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1 Introduction

Backward stochastic differential equations (BSDEs) play an important role in
mathematical finance; see El Karoui et al. [6] for an early overview. Existence
and uniqueness results are well known both for Lipschitz and for quadratic
drivers; see Kobylanski [12]. In this paper, we study a particular class of
quadratic BSDEs of the form

Γs = G−
∫ T

s

(
f(Λr, Zr + αr) + χr

)
dr +

∫ T

s

Zr dBr, 0 ≤ s ≤ T, (1.1)

where f(Λr, Zr + αr) := 1
2
(Zr + αr)

′Λ−1
r (Zr + αr) and the processes χ, α, Λ

take values in R, Rn and the set Sn of symmetric strictly positive definite
matrices, respectively. Since there is no general formula for the solution Γ of
(1.1), we want to find bounds on Γ that can be computed more explicitly. To
that end, we first show that f(A, z) is jointly convex, deduce that Γ is jointly
concave in (G,Λ, α, χ), and then prove convexity bounds via three different
routes, as follows.

In general, a BSDE is based on a probability space, a filtration and a
probability measure. By changing in (1.1) each of these ingredients in a
suitable way, we obtain other BSDEs whose solutions are upper bounds for
Γ due to concavity. Finding bounds for these changed BSDEs or solving
them is easier than for the original (1.1), because they are driven by a lower-
dimensional Brownian motion or, in some sense, their matrix-valued process
Λ is more regular.

We start by changing the probability measure. Our first main result, The-
orem 3.1, characterises Γ as the essential infimum and supremum of certain
conditional expectations. In particular, it gives upper bounds for Γ, which
depend on the maximal eigenvalue of Λ. This shows that Λ is the crucial
factor in finding good bounds, or even an explicit formula for Γ. The latter
is easy if Λ = cI for some constant c, and we prove in Corollary 3.2 that the
converse holds as well. As a consequence, we then focus on improving the
form of Λ by projecting and/or symmetrising the BSDE (1.1).

For the projection, we change the filtration. The solution Γ of (1.1) relates
to the filtration FB generated by B =

(
B,B

)′
, and our second main result,

Theorem 3.3, gives an upper bound for Γ in terms of the solution Γ to the
BSDE (1.1) obtained by projecting (1.1) onto FB. The projected BSDE (1.1)
is in general easier to solve and the maximal eigenvalue of Λ is lower because
the dimension n of B is smaller.

Finally, we change the probability space. We work on Wiener space and
study how symmetrisation operations via orthogonal transformations there
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affect the BSDE (1.1). Our third main result, Theorem 3.7, gives an explicit
upper bound for Γ in terms of the symmetrised parameters (G,Λ, α, χ)Sym.
The proof combines Theorem 3.1 with a result showing that, due to concav-
ity, averaging the probability space over a set of orthogonal transformations
increases the solution of (1.1).

The paper is structured as follows. We lay out preliminaries and prove the
basic concavity property in Section 2.1. All our main results for the BSDE
(1.1) have analogues in terms of solutions to partial differential equations
(PDEs), which actually provided the original motivation and inspiration;
see for instance Alvino et al. [1]. Section 2.2 discusses these connections in
some more detail, and Section 3 contains the main results explained above.
In Section 4, we briefly recall the concept of exponential utility indifference
valuation for a contingent claim G in an incomplete financial market. It
is well known that the corresponding dynamic value process V G, or rather
Γ = − 1

γ
log
(
−V G

)
, satisfies a quadratic BSDE; see for instance Hu et al. [9].

But since this BSDE is not of the form (1.1), we still have to do some work
in Section 5 before we can apply our main results. We also discuss there in
a concrete example why the symmetrisation techniques may, but need not
lead to better bounds for Γ. Finally, the Appendix contains some proofs and
auxiliary results.

2 A quadratic convex BSDE

This section serves as preparation for the main results. We first introduce
notation and show some properties of quadratic BSDEs in Section 2.1, and
then motivate in Section 2.2 the BSDE results of Section 3 by presenting
their PDE analogues.

2.1 Preliminaries

We work on a finite time interval [0, T ] for a fixed T > 0 and a filtered
probability space

(
Ω,F ,F = (Fs)0≤s≤T , P

)
, where F = FT and F is the

augmented filtration generated by an n-dimensional Brownian motion B.
Unless specified differently, all notions depending on a filtered probability
space refer in Sections 2 and 3 to (Ω,F ,F, P ), and t ∈ [0, T ] is fixed. For
(n × n)-matrices, we denote by Sn the set of symmetric strictly positive
definite ones, by GL(n) and O(n) the invertible respectively orthogonal ones,
and by I the identity. For a diagonalisable matrix A, we write spec(A) for the
spectrum (the set of eigenvalues) and tr(A) for the trace of A. We shall use
several times that standard operations from linear algebra can be done in a
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measurable way. This includes eigenvalues, eigenvectors and diagonalisation;
see Corollary 4 of Azoff [3]. Finally, we denote by E(N)s := exp

(
Ns − 1

2
〈N〉s

)
,

0 ≤ s ≤ T , the stochastic exponential of a continuous semimartingale N .
Let us consider the BSDE

Γs = G−
∫ T

s

(
f(Λr, Zr + αr) + χr

)
dr +

∫ T

s

Zr dBr, 0 ≤ s ≤ T, (2.1)

where the function f : Sn × Rn → R is given by

f(A, z) :=
1

2
z′A−1z for (A, z) ∈ Sn × Rn. (2.2)

The terminal value G is (usually) in L∞, the process Λ is Sn-valued and
predictable with eigenvalues uniformly bounded away from zero and infinity,
and α, χ are Rn-, R-valued uniformly bounded predictable processes. A (gen-
eralised) solution of (2.1) is a pair (Γ, Z) satisfying (2.1), where Γ is a real-
valued (not necessarily) bounded continuous semimartingale and Z is an Rn-

valued predictable process with
∫ T

0
|Zs|2 ds <∞ almost surely. To emphasise

the dependence on G, Λ, α and χ, we write
(
Γ(G,Λ, α, χ), Z(G,Λ, α, χ)

)
for a

solution of (2.1), and we sometimes call Γ(G,Λ, α, χ) alone a solution of (2.1).

Remark 2.1. For ease of exposition, we formulate and prove all our results
for bounded data G, Λ, α, χ. Extensions to unbounded settings with ex-
ponential moment conditions are partly possible; this is discussed in more
detail in Remark 3.8. �

Lemma 2.2. There exists a unique solution (Γ, Z) of (2.1), and
∫
Z dB is

a BMO-martingale.

Proof. Existence follows from Theorem 2.3 of Kobylanski [12], and unique-
ness and the BMO-property from Proposition 7 and Theorem 8 of Mania
and Schweizer [13].

In Lemma A.1 in the Appendix, we show that f is jointly convex. This
is the basis for the following result.

Proposition 2.3. The solution Γ(G,Λ, α, χ) of (2.1) is jointly concave in
(G,Λ, α, χ).

Remark 2.4. It is BSDE folklore that convexity of the generator implies
(under some assumptions) that the solution is concave; see for instance
Proposition 3.5 of El Karoui et al. [6], where the generator is fairly general,
but must satisfy a Lipschitz condition in Zr and in Γr. We need the variant
in Proposition 2.3 with a specific quadratic generator for our later results. �
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Proof of Proposition 2.3. Let µ ∈ [0, 1], Gi ∈ L∞, let Λi be predictable
Sn-valued with eigenvalues bounded away from zero and infinity and let
bounded predictable αi be Rn-valued and χi be R-valued, i = 1, 2. We set
G3 := µG1 + (1− µ)G2, define Λ3, α3, χ3 analogously and denote by (Γi, Zi),
i = 1, 2, 3, the solutions of (2.1) corresponding to (Gi,Λi, αi, χi). By Lem-
ma 2.2, each of these is unique and

∫
Zi dB are BMO-martingales. Since

µΓ1
T + (1− µ)Γ2

T = µG1 + (1− µ)G2 = G3, (2.1) and Lemma A.1 yield

Γ3
s −

(
µΓ1

s + (1− µ)Γ2
s

)
=

∫ T

s

(
µf(Λ1

r, Z
1
r + α1

r) + (1− µ)f(Λ2
r, Z

2
r + α2

r)− f(Λ3
r, Z

3
r + α3

r)
)

dr

−
∫ T

s

(
µZ1

r + (1− µ)Z2
r − Z3

r

)
dBr

≥
∫ T

s

(
f
(
Λ3
r, µZ

1
r + (1− µ)Z2

r + α3
r

)
− f(Λ3

r, Z
3
r + α3

r)
)

dr

−
∫ T

s

(
µZ1

r + (1− µ)Z2
r − Z3

r

)
dBr

= −
∫ T

s

(
µZ1

r + (1− µ)Z2
r − Z3

r

)
(dBr − κr dr), 0 ≤ s ≤ T, (2.3)

with κ := 1
2
(Λ3)−1

(
µZ1+(1−µ)Z2+Z3+2α3

)
. Since the eigenvalues of Λ3 are

bounded away from zero and α3 is bounded,
∫
κ dB is a BMO-martingale.

By Theorem 3.6 of Kazamaki [11] and the BMO(P )-property of
∫
Zi dB,

the process
∫ (
µZ1 + (1 − µ)Z2 − Z3

)
(dB − κ dr) is thus also a BMO

(
P̃
)
-

martingale for the probability measure P̃ given by dP̃
dP

:= E
(∫

κ dB
)
T

. Taking(
P̃ ,Fs

)
-conditional expectations in (2.3) yields Γ3

s −
(
µΓ1

s + (1− µ)Γ2
s

)
≥ 0

for any s ∈ [0, T ], which concludes the proof since the Γi are continuous.

The basic and well-known case is when α ≡ 0, χ ≡ 0 and Λ = cI for a
fixed c > 0. The BSDE (2.1) then simplifies to

Γs = G−
∫ T

s

1

2c
|Zr|2 dr+

∫ T

s

Zr dBr = Γ0−c log E
(∫

1

c
Z dB

)
s

, 0 ≤ s ≤ T.

