fi(X) ≥ 0 for all values of

X and

F =
N∑

i=1

Fi ≤ X.

That is, we assume that insurance reimbursement is always nonnegative and the total

reimbursements cannot exceed the size of the loss. Given an insurance contracts design

{Fi}N
i=1, the insured retains exposure to the residual loss X − F.

Insurance can be bought from N insurers. Insurer i is endowed with a non-stochastic

income flow (w0i , w1i). Each insurer is an intertemporal expected utility maximizer, with

a von Neumann-Morgenstern utility ui and a discount factor δi. All utility functions are

assumed to be twice continuously differentiable, increasing, and concave on their domain

of definition.

We assume that the insured can choose any basket satisfying the aforementioned

admissibility conditions. The price, paid by the insured to insurer i (i.e., the insur-

ance premium for the coverage function Fi) is denoted by Pi = Pi(Fi). Both insurance

provision and insurance design are potentially costly due to administrative expenses, un-

derwriting cost, broker commission, and so on. These costs are a deadweight loss to both

insured and insurers and we assume the cost is proportional to the insurance premium

10The probability distribution of X is exogenously given and all market participants agree on it. Note
that we actually do not need to require that market participants know the true distribution of X, but
rather that they have the same beliefs about it.
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Pi.
11 Without loss of generality, we assume only the insured incurs cost and denote α

the proportion.12

As is common in the literature on optimal insurance design (see, e.g., Raviv (1979)),

we assume that insurer i is willing to provide insurance coverage for Fi(X) if and only if

the premium Pi satisfies the insurer’s participation constraint

ui(c0i) + δiE[ui(c1i)] ≥ Li, (1)

where

c0i = w0i + Pi , c1i = w1i − Fi(X) (2)

is the insurer’s consumption after entering the contract and

Li = ui(w0i) + δi ui(w1i)

is the insurer’s reservation utility.13 Given the contracts (Pi , Fi) , i = 1 , · · · , N, the

11Arrow (1971, p.204) writes: “It is very striking to observe that among health insurance
policies of insurance companies in 1958, expenses of one sort or another constitute 51.6 per-
cent of total premium income for individual policies, and only 9.5 percent for group policies.”
This supports the assumption that the cost is proportional to the premium size, and suggests
that a proportional between 0.1 and 0.5 may be a reasonable, depending on the precise cir-
cumstances. Insurance broker commission is a fixed percentage of the premium quoted by
an insurer. This also gives direct evidence of our way of modeling insurance cost. Source:
http://www.willis.com/documents/publications/General Publications/How We Get Paid.pdf

12Indeed, if we assume both the insured and the insurers incur proportional cost, with proportion τ
and θ respectively. Then, insurer i is only getting a fraction of (1− θ)Pi, whereas the insured is actually
paying (1 + τ)Pi. Therefore, this model is equivalent to one in which insurance provision costs are zero
(i.e., θ = 0), whereas insurance coverage costs are give by α ≡ 1+τ

1−θ − 1.

13The assumption that the reservation utility coincides with the utility before entering the contract

is made for technical purposes, to avoid discontinuities in the price Pi.
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insured’s consumption is given by:

c0 = w0 − (1 + α)
N∑

i=1

Pi, c1 = w1 − X + F (X) . (3)

The problem of the insured is thus to design an admissible basket (Fi) so as to maximize

his expected utility,

U(c0) + δ E
[
U(c1)

]
,

under the budget constraints (3) and participation constraints (1).

Clearly, the insured will always optimally choose the premium to bind participation

constraints (1) for the insurers, and therefore the insurance premium satisfies

Pi(Fi) = −w0i + vi(Li − δiE[ui(w1i − Fi(X))]) , (4)

where vi is the inverse of the insurer’s utility: vi(ui(x)) = x.

Here, it should be pointed out that the preference parameters (δi , ui) should not

be interpreted directly as the “true” preferences of the insurers. Rather, it is a simple

(and necessarily stylized) way of incorporating intertemporal substitution attitudes and

risk aversion into insurance pricing. For example, if insurer i is risk neutral, we get

Pi(Fi) = δiE[Fi]. This result is the classical actuarial fair value premium rule (see,

e.g., Borch (1962)), and the difference ℓi ≡ δi − 1 is commonly referred to as the fixed

percentage loading. In particular, it is always assumed that ℓi > 0, that is δi > 1. Thus,

in our setting, we will allow for discount factors δi > 1 and assume that δi incorporates

both time discounting and fixed percentage loadings.

Before we characterize the optimal contract structure, it is important to understand

the intuition why purchasing insurance from multiple agents might be desirable. Let

us first examine the case in which all insurers are risk neutral. In that case insurer i
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is willing to accept the premium Pi(Fi) = δiE[Fi(X)] for an indemnity Fi. Therefore,

diversifying between different insurers is never optimal for the insured. The insurer with

the smallest discount factor δmin will always be the one to provide the cheapest insurance,

and the insured will always buy insurance against the total indemnity F =
∑

i Fi from

this insurer because the premium is linear.14 However, when insurers are risk averse, the

situation is completely different because the marginal premium that an insurer requires

for providing insurance against an additional unit of X is monotone increasing with

the level of X. We illustrate this using a conceptual example with two insurers, 1

and 2, as in Figure 1. After the deductible is reached, insurer 1 provides coverage

first because her insurance premium is lower than the insurance premium of insurer

2. This is clearly demonstrated from the right panel which shows the marginal rate of

intertemporal substitution (MRIS) of each agent. However, as the level of X becomes

sufficiently high, insurer 1’s period-1 consumption decreases, pushing up her MRIS which

eventually becomes higher than that of insurer 2. It thus becomes desirable for the insured

to buy (partial) insurance against the high-level portion of X from insurer 2. With Fi

optimally designed, the MRIS of those agents who absorb loss are equalized at any loss

level.

Since the optimal allocation for the insurance design problem is constrained efficient,

it can be solved in two steps: (1) solve the constrained social planner problem with

fixed Pareto weights assigned to all market participants (both insurers and the insured);

(2) find the endogenous Pareto weights from the insurers’ participation constraints. In

order to formulate the social planner’s problem, define FN+1 = X −∑i Fi(X) and let

uN+1(c) = U(c), c0(N+1) = c0, δN+1 = δ, and w1(N+1) = w1. Then, the constrained

14Indeed,
∑

i Pi(Fi) ≥ δmin

∑
i E[Fi] .
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Figure 1: The left panel plots the coverage functions (i.e., F1(X) and F2(X)) and retained loss (i.e.,
X − F1(X) − F2(X)) against the loss (X). The right panel plots the MRIS of each agent against the
loss.

optimal allocation solves the social planner’s problem

max

{
N+1∑

i=1

µi

(
ui(c0i) + δiE[ui(w1i − Fi(X))]

)}
(5)

under budget constraints (2) and (3), and the solution, which depends on µi — the

weight that the social planner assigns to agent i, will be evaluated using the insurers’

participation constraints. The Pareto weights are given by

µi =
1

u′i(c0i)
, i = 1, · · · , N, and µN+1 =

1

(1 + α)U ′(c0)
.

As we will show below, the optimal allocation will be fully determined by the minimal

marginal rates of intertemporal substitution (MMRIS)15 16

Yi =
δi u

′
i(w1i)

u′i(c0i)
, i = 1, · · · , N,

15It is minimal because c1i = w1i − Fi(X) ≤ w1i and therefore δi u′
i(c1i)

u′
i(c0i)

≥ δi u′
i(w1i)

u′
i(c0i)

.

16Note that fixing Yi is equivalent to fixing the insurance premia Pi(Fi) because c0i = w0i + Pi(Fi)
and c0 = w0 − (1 + α)

∑
i Pi(Fi).
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of the insurers and the insured’s MMRIS

Y =
δ U ′(w1)

(1 + α)U ′(c0)
.

Definition 1 For an insurer i, we denote by rank(i) the number that insurer i will have

when all insurers are reordered so that smaller rank(i) implies larger Yi. Furthermore,

we denote by J the number of insurers for which Yi is larger than Y .

Note that the MMRIS of insurer i depends on ci0, which is an endogenous object

determined by the optimal choice of Pi0 by the insured. Consequently, the rank that

insurer i gets assigned is also endogenous and depends on all other parameters of the

model.

Denote qi(x) = (u′i)
−1(x) as the inverse function of insurer i’s marginal utility function

and Q(x) = (U ′)−1(x) as the inverse function of insured’s marginal utility function. We

define insurer-specific deductibles Z1, · · · , ZN below.

Definition 2 For each i = 1, · · · , N , let:

ai ≡ (δµN+1)
−1δiµi =

δ−1 (1 + α)U ′(c0)

δ−1
i u′i(c0i)

. (6)

Fix k ∈ {0, 1, · · · , N,N + 1}.

• For k = 0 we define Z0 = X̄.

• For 1 ≤ k ≤ J, let K = rank−1(k) be the insurer whose rank is equal to k and

Z̃k = w1 −Q(aK u′K(w1K)) +
∑

i : rank(i)≥k+1

(
w1i − qi

(
a−1

i aK u′K(w1K)
))

(7)

and

Zk = min{X̄ , Z̃k}.
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• For k = J + 1 we define:

Z̃J+1 =
∑

i : rank(i)≥J+1

(
w1i − qi

(
U ′(w1) a

−1
i

) )
, (8)

and

ZJ+1 = min{X̄ , Z̃J+1}.

• For J + 2 ≤ k ≤ N, let K = rank−1(k − 1) and

Zk =
∑

i : rank(i)≥k

(
w1i − qi

(
a−1

i aK u′K(w1K)
))
, (9)

and

Zk = min{X̄ , Z̃k}.

• For k = N + 1, we define ZN+1 = 0.

We denote Tranchej ≡ Tranche(Zj+1, Zj) where Tranche(a, b) is defined as

Tranche(a, b) =





0 , x < a

x− a , x ∈ (a, b)

b− a , x > b

,

The definitions above is summarized below:

0 =

TrancheN=Tranche(ZN+1,ZN )︷ ︸︸ ︷
ZN+1 ≤ ZN ≤ · · · ≤ ZJ+1 ≤ ZJ︸ ︷︷ ︸

TrancheJ

≤ · · · ≤
Tranche0︷ ︸︸ ︷

Z1 ≤ Z0 = X̄.

The following theorem is an extension of the seminal Raviv (1979) characterization

of the optimal insurance design for the case of multiple insurers.
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Theorem 1 There always exists a unique optimal allocation {Fi}N
i=1. It is non-zero (i.e.,

F (X) ̸≡ 0) if and only if:

δ U ′(w1 − X̄)

(1 + α)U ′(w0)
> min

i

δi u
′
i(w1i)

u′i(w0i)
. (10)

If (10) holds, then the following is true:

(1) Optimal indemnities Fi and the uninsured part X − F (X) are continuous and

(weakly) monotone increasing in X;

(2) If Yi > Y , then insurer i only participates in Tranchej if j ≤ rank(i) − 1 ;

(3) If Yi ≤ Y , then insurer i only participates in Tranchej if j ≤ rank(i) ;

(4) The insured buys full insurance (i.e., F (X) = X) against the part of X below ZJ+1

and retains a partial exposure to X (i.e., F (X) < X) for X > ZJ+1.

(5) For each Tranchej, there exists a function ξj(X) such that:

δi u
′
i(c1i)

u′i(c0i)
= ξj(X) (11)

for each insurer i participating in Tranchej. Furthermore,

(5-a) If j ≥ J + 1 (full insurance region), then:

ξj(X) <
δ U ′(c1)

(1 + α)U ′(c0)
and

(5-b) If j < J + 1, then:

ξj(X) =
δ U ′(c1)

(1 + α)U ′(c0)
. (12)

First, we note that Equation (11) and Equation (12) uniquely determine the alloca-

tion. Indeed, substituting c1i = w1i−Fi(X) into (11) gives Fi = w1i−qi(ξj(X)u′i(c0i) δ
−1
i ).
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Then, for j ≤ J+1, the function ξj is uniquely determined by the constraint
∑

i Fi(X) =

X, and for j ≥ J, the function ξj is uniquely determined by (12) and the insured’s budget

constraint c1 = w0 − X +
∑

i Fi(X).

Since both the insured’s consumption c1 = w1 − X + F (X) and the insurers’ con-

sumption c1i = w1i − Fi(X) are (weakly) decreasing in X, the MRIS of the insured and

the MRIS of the insurers’ consumption are (weakly) increasing in X.

If the MMRIS of all insurers are larger than that of the insured, then there exists

a strictly positive deductible ZN and the tranche TrancheN is not insured at all. After

reaching the deductible, co-insurance becomes desirable. If there is at least one insurer i

whose MMRIS is smaller than that of the insured, then the insured buys full insurance

coverage against low levels of X (i.e., x ∈ [0, ZJ+1]) from the insurer with rank N and

gradually from insurers with ranks above J . As the level of X hits ZJ+1, co-insurance

becomes desirable and the insured starts to absorb loss.

After co-insurance is triggered, whenever X hits the next deductible level Zi, it

becomes desirable to purchase insurance coverage from the insurer with rank i.