Due to Itô’s formula, its explicit solution is

Γs = −c logE[exp(−G/c)|Fs], 0 ≤ s ≤ T (2.4)

because
∫
Z dB is a BMO-martingale by Lemma 2.2, and hence E

(∫
1
c
Z dB

)
is a martingale by Theorem 2.3 of Kazamaki [11].
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2.2 Motivation for the convexity results

Before we state and prove in Section 3 convexity results for the solution of
the BSDE (2.1), we explain the basic ideas using PDEs. Since we only want
to provide motivation, we look at the results exclusively for time 0 and ignore
here all technical issues like existence of smooth solutions, interchanging
expectation and differential, etc.

Assume in (2.1) that α, χ and Λ are all deterministic and G = g(BT )
for a smooth function g : R→ R. In this Markovian setting, one can derive
from Itô’s formula that the solution (Γ, Z) of (2.1) satisfies

Γs = u(s, Bs), Zs = −∇xu(s, Bs) for s ∈ [0, T ],

where u : [0, T ]× Rn → R solves the PDE

∂

∂s
u(s, x) +

1

2
∆xu(s, x)− f

(
Λ(s), α(s)−∇xu(s, x)

)
− χ(s) = 0,

u(T, x) = g(x) for s ∈ [0, T ) and x ∈ Rn.

 (2.5)

Each of our three main results yields an upper bound for Γ. We look in the
following as illustration at the PDE analogue of the symmetrisation result in
Theorem 3.7. The other BSDE theorems have similar PDE analogues. For
ease of notation, we take α, χ, Λ all constant.

Symmetrisation inequalities play an important role in the theory of linear
parabolic PDEs; see e.g. Alvino et al. [1] and the references therein. They
show that in some sense, the solution of a symmetrised PDE dominates the
symmetrised solution of the original PDE. Theorem 3.7 below can be viewed
as an analogue of these results for nonlinear parabolic PDEs. To explain
the connection, let Perm ⊆ O(n) be the group of permutations of length n,
where we identify permutations with orthogonal matrices. We define

ΛSym =
1

n!

∑
O∈Perm

O′ΛO, αSym :=
1

n!

∑
O∈Perm

O′α, gSym :=
1

n!

∑
O∈Perm

(g ◦O).

Let ũ : [0, T ]× Rn → R solve the symmetrised PDE

∂

∂s
ũ(s, x) +

1

2
∆xũ(s, x)− f

(
ΛSym, αSym −∇xũ(s, x)

)
− χ = 0,

ũ(T, x) = gSym(x) for s ∈ [0, T ) and x ∈ Rn.

 (2.6)

Then Proposition 3.6 below tells us that

ũ(0, 0) ≥ u(0, 0). (2.7)
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We justify this here by a PDE comparison argument. For O ∈ Perm, we
have ∇yu(s, y)

∣∣
y=Ox

= O∇xu(s,Ox), ∆yu(s, y)
∣∣
y=Ox

= ∆xu(s,Ox) and,

from (2.2),

f
(
Λ, α−O∇xu(s,Ox)

)
= f

(
O′ΛO,O′α−∇xu(s,Ox)

)
.

Due to (2.5), the symmetrised function u(s, x) := 1
n!

∑
O∈Perm u(s,Ox) solves

∂

∂s
u(s, x) +

1

2
∆xu(s, x)− 1

n!

∑
O∈Perm

f
(
O′ΛO,O′α−∇xu(s,Ox)

)
− χ = 0,

u(T, x) = gSym(x) for s ∈ [0, T ) and x ∈ Rn. (2.8)

By Lemma A.1, f is jointly convex, which yields

1

n!

∑
O∈Perm

f
(
O′ΛO,O′α−∇xu(s,Ox)

)
≥ f

(
ΛSym, αSym −∇xu(s, x)

)
.

Since u(0, 0) = u(0, 0), we obtain (2.7) by comparing (2.6) and (2.8). Now
fix c > 0. One can check that the solution û of

∂

∂s
û(s, x) +

1

2
∆xû(s, x)− 1

2c

∣∣αSym −∇xû(s, x)
∣∣2 − χ = 0,

û(T, x) = gSym(x) for s ∈ [0, T ) and x ∈ Rn

 (2.9)

satisfies

û(0, 0) = −c logE

[
exp

(
−gSym(BT ) +

∫ T

0

αSym dBs

) 1
c

]
−
∫ T

0

χ ds. (2.10)

To compare (2.6) with (2.9), we assume that Λ = diag(Λ11, . . . ,Λnn) is of
diagonal form and set c := sups∈[0,T ]

1
n

tr(Λs) (if Λ is time-dependent). Then

ΛSym = 1
n

tr(Λ)I since Λ is diagonal, and hence

f
(
ΛSym, αSym − x

)
≥ 1

2c

∣∣αSym − x
∣∣2 for x ∈ Rn.

We thus expect by comparing (2.6) and (2.9) that ũ(0, 0) ≤ û(0, 0), which
gives via (2.7) and (2.10) an explicit upper bound for the solution of the
original PDE (2.5). Theorem 3.7 makes this statement precise and provides
a proof in a general BSDE setting.

3 Convexity results for quadratic BSDEs

This section contains our three main results. We study how the solution of
the BSDE (2.1) is affected if we change the probability measure, shrink the
filtration, or symmetrise the probability space.
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3.1 Changing the probability measure

For any predictable κ such that
∫
κ dB is a BMO-martingale, we define

dP κ

dP
:= E

(
−
∫
κ dB

)
T

, Bκ := B +

∫
κ ds (3.1)

and note that Bκ is a Brownian motion under the probability measure P κ.
Recalling that t ∈ [0, T ] is fixed and spec denotes the spectrum, we define

δmax
t := sup

s∈[t,T ]

‖max spec(Λs)‖L∞ , δmin
t := inf

s∈[t,T ]

1

‖max spec(Λ−1
s )‖L∞

,

Gκ
t := G−

∫ T

t

(
χs +

1

2
κ′sΛsκs

)
ds−

∫ T

t

(αs + Λsκs) dBs. (3.2)

For δ > 0, let Kδ be the set of all predictable Rn-valued processes κ such
that

∫
κ dB is in BMO and there exist p > 1 and a constant C such that

EPκ

[
exp

(∫ T

t

1

2
κ′sΛsκs ds+

∫ T

t

Λsκs dBs

)p/δ∣∣∣∣Fτ]
≤ CEPκ

[
exp

(∫ T

t

1

2
κ′sΛsκs ds+

∫ T

t

Λsκs dBs

)1/δ∣∣∣∣Fτ]p <∞, (3.3)

for any stopping time τ with values in [t, T ]. The latter condition says that
the martingale

EPκ

[
exp

(∫ T

t

1

2
κ′sΛsκs ds+

∫ T

t

Λsκs dBs

)1/δ∣∣∣∣Fr], t ≤ r ≤ T,

satisfies the reverse Hölder inequality Rp(P
κ). Each Kδ contains all bounded

predictable processes and also some unbounded processes. In fact, for any
predictable κ with

∫
κ dB in BMO, there exists a constant c > 0 such that

cκ ∈ Kδ. This follows from Lemma A.2 in the Appendix, which shows that a
predictable process κ is in Kδ if the BMO-norm of

∫
κ dB is small enough.

Furthermore, (3.3) is equivalent to

EPκ
[
exp(−Gκ

t )
p/δ
∣∣Fτ] ≤ CEPκ

[
exp(−Gκ

t )
1/δ
∣∣Fτ]p <∞, (3.4)

since G, χ and α are bounded. We set K := Kδmax
t ∩ Kδmin

t .

Theorem 3.1. The solution Γ of the BSDE (2.1) satisfies

Γt = −ess sup
κ∈K

logEPκ [exp(−Gκ
t /δ

max
t )|Ft]δ

max
t (3.5)

= −ess inf
κ∈K

logEPκ [exp(−Gκ
t /δ

min
t )|Ft]δ

min
t , (3.6)
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and for every κ ∈ K, there exists an Ft-measurable random variable δκ,Gt with
values in [δmin

t , δmax
t ] such that

Γt = − logEPκ [exp(−Gκ
t /δ)|Ft]δ

∣∣
δ=δκ,Gt

. (3.7)

Theorem 3.1 illustrates the importance of the process Λ in the BSDE
(2.1). Indeed, Λ determines via (3.2) the eigenvalue bounds δmin,max

t and
hence the range of δκ,Gt in (3.7). If Λ = cI for a constant c, we have
δmin
t = δmax

t = c = δκ,Gt , and (3.7) is an explicit formula for Γt as distorted
conditional expectation under P κ. Corollary 3.2 below gives a converse: If
for any G, the solution Γt of the BSDE (2.1) is the distorted conditional
expectation under some P κ, then Λ = cI for a constant c. Theorem 3.1 also
generalises Theorem 2 of Frei and Schweizer [7], as we explain in Section 5.3.
Moreover, we can recover the bound in Proposition 2.1 of Kobylanski [12]
applied to the BSDE (2.1); indeed, for κ = −Λ−1α ∈ K, (3.5) yields

Γt ≤ − logEPκ

[
exp

(
−G+

∫ T

t

(
χs +

1

2
α′sΛ

−1
s αs

)
ds

)1/δmax
t
∣∣∣∣Ft]δmax

t

≤ − logEPκ

[
exp

(
−‖G+‖L∞ −

∫ T

t

∥∥∥χs +
1

2
α′sΛ

−1
s αs

∥∥∥
L∞

ds

)1/δmax
t
∣∣∣∣Ft]δmax

t

≤ ‖G+‖L∞ +

∫ T

t

∥∥|χs|+ α′sΛ
−1
s αs

∥∥
L∞

ds,

which one can also derive from Proposition 2.1 of Kobylanski [12].
A result similar to (3.5) in Theorem 3.1 is Theorem 3.25 of Barrieu and

El Karoui [4]. While their result holds for BSDEs with a more general convex
generator, our procedure works only for BSDEs with a particular quadratic
generator, but gives a better upper bound for the solution Γt by fixing κ ∈ K.
The proof of Theorem 3.25 of [4] is based on the idea that a convex generator
can be bounded from below independently of Z by using the convex conju-
gate. In our case, we can find for the specific generator a better bound given
by the generator of another quadratic BSDE which has an explicit solution.
Moreover, we exploit the form of the generator to obtain also (3.6) so that
we have both upper and lower bounds for Γt by fixing κ ∈ K.

From (3.5) we obtain upper bounds for Γt, which depend on the maximal
eigenvalue of Λ. Our other two main results, Theorems 3.3 and 3.7, can
be viewed as approaches to get better bounds by reducing δmax

t (and also
changing G). In Theorem 3.3, we reduce the dimension n of the BSDE
by projecting it onto the filtration of a lower-dimensional Brownian motion,
and replacing Λ by its projection in principle lowers the maximal eigenvalue.
Similarly, the symmetrisation in Theorem 3.7 makes the eigenvalues more
similar and in particular reduces the maximal eigenvalue.
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Proof of Theorem 3.1. We first show

Γt ≤ − logEPκ [exp(−Gκ
t /δ

max
t )|Ft]δ

max
t (3.8)

for any κ ∈ K. We obtain from (2.1), (2.2) and (3.1) that

Γs = G−
∫ T

s

1

2
(Zr + αr + Λrκr)

′Λ−1
r (Zr + αr + Λrκr) dr

−
∫ T

s

(
χr − κ′rαr −

1

2
κ′rΛrκr

)
dr +

∫ T

s

Zr dBκ
r , 0 ≤ s ≤ T. (3.9)

Define

Γκs :=− logEPκ [exp(−Gκ
t /δ

max
t )|Fs]δ

max
t

+

∫ s

t

(
χr +

1

2
κ′rΛrκr

)
dr +

∫ s

t

(αr + Λrκr) dBr, t ≤ s ≤ T. (3.10)

Using Itô’s representation theorem as in Lemma 1.6.7 of Karatzas and Shreve
[10] gives

EPκ [exp(−Gκ
t /δ

max
t )|F·] = cκ E

(∫
Zκ dBκ

)
(3.11)

for a constant cκ and a predictable Rn-valued Zκ such that E
(∫

Zκ dBκ
)

is
a P κ-martingale. Since G, χ and α are bounded, (3.2) and (3.3) imply that
E
(∫

Zκ dBκ
)

satisfies the reverse Hölder inequality Rp(P
κ) for some p > 1.

Hence
∫
Zκ dBκ is in BMO(P κ) by Theorem 3.4 of Kazamaki [11], and so

is
∫
Z̄κ dBκ for

Z̄κ := δmax
t Zκ − α− Λκ. (3.12)

A calculation based on (3.10) and (3.11) gives for t ≤ s ≤ T

Γκs = G−
∫ T

s

1

2δmax
t

∣∣Z̄κ
r + αr + Λrκr

∣∣2 dr

−
∫ T

s

(
χr − κ′rαr −

1

2
κ′rΛrκr

)
dr +

∫ T

s

Z̄κ
r dBκ

r , (3.13)

and comparing (3.13) and (3.9) yields similarly as in Proposition 2.3 that
Γt ≤ Γκt . This is (3.8).

Now set κ̂ := −Λ−1(Z + α) with Z from (3.9). Then
∫
κ̂ dB ∈ BMO

since α is bounded,
∫
Z dB ∈ BMO and Λ−1 is bounded. Moreover, Gκ̂

t is
Ft-measurable; hence κ̂ satisfies (3.4) and thus (3.3) for any δ > 0, and so κ̂
is in K. Again using that Gκ̂

t is Ft-measurable plus (3.9) and (3.2) shows that

Γt = Gκ̂
t = − logEP κ̂ [exp(−Gκ̂

t /δ
max
t )|Ft]δ

max
t .
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Hence we have (3.5), and (3.6) is proved analogously. (3.7) now follows by the
same interpolation argument as in Theorem 1 of Frei and Schweizer [7]; the re-
quired P κ-integrable majorant for the family

{
exp(−Gκ

t /δ)
∣∣ δ ∈ [δmin

t , δmax
t ]

}
is exp(−Gκ

t /δ
min
t ) + 1.

We next study when Γt from (2.1) is a distorted conditional expectation
under some P κ. For δ > 0 and κ ∈ Kδ, let Lδ,κ be the set of random variables
G such thatGκ

t from (3.2) satisfies the reverse Hölder inequality (3.4) for some
p > 1. The definition of Kδ implies that L∞ ⊆ Lδ,κ, but G ∈ Lδ,κ need not
be bounded.

Corollary 3.2. The following are equivalent:

(a) There exists a constant c > 0 such that

Λ = cI on ]]t, T ]] (P⊗Leb)-a.e. (3.14)

(b) There exists a constant δ ∈ [δmin
t , δmax

t ] such that for all κ ∈ Kδ and
G ∈ Lδ,κ, there exists a generalised solution (Γ, Z) on [[t, T ]] of (2.1)
such that

∫
Z dB is a BMO(P )-martingale and

Γt = − logEPκ [exp(−Gκ
t /δ)|Ft]δ. (3.15)

(c) There exist a constant δ ∈ [δmin
t , δmax

t ] and a process κ ∈ Kδ such that
for all G ∈ Lδ,κ, there exists a generalised solution (Γ, Z) on [[t, T ]] of
(2.1) such that

∫
Z dB is a BMO(P )-martingale and (3.15) holds.

In this case, c = δ.

Proof. “(b) =⇒ (c)” is clear. To show “(a) =⇒ (b)”, we use a similar argu-
ment as for Theorem 3.1. Take κ ∈ K and define Γκ and Z̄κ by (3.10) and
(3.12) with δmax

t replaced by δ := c. Then
∫
Z̄κ dBκ is again in BMO(P κ)

so that
∫
Z̄κ dB is in BMO(P ), and like (3.13), we get

Γκs = Γκt +

∫ s

t

1

2δ

∣∣Z̄κ
r + αr + Λrκr

∣∣2 dr

+

∫ s

t

(
χr − κ′rαr −

1

2
κ′rΛrκr

)
dr −

∫ s

t

Z̄κ
r dBκ

r , t ≤ s ≤ T.

Plugging in (3.14) with δ = c shows after some computation that
(
Γκ, Z̄κ

)
satisfies (2.1) on [[t, T ]]. Finally, (3.15) holds for Γ := Γκ by construction.

To prove “(c) =⇒ (a)”, we define the predictable set

Υ1 :=
{

(ω, s) ∈ ]]t, T ]]
∣∣ min spec

(
Λs(ω)

)
< δ
}

11



and choose a predictable Rn-valued process v such that Λv =
(
min spec(Λ)

)
v

and |v| = 1 on ]]t, T ]]; so vs(ω) is an eigenvector for the smallest eigenvalue
of Λs(ω). Set

G :=

∫ T

t

(
χs +

1

2
κ′sΛsκs

)
ds+

∫ T

t

(αs + Λsκs) dBs

−
∫ T

t

1Υ1(s)vs dBs +

∫ T

t

1Υ1(s)
( 1

2δ
− v′sκs

)
ds

so that the corresponding Gκ
t given by (3.2) satisfies

exp(−Gκ
t /δ) = E

(∫
1

δ
1Υ1v dBκ

)
T

. (3.16)

Hence G is in Lδ,κ by Theorem 3.4 of Kazamaki [11]; in fact,
∫

1
δ
1Υ1v dBκ is

a BMO(P κ)-martingale because its integrand is bounded.
Now (3.15), (3.16) and Itô’s formula, (3.2) and (3.1) give with some cal-

culations

Γt = − logEPκ [exp(−Gκ
t /δ)|Ft]δ

= G−
∫ T

t

(
χs − κ′sαs −

1

2
κ′sΛsκs

)
ds−

∫ T

t

(αs + Λsκs) dBκ
s

+

∫ T

t

1Υ1(s)vs dBκ
s −

1

2δ

∫ T

t

1Υ1(s) ds

≥ G−
∫ T

t

(
χs − κ′sαs −

1

2
κ′sΛsκs

)
ds−

∫ T

t

(αs + Λsκs) dBκ
s

+

∫ T

t

1Υ1(s)vs dBκ
s −

∫ T

t

1

2

(
1Υ1(s)vs

)′
Λ−1
s

(
1Υ1(s)vs

)
ds (3.17)

by the definition of Υ1. But we also have like in (3.9) that

Γt = G−
∫ T

t

(
χs − κ′sαs −

1

2
κ′sΛsκs

)
ds+

∫ T

t

Zs dBκ
s

−
∫ T

t

1

2
(Zs + αs + Λsκs)

′Λ−1
s (Zs + αs + Λsκs) ds, (3.18)

and subtracting (3.18) from (3.17), we obtain

0 ≥
∫ T

t

(
1Υ1(s)vs − αs − Λsκs − Zs

)
×
(

dBκ
s − Λ−1

s

(
1Υ1(s)vs + αs + Λsκs + Zs

)
ds
)
. (3.19)

12



Like in the proof of Proposition 2.3, the right-hand side of (3.19) has zero ex-
pectation under some equivalent probability measure. Hence it must vanish,
so we must also have equality in (3.17), and this implies (P⊗Leb)[Υ1] = 0.
Analogously, we have (P⊗Leb)[Υ2] = 0 for

Υ2 :=
{

(ω, s) ∈ ]]t, T ]]
∣∣ max spec

(
Λs(ω)

)
> δ
}
.

This shows (3.14) with c := δ and also gives the last assertion.

3.2 Projecting the BSDE

Let us split B =
(
B,B

)′
into B and B, an n- and an n-dimensional (F, P )-

Brownian motion with n+ n = n. What happens to the BSDE

Γs = G−
∫ T

s

(
f(Λr, Zr + αr) + χr

)
dr +

∫ T

s

Zr dBr, 0 ≤ s ≤ T (2.1)

if we project it, in a way to be specified, onto the filtration generated by B?
In this section, we precisely formulate and then answer this question.