We conclude this section with a result characterizing the nature of risk sharing within

each tranche. Recall that

Ri(x) = − u
′
i(x)

u′′i (x)

is the absolute risk tolerance of agent i. Wilson (1968) showed that the slopes of the

sharing rules in a Pareto-efficient allocation can be characterized in terms of agents’

absolute risk tolerances. The following result is an extension of Wilson’s characterization

for the constrained Pareto-efficient allocation in our model.
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Corollary 1

d

dx
Fi(x) =





0, x ≤ Zrank(i)

Ri(ci)∑
j : rank(j)≥ k+1 Rj(cj)

, x ∈ (Zk+1, Zk), 0 ≤ k ≤ rank(i)− 1

.

The intuition behind the formula for the slope is the same as in Wilson (1968): The

fraction of the aggregate risk agent i ends up taking is proportional to agent i’s risk

tolerance. The set of agents with whom agent i is sharing risks, however, depends on

the level of X and changes from tranche to tranche.

4 Fixed-Point Algorithm

By Theorem 1, the optimal allocation is uniquely determined as soon as we know the

rank of every insurer, as well as the thresholds Zk. By Definitions 1 and 2, both the ranks

and the thresholds are uniquely determined by the N -tuple of numbers (ai).
17 Given the

N -tuple (ai), we denote bi = a−1
i as their reciprocals and denote by b = (bi) the

vector of these reciprocals. We denote by (Zi(b) , i = 0, · · · , N + 1) the corresponding

thresholds and by (Fi(b) , i = 1, · · · , N) the corresponding allocation. By definition (see

(6)), the optimal allocation must satisfy:

bi =
δ−1
i u′i(c0i)

(1 + α) δ−1 U ′(c0)
=

δ−1
i u′i (w0i + Pi(Fi(b)))

(1 + α) δ−1 U ′
(
w0 − (1 + α)

∑
j Pj(Fj(b))

) (13)

for all i = 1, · · · , N. This is a highly non-linear system of equations for vector b. It is by

no means clear how to solve it analytically or even numerically, nor is it clear how the

solution would depend on the microeconomic characteristics of the model.

In this section we prove that this N -tuple is the unique fixed point of a contraction

17Note that Yi = δaiu
′
i(w1i)

(1+α)U ′(c0)
= aiY

u′
i(w1i)

U ′(w1)
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mapping defined on an explicitly given compact set and can therefore be easily calculated

by successive iterations.

We use the common notation b−i to denote the vector of all coordinates of b except

for bi. Let

Pmax
i = −w0i + vi (Li − δiE[ui(w1i −X)])

be the premium that the insurer i is asking for providing full insurance against X,18

Cmax =
(
(1 + α) δ−1 U ′ (w0)

)−1
, Cmin =

(
(1 + α) δ−1 U ′

(
w0 − (1 + α)

∑

i

Pmax
i

))−1

and

βmin
i = log

(
Cmin δ

−1
i u′i (w0i + Pmax

i ))
)
, βmax

i = log
(
Cmax δ

−1
i u′i(w0i)

)
.

We denote Ω = ×i [β
min
i , βmax

i ] and let ∥x∥l∞ = maxi |xi| be the l∞-norm of a finite

sequence, equal to the maximal absolute value of its elements. The following lemma is

the main technical result of this section.

Lemma 1 (contraction lemma) For each i = 1, · · · , N, there exists a unique, piece-

wise continuously differentiable function Hi = Hi(C, b−i) solving

Hi(C, b−i) = δ−1
i C u′i

(
w0i + Pi

(
Fi

(
X,
(
Hi(C, b−i), b−i

))) )
. (14)

For any C > 0, the mapping GC defined via (GC)i(d) = logHi(C, e
d−i) maps the

compact set Ω into itself and is a strict contraction with respect to ∥ · ∥l∞ . Consequently,

18For simplicity, we always assume that the price Pmax
i is well defined for any insurer i. This as-

sumption is only necessary when dealing with utilities that are either defined on a half-line or are

bounded from above. It can be relaxed at the cost of more technicalities, and we omit it for the reader’s

convenience.
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there exists a unique fixed point d∗(C) ∈ Ω of this map, solving d∗(C) = GC(d∗(C)) .

For any d0 ∈ Ω, we have d∗(C) = limn→∞ (GC)n(d0).

The result of Lemma 1 is quite surprising because it holds under absolutely no re-

strictions on model parameters. In particular, we do not need to impose any smallness

conditions typically used in economic applications of the contraction mapping theorem.

With the fixed point mapping d∗(C) defined, we are ready to state the main result

of this section.

Theorem 2 Let b∗(C∗) = ed
∗(C∗) where C∗ ∈ (Cmin , Cmax) uniquely solves

C =

(
(1 + α)δ−1U ′

(
w0 − (1 + α)

∑

i

(
qi
(
ed∗i (C)δiC

−1
)
− w0i

)))−1

. (15)

The optimal allocation is given by (Fi)(b
∗(C∗)).

Theorem 2 provides a directly implementable algorithm for calculating the optimal

allocation: Vector d(C) can be calculated by successive iterations using Lemma 1, and

then C∗ can be found using any standard numerical procedure for solving (15). Figure

4 provides the flow chart for the implementation of the fixed-point algorithm.

The characterization of the optimal allocation provided by Theorem 2 is perfectly

suited for studying comparative statics. We need the following lemma.

Lemma 2 (comparative statics lemma) If the right-hand sides of (14) and (15) are

monotone increasing in some parameter, then so are C∗ and d∗(C∗).

By (7)-(9) and Theorem 1, all deductibles and other characteristics of the optimal

indemnities can be expressed in terms of ai = e−di , thus we can use Lemma 2 to study

the dependence of the optimal allocation on various model parameters.
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..Input: loss distribution, (δ,A,w0, w1),
{(δi, Ai, w0i, w1i), i = 1, · · · , N}

.

Compute {(βmin
i , βmax

i )Ni=1},Cmin, Cmax

.

Guess c ∈ [Cmin, Cmax]

.

Set d0 = (
βmin
1 +βmax

1

2 , · · · , βmin
N +βmax

N

2 ), j = 0

.

Set bj = (ed
j
1 , · · · , ed

j
N )

.

Solve Hi(c,b
j
−i) for i = 1, · · · , N

.

dj+1
i = log(Hi(c,b

j
−i)) for i = 1, · · · , N

.

∥∥dj+1 − dj
∥∥ ≈ 0 ?

.

j ++

.

d∗ = dj+1. Equation 15 satisfied ?

.