Let F =
(
F s
)

0≤s≤T be the augmented filtration generated by B. For a

process Z, we denote its componentwise optional (P -)projection onto F by Zo

(if it exists). It is — by definition — the unique F-optional process satisfying
Zo
τ = E

[
Zτ
∣∣F τ] for every F-stopping time τ .

To compare (2.1) with a BSDE driven by B, write α = (α, α)′ and denote
by Λ the upper-left n× n components of Λ. A solution, for s ∈ [0, T ], of

Γ̌s = E
[
G
∣∣FT ]− ∫ T

s

(1

2

(
Žr + αor

)′(
Λ
o

r

)−1(
Žr + αor

)
+ χor

)
dr +

∫ T

s

Žr dBr

(3.20)
is a pair

(
Γ̌, Ž

)
satisfying (3.20), where Γ̌ is a real-valued bounded continuous(

F, P
)
-semimartingale and Ž is an Rn-valued F-predictable process such that∫ T

0

∣∣Žs∣∣2 ds <∞ almost surely. Note that X
o

:=
(
X
)o

= (Xo) for X = α,Λ.

Theorem 3.3. The BSDE (3.20) has a unique solution
(
Γ̌, Ž

)
. It satisfies

Γo ≤ Γ̌, where (Γ, Z) is the solution of (2.1).

Theorem 3.3 is a Jensen-type inequality for quadratic BSDEs. For a
simple illustration, take n = n = 1 and Λ ≡ cI, α ≡ 0, χ ≡ 0. In this case,
the solution of (2.1) has Γ0 = −c logE[exp(−G/c)] by (2.4), and analogously,
Γ̌0 = −c logE

[
exp
(
−1
c
E
[
G
∣∣FT ])]. So Γo0 ≤ Γ̌0 follows here also directly from

Jensen’s inequality.

13



Proof of Theorem 3.3. As in Lemma 2.2, (3.20) has a unique solution
(
Γ̌, Ž

)
,

and
∫
Ž dB ∈ BMO

(
F, P

)
. Fix s ∈ [0, T ] and condition (2.1) on F s to get

E
[
Γs
∣∣F s] = Γ0 + E

[∫ s

0

(
f(Λr, Zr + αr) + χr

)
dr

∣∣∣∣F s]− E[∫ s

0

Zr dBr

∣∣∣∣F s].
(3.21)

Note next that χo exists since χ is bounded by assumption. We claim that

E

[∫ s

0

χr dr

∣∣∣∣F s] =

∫ s

0

χor dr, (3.22)

and because F is generated by B, it is by Itô’s representation theorem enough
to show that

E

[∫ s

0

χr dr

∫ s

0

βq dBq

]
= E

[∫ s

0

χor dr

∫ s

0

βq dBq

]
(3.23)

for any F-predictable β such that
∫
β dB is bounded. By Fubini’s theorem,

E

[∫ s

0

χr dr

∫ s

0

βq dBq

]
=

∫ s

0

E

[
χr

∫ s

0

βq dBq

]
dr, (3.24)

and conditioning on F r for r ∈ [0, s] yields

E

[
χr

∫ s

0

βq dBq

]
= E

[
χr

∫ r

0

βq dBq

]
= E

[
χor

∫ s

0

βq dBq

]
,

which implies (3.23) by using (3.24) once for χ and once for χo instead of χ.
So we have (3.22), and using f ≥ 0, we analogously obtain

E

[∫ s

0

f(Λr, Zr + αr) dr

∣∣∣∣F s] =

∫ s

0

(
f(Λ, Z + α)

)o
r

dr. (3.25)

To simplify the term E
[∫ s

0
Zr dBr

∣∣F s] in (3.21), we use the optional projec-
tion of Z. However, we cannot use the classical optional projection because
Z is in general neither bounded nor nonnegative. We define Zo instead by

Zo :=

{
(Z+)o − (Z−)o if |Z|o <∞

0 otherwise,

where Z± :=
(
(Z1)±, . . . , (Zn)±

)′
. Then Zo is F-optional and |Z|o < ∞

(P⊗Leb)-a.e. since Tonelli’s theorem and
∫
Z dB ∈ BMO(F, P ) by Lemma

2.2 give ∫ T

0

E[|Z|or] dr =

∫ T

0

E[|Zr|] dr = E

[∫ T

0

|Zr| dr
]
<∞.
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Write Z =
(
Z,Z

)′
and Zo =

(
Z
o
, Zo
)′

. We then have

E

[∫ s

0

Zr dBr

∣∣∣∣F s] =

∫ T

s

Z
o

r dBr; (3.26)

indeed, using E
[
Zr

∣∣F r] = Z
o

r P -a.s. for Leb-a.a. r ∈ [0, s] and the isometry
property of the stochastic integral, we obtain similarly to (3.23) that

E

[∫ s

0

Zr dBr

∫ s

0

βq dBq

]
= E

[∫ s

0

β′rZr dr

]
= E

[∫ s

0

Z
o

r dBr

∫ s

0

βq dBq

]
for any F-predictable β such that

∫
β dB is bounded, and this implies (3.26)

by Itô’s representation theorem. Combining (3.21), (3.22), (3.25) and (3.26)
thus yields

E
[
Γs
∣∣F s] = E

[
G
∣∣FT ]− ∫ T

s

((
f(Λ, Z +α)

)o
r

+χor

)
dr+

∫ T

s

Z
o

r dBr. (3.27)

Due to Lemma A.1, the function f is jointly convex. Identifying (A, z) in

Sn ×Rn with a vector in R
n(n+1)

2
+n, we view f as a function on such vectors

and then apply Jensen’s inequality to obtain for any F-stopping time τ that(
f(Λ, Z + α)

)o
τ

= E
[
f(Λτ , Zτ + ατ )

∣∣F τ] ≥ f(Λo
τ , Z

o
τ + αoτ )1|Z|oτ<∞.

Thus the optional selection theorem and |Z|o <∞ (P⊗Leb)-a.e. yield(
f(Λ, Z + α)

)o ≥ f(Λo, Zo + αo)1|Z|o<∞ = f(Λo, Zo + αo) (3.28)

(P⊗Leb)-a.e. A simple calculation (see Remark 3.4 below) shows that

f(A, z) =
1

2
z′A−1z ≥ 1

2
z′
(
A
)−1

z (3.29)

for any A ∈ Sn and z = (z, z)′ ∈ Rn, with A denoting the upper-left n × n
components of A. In view of (3.27), we obtain from (3.28) and (3.29) that

E
[
Γs
∣∣F s] ≤ E

[
G
∣∣FT ]− ∫ T

s

(1

2

(
Z
o

r + αor
)′(

Λ
o

r

)−1(
Z
o

r + αor
)

+ χor

)
dr

+

∫ T

s

Z
o

r dBr.

Hence (3.20) implies

E
[
Γs
∣∣F s]− Γ̌s ≤−

∫ T

s

1

2

(
Z
o

r − Žr
)′(

Λ
o

r

)−1(
Z
o

r + Žr + 2αor
)

dr

+

∫ T

s

(
Z
o

r − Žr
)

dBr.
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We know that
∫
Ž dB is in BMO

(
F, P

)
, and so is

∫
Z
o

dB because
∫
Z dB

is in BMO(F, P ). Like in the proof of Proposition 2.3, we deduce that
E
[
Γs
∣∣F s] ≤ Γ̌s for s ∈ [0, T ], and this concludes the proof because Γ̌, Γ and

hence Γo are continuous.

Remark 3.4. 1) As the proof shows, we do not need for Theorem 3.3 that
the generator of the BSDE (2.1) is purely quadratic like f in (2.2). We
only need that it is jointly convex, satisfies a quadratic growth condition
and dominates the generator of the projected BSDE (3.20). In particular,

Theorem 3.3 also applies for a generator f̃ of the form f̃(A, z) = 1
2
z′A

−1
z

with z and A as in (3.29). This will later be used in the applications to
indifference valuation.

2) In linear algebra, the shorted operator sh : Sn → Sn is defined by

sh(A) := A11 − A12(A22)−1(A12)′ for A =

(
A11 A12

(A12)′ A22

)
∈ Sn.

One can check that (A11)−1 = sh(A−1) and verify by completion of squares
that

z′sh(A)z = min
z∈Rn

(
(z′, z′)A

(
z
z

))
for z ∈ Rn and A ∈ Sn.

The inequality (3.29) follows immediately. �

3.3 Symmetrising the BSDE

This section establishes our third main result, Theorem 3.7, giving an explicit
upper bound for the solution Γ of (2.1). We first study how the BSDE (2.1) is
affected by orthogonal transformations on the underlying probability space.
To have some structure, we work on Wiener space, i.e., take Ω := C([0, T ],Rn)
with the Borel σ-field F and Wiener measure P so that the coordinate process
B is a P -Brownian motion. Recall that t ∈ [0, T ] is fixed.

For an orthogonal (n × n)-matrix, u ∈ O(n), we define the mapping
Ut : C([0, T ],Rn)→ C([0, T ],Rn) by applying u from time t on, i.e.,

Ut(g)(s) =

{
g(s) if s ≤ t,
g(t) + u

(
g(s)− g(t)

)
if s > t,

for g ∈ C([0, T ],Rn).

Then Bu := Ut ◦B is an Rn-valued (F, P )-Brownian motion since u is or-
thogonal. The following result says that if one transforms by Ut the driver
and the terminal value of a BSDE, the solution of the new BSDE is the
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Ut-transformation of the original solution. This is very intuitive and anal-
ogous to orthogonally transforming the variables in a second-order PDE;
compare Section 2.2. The reason why this also works for BSDEs is that
B ◦ Ut = Ut ◦B = Bu, i.e., Brownian motion and the transformation Ut com-
mute on Wiener space.

Lemma 3.5. Let u ∈ O(n) and assume that the BSDE

Γs = G−
∫ T

s

Fr(Γr, Zr) dr +

∫ T

s

Zr dBr, 0 ≤ s ≤ T (3.30)

for a general F-predictable F : Rn+1 → R has a unique solution (Γ, Z) (in
the sense of Section 2.1). Then (Γ ◦ Ut, Z ◦ Ut) is the unique solution of

Γ̃s = G ◦ Ut −
∫ T

s

(F ◦ Ut)r
(
Γ̃r, Z̃r

)
dr +

∫ T

s

Z̃r dBu
r , 0 ≤ s ≤ T. (3.31)

In particular, the solution (Γ ◦ Ut, Z ◦ Ut) of (3.31) coincides on [[0, t]] with
the solution (Γ, Z) of (3.30).

Proof. Let (Γ, Z) be the solution of (3.30) and define Γ̃ for 0 ≤ s ≤ T by

Γ̃s := Γ0 +

∫ s

0

(F ◦ Ut)r (Γr ◦ Ut, Zr ◦ Ut) dr −
∫ s

0

(Zr ◦ Ut) dBu
r

= Γ0 +

(∫ s

0

Fr (Γr, Zr) dr

)
◦ Ut −

∫ s

0

(Zr ◦ Ut) dBu
r . (3.32)

In Lemma A.3 in the Appendix, we prove that, as one expects,∫
(Z ◦ Ut) dBu =

(∫
Z dB

)
◦ Ut. (3.33)

This gives by (3.30) that Γ̃ = Γ ◦ Ut and thus (Γ ◦ Ut, Z ◦ Ut) solves (3.31).
Uniqueness for (3.31) follows since Ut is bijective; indeed, if

(
Γ̃, Z̃

)
solves

(3.31), then (3.32) and (3.33) imply that
(
Γ̃ ◦ U−1

t , Z̃ ◦ U−1
t

)
solves (3.30)

whose unique solution is (Γ, Z).

The next proposition states that averaging in ω over a set of orthogonal
transformations increases the solution of (2.1).

Proposition 3.6. Take a finite subset O of O(n) with cardinality |O| and set

GO :=
1

|O|
∑
u∈O

G ◦ Ut, ΛO :=
1

|O|
∑
u∈O

u′(Λ ◦ Ut)u,

αO :=
1

|O|
∑
u∈O

u′(α ◦ Ut), χO :=
1

|O|
∑
u∈O

χ ◦ Ut.
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Then the solutions (Γ, Z) of (2.1) and
(
ΓO, ZO

)
, for 0 ≤ s ≤ T , of

Γ̃s = GO −
∫ T

s

(
f
(
ΛOr , Z̃r + αOr

)
+ χOr

)
dr +

∫ T

s

Z̃r dBr (3.34)

satisfy Γt ≤ ΓOt almost surely.

Proof. By Lemma 2.2, (2.1) and (3.34) have unique solutions. For u ∈ O,
we denote by (Γu, Zu) the solution of (2.1) corresponding to the parameters(
G ◦ Ut, u′(Λ ◦ Ut)u, u′(α ◦ Ut), χ ◦ Ut

)
. The concavity from Proposition 2.3

gives ΓO = Γ
(
GO,ΛO, αO, χO

)
≥ 1
|O|
∑

u∈O Γu, and so it is enough to show

Γut = Γt for every u ∈ O. Fix u ∈ O. Applying Lemma 3.5 to (2.1) yields
that the solution of the Ut-transformed BSDE is

(
Γ̃, Z̃

)
:= (Γ ◦ Ut, Z ◦ Ut).

Setting Ẑ := u′Z̃ and using Ẑ dB = Z̃ dBu and, due to (2.2),

f
(
Λ ◦ Ut, Z̃ + α ◦ Ut

)
= f

(
u′(Λ ◦ Ut)u, Ẑ + u′(α ◦ Ut)

)
,

we obtain that the Ut-transformed BSDE is, for t ≤ s ≤ T , equivalent to

Γ̃s = G◦Ut−
∫ T

s

(
f
(
u′(Λ◦Ut)ru, Ẑr+u′(α◦Ut)r

)
+(χ◦Ut)r

)
dr+

∫ T

s

Ẑr dBr.

But this is (2.1) with the parameters
(
G ◦ Ut, u′(Λ ◦ Ut)u, u′(α ◦ Ut), χ ◦ Ut

)
.

So Γu = Γ̃ = Γ ◦Ut on [[t, T ]] and thus Γut = Γt, since Γ ◦Ut = Γ on [[0, t]].

The idea to exploit Proposition 3.6 is now that choosing a “good” set
O yields with (3.34) an easier BSDE than the original one in (2.1), so that
an upper bound for the solution (Γ, Z) of (2.1) becomes more explicit. By
Theorem 3.1, the upper bound for Γ is increasing in the maximal eigenvalue,
max spec(Λ). Assume for the moment that Λ is deterministic. If we first
apply Proposition 3.6 to (2.1) and then Theorem 3.1 to (3.34), we obtain an
upper bound depending on max spec

(
1
|O|
∑

u∈O u
′Λu
)
. A simple calculation

shows that for any matrix A ∈ Sn and finite subset O of O(n),

1

n
tr(A) ≤ max spec

(
1

|O|
∑
u∈O

u′Au

)
≤ max spec(A), (3.35)

and so we obtain a smaller distortion power δmax
t by averaging over O. On

the other hand, however, averaging G, α and χ may worsen the bound on
Γ, and an example in Section 5.3 shows how these two effects interact. The
best lower bound for max spec(A) that we can obtain by averaging over O
is 1

n
tr(A) by (3.35), and if A is diagonal, this is attained for O = Perm, the
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symmetric group of permutations of length n.
(
We identify permutations

with corresponding orthogonal matrices and use

1

|Perm|
∑

u∈Perm

u′Au =
tr(A)

n
I for any diagonal matrix A.

)
The idea to choose O = Perm leads us to the next result.

Theorem 3.7. Assume that Λ = (Λij)i,j=1,...,n is a diagonal matrix, and
define

GSym :=
1

n!

∑
u∈Perm

G ◦ Ut, dt := sup
s∈[t,T ]

∥∥∥∥ 1

n

n∑
j=1

max
u∈Perm

(Λjj
s ◦ Ut)

∥∥∥∥
L∞
,

αSym :=
1

n!

∑
u∈Perm

u′(α ◦ Ut), χSym :=
1

n!

∑
u∈Perm

χ ◦ Ut.

Then the solution (Γ, Z) of (2.1) satisfies

Γt ≤ −dt logE

[
exp

(
−GSym +

∫ T

t

αSym
s dBs +

∫ T

t

χSym
s ds

) 1
dt

∣∣∣∣∣Ft
]
. (3.36)

Proof. By choosing O := Perm, we obtain from Proposition 3.6 a first upper
bound Γt ≤ ΓOt , where ΓOt solves the BSDE (3.34) with O := Perm. We now
apply Theorem 3.1 to ΓO with κ ≡ 0, which gives

Γt ≤ −δt logE

[
exp

(
−GSym +

∫ T

t

αSym
s dBs +

∫ T

t

χSym
s ds

) 1
δt

∣∣∣∣∣Ft
]

with

δt := sup
s∈[t,T ]

∥∥∥∥max spec

(
1

n!

∑
u∈Perm

u′(Λs ◦ Ut)u
)∥∥∥∥

L∞
≤ dt

since Λ is diagonal. Thus (3.36) follows from Jensen’s inequality.

The assumption that Λ is diagonal is less restrictive than it looks. We can
always rewrite (2.1) to another BSDE of the same type with diagonal Λ by
changing α and B. In fact, there exist a predictable O(n)-valued process O
and a predictable diagonal matrix D such that Λ = O′DO. If we now define
an (F, P )-Brownian motion by dBO = O dB, a direct calculation shows that
if (Γ, Z) solves (2.1) with parameters (G,Λ, α, χ), then (Γ, OZ) solves (2.1)
with parameters (G,D,Oα, χ) and with B replaced by BO. This reduces the
problem to the case of a diagonal matrix Λ, but we then have to symmetrise
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with respect to BO and not B. For this, G, α and χ must be measurable
for the filtration FO generated by BO, which can be smaller than F. This
limitation does not come up if Λ is deterministic, since then so is O and hence
FO = F. In Section 5, we relate the BSDE (2.1) to an optimisation problem
where the matrix Λ is a transform of the correlation matrix of certain price
processes. In applications, such matrices are often assumed to be determinis-
tic. Similarly, things typically become less restrictive in a Markovian setting
because one can often do everything in the filtration of the factor process.

Remark 3.8. One can generalise Theorems 3.3 and 3.7 to the case where
G, α and χ are unbounded, but |G| and

∫ T
0

(
|αs|2 + |χs|

)
ds have exponential

moments of all order. We sketch the procedure for such a generalisation. One
first uses Corollary 6 of Briand and Hu [5] for the existence of a generalised
solution (Γ, Z) of (2.1) and its uniqueness in a suitable class. Then one sets
Gj := G+ ∧ j − G− ∧ j, j ∈ N, defines αj and χj analogously, and applies
Theorems 3.3 and 3.7 when G, α and χ are replaced by Gj, αj and χj. By
taking limits in a suitable sense and applying Proposition 7 of Briand and
Hu [5], one can deduce generalised versions of Theorems 3.3 and 3.7. We do
not know whether Theorem 3.1 can also be formulated for unbounded G, α
and χ, because the above generalisation procedure does not work there.

One cannot weaken in the above way the assumption that the eigenvalues
of Λ are bounded away from zero, since this condition is needed to apply the
results of Briand and Hu [5]. However, one can get rid of the restriction
that the eigenvalues of Λ are bounded away from infinity. Theorems 3.1 and
3.7 can be formulated without this assumption similarly to Theorem 4 of
Frei and Schweizer [8]. If the componentwise optional projection of Λ, whose
eigenvalues are not bounded away from infinity, exists (P⊗Leb)-a.e., one can
prove Theorem 3.3 in the same way as in Section 3.2. �

4 Exponential utility indifference valuation

This section recalls the financial concept of indifference valuation, in prepa-
ration for applying the convexity results from Section 3.