Output c, d, and the optimal contracts

.

yes

.

no

.

yes

.

no

Figure 2: Flow chart of the fixed point algorithm

Define

Zfull coverage ≡ max{x : F (x) = x}, Zdeductible ≡ max{x : F (x) = 0}

By Theorem 1, Zfull coverage is positive if and only if mini Yi < Y , in which case Zfull coverage =

ZJ+1, and Zdeductible is positive if and only if mini Yi > Y , in which case Zdeductible = ZN .
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We refer to the insurance tranches that are fully insured as senior tranches and let

#{senior} = #{i : Yi < Y}

be the number of insurers participating in the tranches that are fully insured. By con-

struction, #{senior} is also the number of senior insurance tranches. Finally, for each

insurer i we define:

index(i) =





1 , if rank(i) > J

0 , if rank(i) ≤ J

.

That is, an insurer’s index is one if the insurer participates in the tranches that are fully

insured and zero otherwise.

Definition 3 We say that a change in the parameters of the model leads to more insur-

ance coverage if it leads to an increase (in the weak sense) in #{senior}, Zfull coverage,

and index(i) for each i, and to a decrease (in the weak sense) in Zdeductible.

That is, more insurance implies that a larger part of X is fully insured and more insurers

participate in the fully insured senior tranches.

The next result describes the effect of a first-order stochastic dominant (FOSD) shift

in the distribution of X, as well as the effect of changes in the insured’s initial wealth

and discount factor on the optimal allocation.

Corollary 2 A decrease in the distribution of X in the FOSD sense, an increase in w0,

or an increase in δ lead to more insurance. In particular, there exists a threshold value

for δ such that Zdeductible is positive if and only if δ is below this threshold,19 and similarly

for w0.

19Here, we allow δ to vary and keep the rest of the parameters fixed.
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The fact that larger initial endowment and larger discount factor lead to more in-

surance is very intuitive: Indeed, if δ is large, future shocks are more important for the

insured, forcing the insured to acquire more insurance. Similarly, a larger initial capital

w0 leads to a smaller marginal loss from buying insurance at time zero, again making

it optimal to buy more insurance. By contrast, the fact that larger losses20 lead to less

insurance is quite surprising. The reason is that, with larger risk, insurance gets more

expensive on average. Therefore, it is optimal for the insured to increase exposure to

low levels of X (achieved by raising the deductible level) and simultaneously increase

insurance coverage for higher levels on X, reducing the probability of large losses.

In general, the ranks that the insured assigns to the insurers may depend in a non-

trivial way on insurers’ preferences and endowments. It turns out, however, that when

all insurers have exponential utility functions, ranks can be characterized explicitly.

Corollary 3 Suppose that all agents have exponential utility functions. Then, the ranks

of the insurers follow the order of their pre-trade MRIS. That is rank(i) > rank(j) if and

only if

δi u
′
i(w1i)

u′i(w0i)
<

δj u
′
j(w1j)

u′j(w0j)
.

Suppose for simplicity that the insurers’ endowments satisfy w0i = w1i. In this case,

Corollary 3 implies that the rank of an insurer is determined solely by his discount

factor δi and is independent of his risk aversion Ai. The reason is that, when an insurer’s

risk aversion is constant, the risk premium per unit of risk that the insurer is charging

is independent of the level of X. For any insurer i, the insured optimally chooses the

fraction of the total coverage F (X) that insurer i covers to be proportional to his risk

tolerance Ai, thereby equalizing marginal risk premia across the insurers. Therefore, only

20In the sense of first order stochastic dominance.
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discount factors δi matter for ranking. In particular, if several insurers have identical pre-

trade MRIS, the tranches in which they participate will be the same, and their coverage

functions will differ only by constant multiples. This situation leads to the following

interesting aggregation result. Denote by A−1
I the sum of insurers’ risk tolerances:

A−1
I =

N∑

j=1

A−1
j . (16)

The following is true:

Corollary 4 Suppose that w0i = w1i
21 for all i, and δi = δI is independent of i. Then,

the risk-sharing is linear:

Fi(x) =
A−1

i

A−1
I

F (x)

and F (x) coincides with the optimal indemnity schedule that the insured would choose

with a single representative insurer with risk aversion AI .

The result of Corollary 4 has a natural interpretation in the framework of the theory

of syndicates developed by Wilson (1968). Namely, Corollary 4 implies that insurers with

identical pre-trade MRIS effectively form a syndicate with the group (syndicate) utility

given by that of the representative insurer. It is interesting to note that, without the

practical constraints on insurance contracts, the syndicate result and the CARA linear

risk sharing rule of Corollary 4 always hold,22 independent of the MRIS of the agents.

However, this aggregation result does not generally hold.

21Due to translation invariance of CARA preferences, optimal allocation depends only on the differ-

ences w1i − w0i and w1 − w0 of endowments at times zero and one.

22In fact, the risk-sharing rule will generally be affine linear: indemnities may also differ by additive
constants).
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5 Conclusions

In the present study, we extended Raviv’s (1979) seminal characterization of the optimal

insurance design to the case of an insured facing multiple insurers with heterogeneous risk

attitudes, discount factors, and endowments, and without asymmetric information. We

showed that optimal indemnities can be characterized by insurer-specific deductibles and

a hierarchical structure: The insured optimally assigns ranks to insurers depending on

their MMRIS, and based on these ranks, the insured determines the optimal deductible

level for each insurer. The insured then either fully insures all risks below an endogenous

threshold with several (≥ 1) insurers having the highest ranks, or chooses a strictly pos-

itive minimal deductible. Afterwards, the insured gradually insures subsequent tranches

with insurers of lower ranks, so that every subsequent tranche is co-insured by multiple

insurers in a Pareto-efficient way.

Our model could also be viewed as surplus extraction through price discrimination

when the insured has complete information. It would be interesting to extend our model

to the case in which the insured has incomplete information about insurer types, as in

the model of Cremer and McLean (1985). It would also be interesting to extend our

model to a dynamic, multi-period setting and allow for asymmetric information.
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Appendix

A Kuhn-Tucker First-Order Conditions for Multiple Insurers

By strict concavity, an allocation is optimal if and only if it satisfies the first-order

Kuhn-Tucker conditions. They are:

µN+1δU
′(w1 −X + F (X)

)
− µiδiu

′
i(w1i − Fi) = 0 (17)

if the constraints Fi ≥ 0 and
∑

j Fj ≤ X are not binding, and

µN+1δU
′(w1 −X + F (X)

)
− µiδiu

′
i(w1i − Fi) < 0 (18)

if the constraint Fi ≥ 0 is binding but the constraint
∑

j Fj ≤ X is not binding.

Finally, if the constraint
∑

j Fj ≤ X is binding, there will be a Lagrange multiplier

ν(X) for this constraint, and the first-order condition will be

µN+1δU
′(w1 −X + F (X)

)
− µiδiu

′
i(w1i − Fi) = ν(X) > 0 (19)

if the constraint Fi ≥ 0 is not binding, and

µN+1δU
′(w1 −X + F (X)

)
− µiδiu

′
i(w1i − Fi) < ν(X) (20)

if the constraint Fi ≥ 0 is binding.

Using (ai) defined in (6), we can rewrite the conditions as the following.

ai u
′
i(w1i − Fi(X)) = U ′(w1 −X + F (X)) (21)
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when none of the constraints is binding, and

ai u
′
i(w1i − Fi(X)) > U ′(w1 −X + F (X)) (22)

when the constraint Fi ≥ 0 is binding but the constraint
∑

j Fj ≤ X is not.

When the constraint
∑

j Fj(X) ≤ X is binding, we have
∑

j Fj(X) = X. If we set:

λ(X) ≡ −δ−1 ν(X) + U ′(w1),

then, (19) and (20) take the form

ai u
′
i(w1i − Fi(X)) = λ(X) < U ′(w1) (23)

when Fi ≥ 0 is not binding and

ai u
′
i(w1i − Fi(X)) > λ(X) (24)

when it is binding.

For ease of illustration, we from now on reorder the insurers in the increasing order

of their rank. In other words, insurer i means from now on the insurer whose rank is

equal to i.

By the uniqueness of optimal allocation, it suffices to show that the allocation, de-

scribed in Theorem 1, indeed satisfies the first-order conditions (21) through (24). This

is done in subsequent lemmas.

Lemma 3 Let k ≥ J + 1. Then, for all X ∈ [Zk+1, Zk] (= Tranchek) , the constraint
∑

j Fj(X) ≤ X is binding and the constraint Fj(x) ≥ 0 is binding for all j < k. The
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optimal allocation for X ∈ Tranchek is uniquely determined via

Fj(X) =





w1j − qj(λk(X) a−1
j ) , j ≥ k

0 , j < k

. (25)

Here, λk(X) is the unique solution to

X =
∑

j≥ k

(
w1j − qj(λk(X) a−1

j )
)
. (26)

The slope of Fj(X), j ≥ k satisfies

d

dx
Fj(X) =

Rj(c1j)∑
i≥ k Ri(c1i)

.

Proof. By construction, the conjectured optimal allocation satisfies

∑

j

Fj(X) = X

for all X ≤ ZJ+1. Thus, we need to verify that (23) and (24) hold in this case. Here,

the connection between ξk(X) from Theorem 1 and λk(X) is given by:

ξk(X) =
λk(X) δ

(1 + α)U ′(c0)
.

By (25) and (26), Fi(X) satisfies

ai u
′
i(w1i − Fi(X)) = λk(X) and

∑

i

Fi(X) = X,
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and it remains to check that equation (26) has a solution λk(X) such that

λk(X) ≤ U ′(w1) (27)

(constraint
∑

j Fj ≤ X is binding) and

Fj = w1j − qj(λk(X) a−1
j ) ≥ 0 for all j ≥ k (28)

(constraint Fj ≥ 0 is not binding for j ≥ k) and (24) holds, that is,

aj u
′
j(w1j) ≥ λk(X) (29)

for all j < k (constraint Fj ≥ 0 is binding for j < k). First, let k > J + 1. Recall now

that

Z̃k+1 =
N∑

i=k+1

(qi(a
−1
i ak u

′
k(w1 k)) − w1i) =

N∑

i=k

(qi(a
−1
i ak u

′
k(w1 k))− w1i),

and therefore X ∈ [Z̃k+1, Z̃k] if and only if

N∑

i=k

(w1i − qi(a
−1
i ak u

′
k(w1 k)) ) ≤ X ≤

N∑

i=k

(w1i − qi(a
−1
i ak−1 u

′
k−1(w1 k−1))) .

Recalling that

X =
N∑

i = k

(
w1i − qi

(
a−1

i λk(X)
) )
, (30)

we get that

λk(X) ∈ [ak u
′
k(w1 k) , ak−1 u

′
k−1(w1 k−1)]. (31)
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If k = J + 1, the same argument implies that

λJ+1(X) ∈ [aJ+1 u
′
J+1(w1 J+1) , U

′(w1)] . (32)

Recall that the insurers are ordered in such a way that the sequence

Yi =
δi u

′
i(w1i)

u′i(c0i)
=

ai u
′
i(w1i) δ

U ′(c0)

is monotone decreasing in i, and the inequality

Yi < Y

only holds true if i ≥ J + 1. Consequently,

aN u
′
N(w1N) ≤ · · · ≤ aJ+1 u

′
J+1(w1 J+1) ≤ U ′(w1) ≤ aJ u

′
J(w1J) ≤ · · · ≤ a1 u

′
1(w11) .

(33)

Inequalities (31), (32), and (33) immediately yield (27) and (29). Finally, for j ≥ k,

aj u
′
j(w1j) ≤ ak u

′
k(w1k) ⇔ a−1

j ≥ u′j(w1j) (ak u
′
k(w1k))

−1

and, using that λk(X) ≥ ak u
′
k(w1k) , we get

Fj = w1j − qj(λk(X) a−1
j ) ≥ w1j − qj(ak u

′
k(w1k)u

′
j(w1j) (ak u

′
k(w1k))

−1) = 0,

and (28) follows.

It remains to prove the identity for the derivative. Differentiating (25), we get

F ′
j(X) = −(u′′j (c1j))

−1 a−1
j λ′k(X),
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and, differentiating (26), we get

λ′k(X) = − 1∑
i≥ k q

′
i a

−1
i

.

Differentiating u′i(q
′
i(z)) = z at z = a−1

i λk(X), we get

(u′′i (c1i))
−1 = q′i(a

−1
i λk(X)) .

Thus,

F ′
j(X) =

(u′′j (c1j))
−1 a−1

j∑
i≥k q

′
i a

−1
i

=
(u′′j (c1j))

−1 a−1
j∑

i≥k (u′′i (c1i))−1 a−1
i

=
(u′′j (c1j))

−1 λk(X) a−1
j∑

i≥k (u′′i (c1i))−1 λk(X) a−1
i

=
(u′′j (c1j))

−1 u′j(c1j)∑
i≥k (u′′i (c1i))−1 u′i(c1i)

,

(34)

which is what had to be proved.

It remains to cover the case when the constraint
∑

i Fi(X) ≤ X is not binding. This

is done in the following lemma.

Lemma 4 Let k ≤ J. Then, for all X ∈ [Zk+1, Zk] (= Tranchek) , the constraint
∑

j Fj(X) ≤ X is not binding, and the constraint Fj(x) ≥ 0 is binding for all j ≤ k.

The optimal allocation for X ∈ Tranchek is uniquely determined via

Fj(X) =





w1j − qj(U
′(w1 −X + F (X)) a−1

j ) , j > k

0 , j ≤ k .