We work on a finite time interval [0, T ] for a fixed T > 0, and we fix
t ∈ [0, T ]. On a complete probability space (Ω,G, P ), we have independent
Brownian motions W and W⊥ with values in Rm and Rn. We denote by
G = (Gs)0≤s≤T the P -augmented filtration generated by (W,W⊥) and as-
sume G = GT . Moreover, we suppose there is an Rn-valued (G, P )-Brownian
motion Y such that

dYs = Rs dWs +
√
I −RsR′s dW⊥

s , 0 ≤ s ≤ T (4.1)
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for a G-predictable (n × m)-matrix R describing correlations between W
and Y . We assume that all eigenvalues of RR′ are bounded away from one
uniformly on Ω× [0, T ], i.e., there exists c ∈ [0, 1) with

max spec(RR′) ≤ c (P⊗Leb)-a.e. on Ω× [0, T ]. (4.2)

For a fixed γ > 0, the Sn-valued process

Λ =
1

γ
(I −RR′)−1 (4.3)

is well defined, G-predictable and satisfies spec(Λ) ⊆
[

1
γ
, 1
γ(1−c)

]
. In the no-

tation of Section 3, this implies that δmin
t (Λ) ≥ 1/γ.

Our financial market consists of a risk-free bank account yielding zero
interest and m traded risky assets S = (Sj)j=1,...,m with dynamics

dSjs = Sjsµ
j
s ds+

m∑
k=1

Sjsσ
jk
s dW k

s , 0 ≤ s ≤ T, Sj0 > 0, j = 1, . . . ,m;

the drift vector µ = (µj)j=1,...,m and the volatility matrix σ = (σjk)j,k=1,...,m

are G-predictable. We assume that σ is invertible, λ := σ−1µ is bounded
(uniformly in s and ω) and that there exists a constant C such that

Cβ′β ≥ β′σσ′β ≥ 1

C
β′β on Ω× [0, T ] for all β ∈ Rm.

(In other words, σ is uniformly both bounded and elliptic.) The processes

Ŵ := W +

∫
λ ds and Ŷ := Y +

∫
Rλ ds (4.4)

are Brownian motions under the minimal martingale measure P̂ given by

dP̂

dP
:= E

(
−
∫
λ dW

)
T

. (4.5)

Let G be a bounded GT -measurable random variable, interpreted as a contin-
gent claim or payoff due at time T . To value G, we assume that our investor
has an exponential utility function U(x) = − exp(−γx), x ∈ R, for a fixed
γ > 0. He starts at time t with bounded Gt-measurable initial capital xt
and runs a self-financing strategy π = (πs)t≤s≤T so that his wealth at time
s ∈ [t, T ] is

Xxt,π
s = xt +

∫ s

t

m∑
j=1

πjr
Sjr

dSjr = xt +

∫ s

t

π′rσr dŴr,
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where πj represents the amount invested in Sj, j = 1, . . . ,m. The set At
of admissible strategies on [t, T ] consists of all G-predictable Rm-valued pro-

cesses π = (πs)t≤s≤T which satisfy
∫ T
t
|πs|2 ds <∞ a.s. and are such that

exp
(
−γXxt,π

s

)
, t ≤ s ≤ T, is of class (D) on (Ω,GT ,G, P ).

We define V G (and analogously V 0) by

V G
t (xt) := ess sup

π∈At
EP
[
U(Xxt,π

T +G)
∣∣Gt]

= e−γxt ess sup
π∈At

EP

[
− exp

(
−γ
∫ T

t

π′sσs dŴs − γG
)∣∣∣∣Gt] (4.6)

so that V G
t (xt) is the maximal expected utility the investor can achieve by

starting at time t with initial capital xt, using some admissible strategy π,
and receiving G at time T . For ease of notation, we write

V G
t (xt) = e−γxtV G

t (0) =: e−γxtV G
t .

Viewed over time, V G =
(
V G
t

)
0≤t≤T is then the dynamic value process for the

stochastic control problem associated to exponential utility maximisation.
The time t indifference (buyer) value bt(xt) for G is implicitly defined by

V 0
t (xt) = V G

t

(
xt − bt(xt)

)
.

This says that the investor is indifferent between solely trading with initial
capital xt, versus trading with reduced initial capital xt−bt(xt) but receiving
G at T . Our goal is to find bounds for bt(xt). By (4.6),

bt(xt) = bt =
1

γ
log

V 0
t

V G
t

(4.7)

does not depend on xt, but directly on V G
t and V 0

t . We consider here V 0
t

as fixed via the financial market, and our focus lies on finding G-dependent
bounds for V G from the optimisation problem (4.6). An overview of the
literature on exponential utility indifference valuation in Brownian settings
can be found in Section 4.2 of Frei and Schweizer [7].

5 Valuation bounds from convexity

In this section, we consider the same setup as in Section 4. In order to apply
the convexity results from Section 3, we want to associate V G to a quadratic
convex BSDE of the form (2.1). We start with the following result which
follows directly from Theorem 7 and Proposition 9 of Hu et al. [9].
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Lemma 5.1. The BSDE

Γ̌s = G−
∫ T

s

(γ
2

∣∣Žr∣∣2−Ẑ ′rλr− 1

2γ
|λr|2

)
dr+

∫ T

s

Ẑr dWr+

∫ T

s

Žr dW⊥
r (5.1)

for s ∈ [0, T ] has a unique solution
(
Γ̌, Ẑ, Ž

)
such that

(
Ẑ, Ž

)
is (Rm × Rn)-

valued and G-predictable with EP

[∫ T
0

(∣∣Ẑs∣∣2 +
∣∣Žs∣∣2) ds

]
<∞ and Γ̌ is G-

predictable and bounded. Furthermore, we have V G
τ = − exp

(
−γΓ̌τ

)
for any

G-stopping time τ .

Unfortunately, we cannot (yet) apply the results from Section 3 to the
BSDE (5.1), because its generator is quadratic in Ž, but only linear in Ẑ. In
contrast, the generator of (2.1) is quadratic in the full vector Z =

(
Ž, Ẑ

)′
.

The next sections present three different approaches to circumvent this prob-

lem. In Section 5.1, we simply add a term ε
∣∣Ẑ∣∣2 to the generator of (5.1) and

study the limit as ε tends to zero. Section 5.2 exploits the fact, pointed out
in Remark 3.4, that one can apply the projection result in Theorem 3.3 to
a BSDE with a more general generator. In a third approach, we impose in
Section 5.3 measurability assumptions on the claim G and the coefficients of
the asset S and then use symmetrisation arguments.

Lemma 5.1 also shows that the dynamic value process V G has a contin-
uous version. In the sequel, we always use this version of V G.

5.1 ε-regularising the BSDE and changing the measure

In this approach, we add a term ε
∣∣Ẑ∣∣2 to the generator of (5.1) to bring it to

the form of (2.1). In some sense, this makes the BSDE (5.1) more regular.
We first study how the solution of the changed BSDE behaves as ε↘ 0.

Lemma 5.2. For each fixed ε > 0, the BSDE

Γ̌εs = G−
∫ T

s

(γ
2

∣∣Žε
r

∣∣2 + ε
∣∣Ẑε

r

∣∣2 − (Ẑε
r)
′λr −

1

2γ
|λr|2

)
dr

+

∫ T

s

Ẑε
r dWr +

∫ T

s

Žε
r dW⊥

r , 0 ≤ s ≤ T, (5.2)

has a unique solution
(
Γ̌ε, Ẑε, Žε

)
(in the sense of Lemma 5.1). The solution

Γ̌ to (5.1) satisfies
Γ̌t = ess sup

ε>0
Γ̌εt = lim

ε↘0
Γ̌εt a.s.
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Lemma 5.2 is a variation of Proposition 3.1 of El Karoui et al. [6], which
gives a similar conclusion for BSDEs with a Lipschitz-continuous generator.

Proof. Lemma 2.2 gives for each ε > 0 a unique solution
(
Γ̌ε, Ẑε, Žε

)
of (5.2)

with bounded Γ̌ε, and both
∫
Ẑε dW and

∫
Žε dW⊥ are in BMO(G, P ).

As in the proof of Proposition 2.3, one can show that Γ̌ε ≤ Γ̌ and that∣∣Γ̌ε∣∣ is bounded by ‖G‖L∞ + 1
2γ

∥∥ ∫ T
0
|λs|2 ds

∥∥
L∞

, uniformly in ε. Apply-

ing Itô’s formula to exp
(
Γ̌ε
)

then yields like in the proof of Proposition 7

of Mania and Schweizer [13] that the BMO(G, P )-norms of
∫
Ẑε dW and∫

Žε dW⊥ are bounded uniformly in ε. By Theorem 3.6 of Kazamaki [11],

the BMO
(
G, P̌ ε

)
-norm of

∫
Ẑε dW is thus bounded uniformly in ε, where

dP̌ ε

dP
:= E

(
−
∫
λ dW +

γ

2

∫ (
Žε + Ž

)
dW⊥

)
T

.

We now obtain from (5.1) and (5.2) by conditioning on Gt under P̌ ε that

0 ≤ Γ̌t − Γ̌εt = εEP̌ ε

[∫ T

t

∣∣Ẑε
s

∣∣2 ds

∣∣∣∣Gt] ≤ ε

∥∥∥∥∫ Ẑε dW

∥∥∥∥2

BMO2(G,P̌ ε)
,

and this converges almost surely to 0 for ε↘ 0.

To apply the change of measure result in Theorem 3.1, we use notations
analogous to Section 3.1, whose B corresponds to (W,W⊥). Let us set

γGκ,ε
t := γG+

1

2

∫ T

t

(
|λs|2 + ε−1(|λs|2 − |κs|2)

)
ds− ε−1

∫ T

t

(κs − λs) dWs,

dQκ

dP
:= E

(
−
∫
κ dW

)
T

.

Note that K = K(m) is here a set of Rm-valued processes. The next result
follows fairly directly from Lemma 5.2 and Theorem 3.1, but spelling out
all details is rather tedious and gives no new insights; hence we only outline
the argument. We apply Theorem 3.1 to (5.2) with ε̃ := γε

2
, B̃ := (W,W⊥)′,

ñ := m+ n,

Λ̃ :=
1

γ

(
ε−1Im×m 0

0 In×n

)
, α̃ := −Λ̃

(
λ
0

)
and χ̃ := −

( 1

2γε
+

1

2γ

)
|λ|2.

This gives δmin
t

(
Λ̃
)

= 1/γ, and now we obtain from Lemma 5.2 and (3.6) in

Theorem 3.1 for K̃ := K(m) ×K(n) the following result.
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Proposition 5.3. We have

Γ̌t = −ess inf
ε∈(0,1]

ess inf
κ∈K(m)

log EQκ [exp(−γGκ,ε
t )|Gt]1/γ. (5.3)

By picking arbitrary κ ∈ K(m) and ε ∈ (0, 1], the representation (5.3)
allows us to get lower bounds for Γ̌t, and hence also for V G

t by Lemma 5.1.
Note that Qκ is a martingale measure for S only for κ = λ. In that case, Qκ

equals the minimal martingale measure P̂ , and we get from (5.3) that

Γ̌t ≥ − log EP̂

[
exp

(
−γG− 1

2

∫ T

t

|λs|2 ds

)∣∣∣∣Gt]1/γ

.

5.2 Projecting onto incompleteness

This short section exploits the projection result from Section 3.2 to give an
upper bound for V G

0 . For any process Z, we denote by FZ =
(
FZs
)

0≤s≤T the
P -augmented filtration generated by Z. In this section, Zo stands for the op-
tional projection of Z onto the filtration FW⊥ under the minimal martingale
measure P̂ , i.e., Zo

τ = EP̂
[
Zτ
∣∣FW⊥τ

]
for any FW⊥-stopping time τ.

Proposition 5.4. For any s ∈ [0, T ], V G satisfies(
log(−V G)

)o
s
≥ logEP̂

[
exp

(
−EP̂

[
γG
∣∣FW⊥T

]
− 1

2

∫ T

s

(
|λ|2
)o
r

dr

)∣∣∣∣FW⊥s

]
.

Proof. Using (4.4), we can rewrite (5.1) in the form

Γ̌s = G−
∫ T

s

(γ
2

∣∣Žr∣∣2 − 1

2γ
|λr|2

)
dr +

∫ T

s

Ẑr dŴr +

∫ T

s

Žr dW⊥
r .

By Remark 3.4, we have Γ̌o ≤ Γ̄ where
(
Γ̄, Z̄

)
solves the BSDE

Γ̄s = EP̂
[
G
∣∣FW⊥T

]
−
∫ T

s

(γ
2

∣∣Z̄r∣∣2 − 1

2γ

(
|λ|2
)o
r

)
dr +

∫ T

s

Z̄r dW⊥
r

for 0 ≤ s ≤ T . A direct calculation shows similarly to (2.4) that

Γ̄s = −1

γ
logEP̂

[
exp

(
−EP̂

[
γG
∣∣FW⊥T

]
−1

2

∫ T

s

(
|λ|2
)o
r

dr

)∣∣∣∣FW⊥s

]
, 0 ≤ s ≤ T,

which concludes the proof since V G = − exp
(
−γΓ̌

)
by Lemma 5.1.

Proposition 5.4 gives an upper bound for V G
0 and thus also for b0, but

these bounds are rather rough. In the next section, we show how additional
measurability assumptions can be exploited to derive other bounds via the
symmetrisation result of Section 3.3.
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5.3 Symmetrising a nontradable claim

Recall that FZ =
(
FZs
)

0≤s≤T denotes the P -augmented filtration generated

by a process Z. We recall Y and W from (4.1) and write for brevity

W = (Ws)0≤s≤T for FW , Y = (Ys)0≤s≤T for FY , Ŷ =
(
Ŷs
)

0≤s≤T for FŶ .

If Rλ is Y-predictable, then Ŷ from (4.4) is Y-adapted and hence Ŷ ⊆ Y. In
general, however, none of the above three filtrations contains any other. We
study two cases which were introduced by Frei and Schweizer [7] in a setting
with one-dimensional Y and W .

Cases. We consider one of the following two situations:

(I) G ∈ L∞(YT , P ), λ is Y-predictable, and R is Y-predictable.

(II) G ∈ L∞
(
ŶT , P

)
, λ is FS,Ŷ -predictable, and λ is W-predictable.

Each case reflects a situation where the payoff G is driven by Y
(
or Ŷ

)
,

whereas hedging can only be done in S which is imperfectly correlated with
Y
(
or Ŷ

)
. Direct hedging in the underlying of G may be impossible for two

basic reasons: In case (I), its driver is not traded at all (e.g., a volatility or a
consumer price index), whereas in case (II), it is traded in principle but not
tradable for our investor, due to legal, liquidity, practicability, cost or other
reasons. We refer to Section 4.1 of Frei and Schweizer [7] for a thorough
explanation and motivation of the assumptions in cases (I) and (II).

We focus in this section on case (I) and first relate V G to a BSDE of the
form (2.1). A similar result for case (II) is given in Proposition A.4 in the
Appendix. Recall from (4.3) that Λ := 1

γ
(I −RR′)−1.

Proposition 5.5. In case (I), the BSDE

Γs = G−
∫ T

s

(1

2
Z ′rΛ

−1
r Zr − Z ′rRrλr −

1

2γ
|λr|2

)
dr +

∫ T

s

Zr dYr (5.4)

for 0 ≤ s ≤ T has a unique solution (Γ, Z) where Γ is a real-valued bounded
continuous (Y, P )-semimartingale and Z is an Rn-valued Y-predictable pro-

cess such that
∫ T

0
|Zs|2 ds <∞ almost surely. Moreover, V G = − exp(−γΓ).

Proposition 5.5 shows in particular that V G is Y-adapted in case (I).
This generalises Remark 3.3 of Ankirchner et al. [2] who made the same
observation in a Markovian setting. It also shows that the distortion power
δB̂ in Theorem 2 of Frei and Schweizer [7] can be chosen Y-adapted.
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Proof. The BSDE (5.4) can be brought into the form (2.1) by defining

B := Y, F := Y, χ := −1

2
λ′
(1

γ
I +R′ΛR

)
λ and α := −ΛRλ, (5.5)

and so (5.4) has a unique solution (Γ, Z) by Lemma 2.2. Using (4.1) then
shows that

(
Γ, R′Z,

√
I −RR′Z

)
solves (5.1), and

EP

[∫ T

0

(
Z ′sRsR

′
sZs + Z ′s(I −RsR

′
s)Zs

)
ds

]
= EP

[∫ T

0

|Zs|2 ds

]
<∞,

since
∫
Z dY ∈ BMO(Y, P ) by Lemma 2.2. Moreover, V G = − exp(−γΓ) by

uniqueness for (5.1). For later use, note that plugging (5.5) into (3.2) gives

Gκ
t = G+

1

2γ

∫ T

t

|λs|2 ds− 1

2

∫ T

t

(
κ′sΛsκs − (Rsλs)

′Λs(Rsλs)
)

ds

−
∫ T

t

Λs(κs −Rsλs) dYs. (5.6)

The key point for rewriting the description of V G from (5.1) in Lemma
5.1 to (5.4) in Proposition 5.5 is that the latter BSDE has the form (2.1); and
this reformulation, by working in the filtration FY instead of G = F(W,W⊥),
is possible thanks to the measurability conditions imposed by case (I). We
could now apply to (5.4) all the results of Section 3, but we focus here on
symmetrisation via Theorem 3.7. However, we also briefly mention in the
next remarks some consequences of the probability change via Theorem 3.1
and the projection via Theorem 3.3.

Remark 5.6. 1) Theorem 3.1 applied to the BSDE (5.4) generalises The-
orem 2 of Frei and Schweizer [7], which corresponds to the choice κ = Rλ.

In that case, Gκ
t from (5.6) simplifies to GRλ

t = G+ 1
2γ

∫ T
t
|λs|2 ds and PRλ

is the projection onto YT of the minimal martingale measure P̂ in (4.5).
The freedom in Theorem 3.1 of choosing κ arbitrarily allows one to obtain
other bounds. Note from (5.6) that κ = Rλ is special because only with this
choice, Gκ

t has no dY -integral in addition to G. So the minimality of P̂ in
the original sense corresponds to the minimality of GRλ

t in the sense that it
only differs from G by the terminal value of a finite variation process.

2) Theorem 4 of Frei and Schweizer [8] is the general semimartingale
analogue of Theorem 3.1 applied to (5.4), with slightly different assumptions.

3) Proposition 5.5 starts with an optimisation problem in a financial
market and relates this to the solution of a BSDE. In the opposite direction,
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one could also start with a BSDE and link its solution to an optimisation
problem in an artificially constructed financial market. For the BSDE (2.1)
with fixed (G,Λ, α, χ) as in Section 2.1, we can define

γ := sup
s∈[t,T ]

∥∥max spec(Λ−1
s )
∥∥
L∞

+ 1, R :=

√
I − 1

γ
Λ−1, λ := −R−1Λ−1α,

G̃ := G+

∫ T

t

χs ds+
1

2

∫ T

t

λ′s

(1

γ
I +R′sΛsRs

)
λs ds, m := n.

If we construct with these parameters a model as in Section 4, then Propo-
sition 5.5 yields Γt = − 1

γ
log
(
−V G̃

t

)
.

4) Theorem 3.3 gives an upper bound for the solution of (5.4) in terms
of a solution to a projected, lower-dimensional BSDE. Combining this with
the above remark shows that projecting the optimisation problem relates to
constructing a lower-dimensional artificial market. �

Applying Theorem 3.1 to the BSDE (5.4) yields bounds for V G
t which

depend directly on the claim G. If we also use symmetrisation via Theorem
3.7, we obtain bounds depending on a symmetrisation of G.

For any Y-predictable Sn-valued process Λ, there exist a Y-predictable O
valued in O(n) and a Y-predictable diagonal matrix D = diag(D11, . . . , Dnn)
with Λ = O′DO. For a bounded Y-predictable process κ, we define a process
Y κ,O null at 0 by dY κ,O = O(dY + κ ds), and we set Yκ,O =

(
Yκ,Os

)
0≤s≤T

:= FY κ,O . For the next result, we work on Wiener space with coordinate
process Y κ,O and use the notations of Sections 3.1 and 3.3 with B := Y κ,O

and χ, α given by (5.5).