(35)

Here, F (X) is the unique solution to:

F (X) −
∑

j≥ k+1

(
w1j − qj(U

′(w1 −X + F (X)) a−1
j )
)

= 0. (36)
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The slope of Fj(X), j ≥ k + 1 satisfies

d

dx
Fj(X) =

Rj(c1j)

R(c1) +
∑

i>k Ri(c1i)
.

Proof. We need to show that the allocation (35) and (36) satisfy the Kuhn-Tucker

conditions:

ai u
′
i(w1i − Fi) = U ′(w1 −X + F (X)),

with Fi ≥ 0 for all i > k and

ai u
′
i(w1i) − U ′(w1 −X + F (X)) > 0

for all i ≤ k.

For simplicity let k < J. By assumption, X ∈ [Z̃k+1 , Z̃k]; that is,

w1 −Q(ak u
′
k(w1k)) +

∑

i :≥k+1

(
w1i − qi

(
a−1

i ak u
′
k(w1k)

))

> X > w1 −Q(ak+1 u
′
k+1(w1 k+1)) +

∑

i :≥k+1

(
w1i − qi

(
a−1

i ak+1 u
′
k+1(w1k)

))
. (37)

We show that the unique solution F to (36) satisfies

X − (w1 −Q(ak u
′
k(w1 k))) ≤ F ≤ X − (w1 −Q(ak+1 u

′
k+1(w1 k+1))). (38)
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Indeed,

X − (w1 − Q(ak+1 u
′
k+1(w1 k+1))

−
∑

j≥ k+1

(
w1j − qj(U

′(w1 −X + (X − w1 + Q(ak+1 u
′
k+1(w1 k+1)))) a

−1
j )
)

= X − Zk+1 ≥ 0, (39)

and, similarly,

X − (w1 −Q(ak u
′
k(w1 k)))

−
∑

j≥ k+1

(
w1j − qj(U

′(w1 −X + (X − w1 + Q(ak u
′
k(w1 k)))) a

−1
j )
)

= X − Zk ≤ 0. (40)

Consequently, by continuity and monotonicity, the right-hand side of (36) crosses zero

at a single point F , satisfying (38). Hence, for j ≥ k + 1, by (33), we get:

Fj(X) = w1j − qj(U
′(w1 −X + F (X)) a−1

j )

≥ w1j − qj(ak+1 u
′
k+1(w1 k+1) a

−1
j ) ≥ w1j − qj(aj u

′
j(w1 j) a

−1
j ) = 0. (41)

It remains to be shown that the constraint Fj(X) ≥ 0 is binding for j ≤ k. By (38) and

(33),

aj u
′
j(w1j) − U ′(w1 −X + F (X)) ≥ aj u

′
j(w1j) − ak u

′
k(w1k) ≥ 0,

and the claim follows.

To complete the proof of Theorem 1, we only need to show that there is no trade

if and only if (10) is violated. That is, the allocation Fi = 0, i = 1, · · · , N satisfies the
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first-order Kuhn-Tucker conditions if and only if (10) does not hold. Since in this case

Yi and Y coincide with the pre-trade MRIS, we need to show that

δi u
′
i(w1i)

u′i(w0i)
≥ δ U ′(w1 − X)

(1 + α)U ′(w0)

for all i = 1 , · · · , N and all X ∈ [0, X̄]. Since U ′(c) is monotone decreasing in c, this

holds if and only if

min
i

δi u
′
i(w1i)

u′i(w0i)
≥ δ U ′(w1 − X̄)

(1 + α)U ′(w0)
,

and the claim follows.

B Contraction Mapping

For each i = 1 , · · · , N , let: Ω−i ≡ ×j ̸=i [β
min
i , βmax

i ] .

To prove the contraction lemma, we need a few more technical results.

Lemma 5 For any X inside a tranche, Fi is a piecewise C1-function of b. For all j ̸= i,

Fi satisfies

∂Fi

∂bi
≥ 0,

∂Fi

∂bj
≤ 0, bi

∂Fi

∂bi
≥ −

∑

j ̸=i

bj
∂Fi

∂bj
.

Proof. Suppose first that we are in the regime F (X) < X. Then, by (35),

Fi(X) = w1i − qi(bi U
′(w1 −X + F (X)))

and

F (X) = F (b , x)

solves

F (X) −
∑

j

(w1j − qj(bj U
′(w1 −X + F (X)))) = 0 .
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Here, the summation is only over those insurers j that participate in the tranche. Thus,

∂F

∂bj
= − q′j(bj U

′(c1))U ′(c1)

1 +
∑

k q
′
k(bk U

′(c1)) bk U ′′(c1)
;

and, hence, for j ̸= i,

∂Fi

∂bj
= q′i(bi U

′(c1)) bi U
′′(c1)

q′j(bj U
′(c1))U ′(c1)

1 +
∑

k q
′
k(bk U

′(c1)) bk U ′′(c1)
< 0

if insurer j participates in the tranche, and the derivative is zero otherwise. Consequently,

∑

j ̸=i

bj
∂Fi

∂bj
= (q′i(bi U

′(c1))) bi U
′(c1)

∑
k ̸=i q

′
k(bk U

′(c1)) bk U ′′(c1)

1 +
∑

k q
′
k(bk U

′(c1)) bk U ′′(c1)

and

∂Fi

∂bi
= −q′i(bi U ′(c1))U

′(c1) + q′i(bi U
′(c1)) bi U

′′(c1)
q′i(bi U

′(c1))U ′(c1)

1 +
∑

k q
′
k(bk U

′(c1)) bk U ′′(c1)

= −q′i(bi U ′(c1))U
′(c1)

(
1 − q′i(bi U

′(c1)) bi U ′′(c1)

1 +
∑

k q
′
k(bk U

′(c1)) bk U ′′(c1)

)

= −q′i(bi U ′(c1))U
′(c1)

1 +
∑

k ̸=i q
′
k(bk U

′(c1)) bk U ′′(c1)

1 +
∑

k q
′
k(bk U

′(c1)) bk U ′′(c1)
.

Therefore,

bi
∂Fi

∂bi
> −

∑

j ̸=i

bj
∂Fi

∂bj
.

Suppose now that the constraint F (X) ≤ X is binding, so that F (X) = X. Then, by

(25),

Fi(X) = w1i − qi(λ(X) bi),

with λ(X) solving

X −
∑

i

(w1i − qi(λ(X) bi)) = 0
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where the summation is only over insurers i participating in the tranche. Differentiating,

we get

∂λ(X)

∂bj
=

−q′j(bj λ(X))λ(X)∑
k q

′
k(bk λ(X)) bk

and, hence,

∂Fi

∂bj
= bi q

′
i(λ(X) bi)

q′j(bj λ(X))λ(X)∑
k q

′
k(bk λ(X)) bk

< 0

if the insurer j ̸= i participates in the tranche and the derivative is zero otherwise.

Similarly,

∂Fi

∂bi
= −q′i(λ(X) bi)λ(X) + bi q

′
i(λ(X) bi)

q′i(bi λ(X))λ(X)∑
k q

′
k(bk λ(X)) bk

= −q′i(λ(X) bi)λ(X)

∑
k ̸=i q

′
k(bk λ(X)) bk∑

k q
′
k(bk λ(X)) bk

> 0 . (42)

if Fi(X) ̸= 0 (that is, if insurer i participates in the tranche), and is zero otherwise. A

direct calculation implies that

−bi
∂Fi

∂bi
=
∑

j ̸=i

bj
∂Fi

∂bj
.

Lemma 6 Hi(C,b) is monotone increasing in C ∈ [Cmin , Cmax] and b−i ∈ eΩ
−i

and

takes values in [eβmin
i , eβmax

i ].23 Furthermore, there exists an η < 1 such that

∑

j ̸=i

bj
∂Hi

∂bj
≤ η Hi

for all b−i ∈ Ω−i except for points in a finite union of hyperplanes, for which the deriva-

tives do not exist.

23Note that Hi(C, b−i)/C is decreasing in C because Hi is increasing in C.
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Proof of Lemma 6. Consider the function:

ψi(y , b−i , C) ≡ δ−1
i C u′i (vi (Li − δiE[ui(w1i − Fi(X, (y, b−i)))])) .

Then, the defining equation for Hi can be rewritten as

Hi = ψi(Hi , b−i , C) .

To complete the proof of the first part of the lemma, it remains to be shown that (1) ψi is

monotone decreasing in y; (2) for each fixed C ∈ [Cmin , Cmax] and each fixed b−i, it maps

the whole R into the compact interval [eβmin
i , eβmax

i ]; and (3) it is monotone increasing in

b−i , C and is piecewise C1 with respect to all variables.

By definition, the form of the function Fi depends on the relative ranking of insurers,

which, in turn, is determined by the ordering of the numbers bi/u
′
i(w1i) (see (33)). For

each permutation π of {1, · · · , N}, define the corresponding “sector”: the subset of Rn
+

such that, for all b in this sector, the sequence bπ(i)/u
′
π(i)(w1π(i)) is monotone increasing

in i. The borders of these sectors belong to hyperplanes for which biu
′
i(w1i) = bju

′
j(w1j)

for some i ̸= j.

Clearly, since the function ψi is continuous, it suffices to prove the required result for

each fixed sector.24

As above, by abuse of notation, we reorder the insurers for each fixed sector so that

(33) holds, and thus insurer i will mean the insurer whose rank is equal to i.

First, the fact that the image of the function ψi is inside the interval [eβmin
i , eβmax

i ]

24Here, one should in general take additional care of the situation when Hi hits the boundaries of

the sectors for an open set of parameters. Clearly, this cannot happen for generic values of parameters

(discount factors and endowments), and we therefore ignore it. The proof can be easily modified to

cover this non-generic situation.
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follows directly from the definition and the inequality:

0 ≤ Fi(X) ≤ X.

Note that the function Fi(x) is continuous and is a smooth function of all bi as long

as b varies inside a fixed sector. Therefore,

∂

∂bk
E[ui(w1i − Fi(b, X))]

=
∂

∂bk

∑

j

∫ Zj

Zj+1

ui(w1i − Fi(b, x))p(x)dx

= −
∑

j

∫ Zj

Zj+1

u′i(w1i − Fi(b, x))

(
∂

∂bk
Fi(b, x)

)
p(x)dx

= −E
[
u′i(w1i − Fi(b, X))

(
∂

∂bk
Fi(b, X)

)]
.

(43)

The derivatives of Zi(bj) do not appear on the right-hand side of (43) because the

boundary terms cancel.

Denote

c̃i0 = vi (Li − δiE[ui(w1i + Fi(X, (Hi(C, b−i), b−i)))]) .

Taking partial derivative with respect to bj on

Hi(C, b−i) = δ−1
i C u′i (vi (Li − δiE[ui(w1i − Fi(X, (y, b−i)))])) .

yields

∂Hi

∂bj
= δ−1

i Cu′′i (c̃0i)
1

u′i(c̃0i)
· (−δi)E

[
u′i(w1i − Fi)

(
− ∂Fi

∂bj
− ∂Fi

∂bi

∂Hi

∂bj

)]

= CAi(c̃0i)E

[
u′i(w1i − Fi)

(
− ∂Fi

∂bj
− ∂Fi

∂bi

∂Hi

∂bj

)]
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where we have used the identity v′i(x) = (u′i(v(x)))
−1 and Ai(x) = −u′′i (x)/u′i(x). Hence,

∂Hi

∂bj
=

C Ai(c̃i0)E
[
u′i(w1i − Fi(X))

(
− ∂

∂bj
Fi(X)

)]

1 + C Ai(c̃i0)E
[
u′i(w1i − Fi(X))

(
∂

∂bi
Fi(X)

)]

Lemma 5 implies that

∑

j ̸=i

bj
∂Hi

∂bj
=

C Ai(c̃i0)E
[
u′i(w1i − Fi(X))

∑
j bj

(
− ∂

∂bj
Fi(X)

)]

1 + C Ai(c̃i0)E
[
u′i(w1i − Fi(X))

(
∂

∂bi
Fi(X)

)]

≤
C Ai(c̃i0)E

[
u′i(w1i − Fi(X)) bi

(
∂

∂bi
Fi(X)

)]

1 + C Ai(c̃i0)E
[
u′i(w1i − Fi(X))

(
∂

∂bi
Fi(X)

)] ≤ η bi = η Hi

(44)

where we have defined

η = max
eΩ

C Ai(c̃i0)E
[
u′i(w1i − Fi(X))

(
∂

∂bi
Fi(X)

)]

1 + C Ai(c̃i0)E
[
u′i(w1i − Fi(X))

(
∂

∂bi
Fi(X)

)] .

It follows from the proof of Lemma 5 that the derivative ∂
∂bi
Fi(X) stays uniformly

bounded when b varies on the compact subset eΩ and therefore η < 1. The proof

is complete.

Lemma 7 Consider a map G = (Gi) : Ω → Ω with coordinate maps Gi(b1, · · · , bN),

such that the following is true:

• The map G is continuous;

• There exists a finite set S of smooth hyper-surfaces such that G is C1 on Ω \ S;

and
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• There exists a constant η < 1 such that

∑

j

∣∣∣∣
∂Gi

∂dj

∣∣∣∣ ≤ η

for all i and all d = (dj) ∈ Ω \ S.

Then, the map G is a contraction in the l∞ norm ∥d∥l∞ = maxi |di|, so that

∥G(d1)−G(d2)∥l∞ ≤ η ∥d1 − d2∥l∞ .

In particular, G has a unique fixed point d∗ that satisfies

d∗ = lim
n→∞

Gn(d0)

for any d0 ∈ Ω.

Proof of Lemma 7. With continuity, we may assume that the two points d1 and

d2 are in a generic position, so that the segment,

d(t) = d1 + t (d2 − d1) , t ∈ [0, 1]

connecting d1 and d2, intersects the hyperplanes from S for a finite set

t1 < t2 < · · · < tm+1.

Then,

|Gi(d
1)−Gi(d

2)| =

∣∣∣∣∣
m∑

k=1

∫ tk+1

tk

∑

j

∂Gi

∂dj

(d(t)) (d2
j − d1

j) dt

∣∣∣∣∣

≤ max
j
|d2

j − d1
j | η = η ∥d1 − d2∥l∞ .

(45)
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The last claim follows from the contraction mapping theorem (see Lucas and Stockey

(1989), Theorem 3.2 on p. 50).

Proof of Lemma 1. Let bj = edj . By Lemma 6,

∑

j

∂(GC)i

∂dj

=
∑

j ̸=i

(Hi)
−1 ∂Hi

∂bj
bj ≤ η,

and the claim follows from Lemma 7.

Proof of Theorem 2. By the definition of Hi and d∗, we have

qi
(
ed∗i (C)δiC

−1
)
−w0i = qi

(
Hi(C, e

d∗−i)δiC
−1
)
−w0i = Pi

(
Fi

(
X,
(
Hi(C, b

∗
−i), b

∗
−i

)))
. (46)

Using the definition of Cmin and Cmax, and the fact that

0 ≤ Pi

(
Fi

(
X,
(
Hi(C, b

∗
−i), b

∗
−i

)))
≤ Pmax

i ,

it follows from continuity that there exists a solution to equation 15 which we copy below

for convenience:

C =

(
(1 + α)δ−1U ′

(
w0 − (1 + α)

∑

i

(
qi
(
ed∗i (C)δiC

−1
)
− w0i

)))−1

.

The uniqueness of C∗ follows from monotonicity of Hi(C, b−i)/C.

To show {Fi(b
∗(C∗))}i=N

i=1 is optimal, we only need to show b∗ satisfies equation 13,

that is,

b∗i =
δ−1
i u′i (w0i + Pi(Fi(b

∗)))

(1 + α) δ−1 U ′
(
w0 − (1 + α)

∑
j Pj(Fj(b∗))

) .

Because C∗ solves equation 15, by equation 46, the above condition is equivalent to

b∗i = δ−1
i C∗u′i (w0i + Pi(Fi(b

∗))) ,
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which is true by the definition of the function Hi(C, b−i).

Proof of Lemma 2. Pick a parameter ζ and suppose that

GC(d, ζ1) ≥ GC(d, ζ2)

for all d and, for any fixed d = (di), the expression

(
(1 + α) δ−1 U ′

(
w0 − (1 + α)

∑

i

(
qi(e

di δiC
−1)− w0i

)
))−1

is larger for ζ1 than for ζ2. Pick a point d0 ∈ Ω. Then, since GC is monotone increasing

in d, we get:

G2
C(d0, ζ1) = GC(GC(d0, ζ1), ζ1) ≥ GC(GC(d0, ζ2), ζ1)

≥ GC(GC(d0, ζ2), ζ2) = G2
C(d0, ζ2). (47)

Repeating the same argument, we get:

Gn
C(d0, ζ1) ≥ Gn

C(d0, ζ2)

for any n ∈ N. Sending n→∞ and using Lemma 1 and Lemma 7, we get:

d∗(C, ζ1) ≥ d∗(C, ζ2)

for any C. This immediately yields that C∗(ζ1) ≥ C∗(ζ2), and therefore

d∗(C∗(ζ1) , ζ1) ≥ d∗(C∗(ζ2) , ζ1) ≥ d∗(C∗(ζ2) , ζ2)

and the claim follows.
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Lemma 8 Suppose that an increase in a parameter ζ leads to a increase in the optimal

d∗. Then, this also leads to more insurance.

Proof of Lemma 8. An increase in di , i = 1 , · · · , N is equivalent to a decrease

in all coordinates of a = (ai) = (e−di) . Consequently, the number of the coordinates

of a for which ai u
′
i(w1i) < U ′(w1) increases. This is precisely #{senior}. Similarly, by

definition, Zfull coverage = ZJ+1 is monotone decreasing in all ai (see (8)), and Zdeductible is

monotone increasing in all coordinates of a. Finally, the participation index is equal to

1 if ai u
′
i(w1i) < U ′(w1) and therefore stays equal to 1 if ai decreases.

Proof of Corollary 2. By the definition of FOSD dominance, an increase in the

distribution of X in the FOSD sense leads to a decrease of

E[ui(w1i − Fi(b, X))] ,

for all i = 1 , · · · , N and, consequently, to a decrease in the right-hand side of (14) for

any fixed a. Therefore, the solution Hi to (14) also decreases in response to this change

in the distribution of X. By Lemma 2, this leads to decrease of all coordinates of vector

b. The claims follow now from Lemma 8.

Similarly, an increase in w0 and a increase in δ lead to an increase in the right-hand

side of (15). This leads to an increase in C, and therefore, by Lemma 2, all coordinates

of vector b increase.

Proof of Corollary 3. A direct calculation shows that, under the CARA assump-

tion, the vector b = (bi) solves

bi = δ−1
i C

(
e−Ai w0i + e−δi−Aiw1i E[1− eAi Fi(X)]

)
, i = 1 , · · · , N. (48)

Suppose that

δi e
−Ai w1i

e−Ai w0i
>

δj e
−Aj w1j

e−Aj w0j
(49)
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for some insurers i and j, but rank(i) < rank(j). By definition, this means that

bi e
Ai w1i ≤ bj e

Aj w1j . (50)

We now claim that the inequality rank(i) < rank(j) implies

Ai Fi ≤ Aj Fj. (51)

Indeed, for all tranches in which insurer i participates, the slopes of Ai Fi and Aj Fj

coincide by Corollary 1. Since j has a higher rank, Ai Fi(X) = 0 for all X for which

Aj Fj(X) = 0. The claim (51) follows now by continuity of Fi and Fj . Consequently,

E[1− eAi Fi(X)] ≥ E[1− eAj Fj(X)],

and therefore (48) and (49) together yield

bi e
Ai w1i = δ−1

i C eAi (w1i−w0i) + C E[1− eAi Fi(X)]

≥ δ−1
j C eAj (w1j−w0j) + C E[1− eAj Fj(X)] = bj e

Aj w1j ,

(52)

which contradicts (50). The proof is complete.
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