Proposition 5.7. Write Λ = O′DO and fix a bounded Y-predictable pro-
cess κ. In case (I), assume that D is Yκ,O-predictable and Gκ

t in (5.6) is
Yκ,OT -measurable, and set Gκ,Sym

t := 1
n!

∑
u∈Perm G

κ
t ◦ Ut. Then we have

V G
t ≤ −EPκ

[
exp
(
−Gκ,Sym

t

/
dt
)∣∣Yκ,Ot ]γdt

a.s., (5.7)

where

dt := sup
s∈[t,T ]

∥∥∥∥ 1

n

n∑
j=1

sup
u∈Perm

(Djj
s ◦ Ut)

∥∥∥∥
L∞
.

Proof. By Proposition 5.5, V G
t = − exp(−γΓt) where (Γ, Z) solves (5.4). If(

Γ̃, Z̃
)

solves for 0 ≤ s ≤ T the BSDE

Γ̃s = Gκ
t −

1

2

∫ T

s

(
OrZ̃r

)′
D−1
r

(
OrZ̃r

)
dr +

∫ T

s

(
OrZ̃r

)
dY κ,O

r , (5.8)
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combining (5.8), (5.6) and (5.4) on [[0, T ]] shows Z = Z̃ − Λ(κ−Rλ) and

Γ = Γ̃− 1

2

∫ t∨·

t

(
|λ|2/γ − (κ−Rλ)′Λ(κ+Rλ)

)
ds+

∫ t∨·

t

Λ(κ−Rλ) dY

so that in particular Γt = Γ̃t. Now we apply Theorem 3.7 to the BSDE (5.8)
and obtain (5.7) from (3.36), except for one detail: The payoff Gκ

t from (5.6)
is not bounded, as Theorem 3.7 requires. But a closer look shows that Gκ

t

differs from a bounded payoff only by
∫ T
t

Λs(κs−Rsλs) dYs, and since this Y -
integrand is bounded, the arguments from Theorem 3.7 still go through.

If we choose κ = Rλ in Proposition 5.7, the random variable Gκ
t in (5.6)

simplifies to GRλ
t = G+ 1

2γ

∫ T
t
|λs|2 ds and the resulting upper bound

V G
t ≤ −EP̂

[
exp
(
−GRλ,Sym

t

/
dt
)∣∣YRλ,Ot

]γdt
a.s.

can be written under the minimal martingale measure P̂ from (4.5). In
general, the bound of Proposition 5.7 differs from the upper bound in The-
orem 3.1 in two respects. On the one hand, the expectation in (5.7) is dis-
torted by dt which depends on the average eigenvalue of (the permuted) D,
whereas δmax

t from Theorem 3.1 reflects the maximal eigenvalue of D. We
have dt ≤ δmax

t and in the multidimensional case n > 1, there can be a big
difference between dt and δmax

t so that the bound of Proposition 5.7 may sig-
nificantly improve that of Theorem 3.1. But on the other hand, the bound
of Proposition 5.7 depends on the symmetrised claim Gκ,Sym

t instead of Gκ
t ,

which may make it worse. It depends on the concrete situation which of the
two impacts is stronger and whether Proposition 5.7 or Theorem 3.1 gives
the better bound. For n = 1, the bounds coincide.

In practice, the claim G often has symmetry properties (e.g., if it is the
sum of individual assets); then Gκ,Sym

t does not differ much from Gκ
t , and the

bounds of Proposition 5.7 can be much better than those from Theorem 3.1.
We illustrate the above discussion in the next simple example.

Example. Take m = dim W = 1 and n = dim Y = 2. We assume that
instantaneous correlations between W and Y are given by R = (ρ1, ρ2)′ for
two constants ρ1, ρ2 ∈ ]−1, 1[ with 0 6= |ρ1|2 + |ρ2|2 < 1. By (4.3), we have

Λ =
1

γ
(I −RR′)−1 =

1

γ

(
1− |ρ1|2 −ρ1ρ2

−ρ1ρ2 1− |ρ2|2
)−1

,

which can be written as Λ = O′DO for

D =
1

γ

(
1 0
0 1

1−|ρ1|2−|ρ2|2

)
and O =

1√
|ρ1|2 + |ρ2|2

(
ρ2 −ρ1

ρ1 ρ2

)
.
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We assume that λ = µ
σ

is constant, and we consider a claim of the form
G = q1Y 1

T + q2Y 2
T = q′YT for a constant q = (q1, q2)′ ∈ R2\{0}. In this simple

setting, V G can be explicitly determined. Indeed, writingG= q′Yt +
∫ T
t
q dYs,

plugging this into (5.6) and choosing κ = Λ−1q +Rλ leads to

Gκ
t = q′Yt +

1

2

(
λ2/γ − 2λR′q − q′Λ−1q

)
(T − t),

and because this is Yt-measurable, we get V G
t = − exp(−γGκ

t ). But note

that this works only because G is of the special form G =
∫ T

0
q dY and q, R

and λ are deterministic.
Although V G

t is explicitly known here, we next also compare the bounds
from Theorem 3.1 and Proposition 5.7 for the special choice κ = Rλ. We
choose this κ since it does not depend on G and also has nice consequences,
as explained after Proposition 5.7; and we compute the bounds despite their
non-optimality since they are explicit and illustrative. Applying Theorem 3.1
for κ = Rλ to the BSDE (5.4) gives with an easy computation for the indif-
ference value in (4.7) the upper bound

b0 ≤ − logEPRλ [exp(−G/δmax
0 )]δ

max
0

= −γT
2

(
1− |ρ1|2 − |ρ2|2

)(
|q1|2 + |q2|2

)
− Tλ(q1ρ1 + q2ρ2), (5.9)

where δmax
0 = max spec(Λ) = 1

γ(1−|ρ1|2−|ρ2|2)
. For Proposition 5.7 with κ = Rλ,

we have to symmetrise with respect to Y Rλ,O
s = OYs + ORλs, 0 ≤ s ≤ T .

The symmetrised claim is

GRλ,Sym
0 =

1

2
(q1, q2)O′Y Rλ,O

T +
1

2
(q1, q2)O′

(
(Y Rλ,O

T )2

(Y Rλ,O
T )1

)
− Tλ(q1ρ1 + q2ρ2)

=
1

2
(q̃1 + q̃2)

(
(Y Rλ,O

T )1 + (Y Rλ,O
T )2

)
− Tλ(q1ρ1 + q2ρ2),

where (
q̃1

q̃2

)
:= O

(
q1

q2

)
=

1√
|ρ1|2 + |ρ2|2

(
ρ2q1 − ρ1q2

ρ1q1 + ρ2q2

)
,

and so Proposition 5.7 and (4.7) yield

b0 ≤ − logEPRλ
[
exp
(
−GRλ,Sym

0

/
d0

)]d0
= −γT

2

(
1− |ρ1|2 − |ρ2|2

) (q̃1 + q̃2)2

2− |ρ1|2 − |ρ2|2
− Tλ(q1ρ1 + q2ρ2),
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where d0 = 1
2

tr(Λ) = 1−|ρ1|2/2−|ρ2|2/2
γ(1−|ρ1|2−|ρ2|2)

. Due to the symmetry of the model, we

can interchange ρ1 and ρ2 and, simultaneously, q1 and q2. This leads to

b0 ≤− Tλ(q1ρ1 + q2ρ2)− γT
(
1− |ρ1|2 − |ρ2|2

)
(5.10)

×
max

{(
ρ1(q1 − q2) + ρ2(q1 + q2)

)2
,
(
ρ2(q2 − q1) + ρ1(q1 + q2)

)2}
2(2− |ρ1|2 − |ρ2|2)(|ρ1|2 + |ρ2|2)

,

which is a better bound for b0 than (5.9) if and only if

1 <
max

{(
ρ1(q1 − q2) + ρ2(q1 + q2)

)2
,
(
ρ2(q2 − q1) + ρ1(q1 + q2)

)2}
(|q1|2 + |q2|2)(2− |ρ1|2 − |ρ2|2)(|ρ1|2 + |ρ2|2)

. (5.11)

We assume without loss of generality that q1 6= 0. Then q2 = cq1 for some
c ∈ R, and a calculation shows that (5.11) is equivalent to

(ρ1, ρ2) 6∈
(
D 1√

2
(c−, c+)∪D 1√

2
(−c−,−c+)

)
∩
(
D 1√

2
(c+,−c−)∪D 1√

2
(−c+, c−)

)
,

(5.12)
where c± := 1±c

2
√

1+|c|2
and D 1√

2
(z) denotes the closed disk of radius 1

/√
2

centered at z ∈ R2. Note that |c−|2 + |c+|2 = 1/2 so that the centers of
all four disks in (5.12) lie on a circle of radius 1

/√
2 centered at the origin.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
c ! 1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
c ! 3

Figure 1: Graphical visualisation of (5.12) for c = 1 (left panel) and c = 3 (right panel)
with ρ1 on the horizontal and ρ2 on the vertical axis. We have c− = 0, c+ = 1/

√
2 (left

panel) and c− = −1/
√

10, c+ = 2/
√

10 (right panel).

Figure 1 shows in green the area on which (5.12) holds and in red its com-
plement in the unit disk. In the green area, the symmetrised bound (5.10)
is better than (5.9), and vice versa in the red area. The green area amounts
to 2/π ≈ 63.66 % of the total surface of the unit disk. In principle, the big-
ger |ρ1|2 + |ρ2|2 is and the nearer (ρ1, ρ2) is to one of the points (c−, c+),
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(−c−,−c+), (c+,−c−) or (−c+, c−), the more likely it is that (ρ1, ρ2) is in
the green area and the symmetrised bound is better. This reflects the idea
that if G is more symmetric with respect to Y Rλ,O and the eigenvalues of Λ
differ a lot, then making everything symmetric will achieve more than only
squeezing the eigenvalues together.

A Appendix: Auxiliary results

Lemma A.1. The function f(A, z) = 1
2
z′A−1z in (2.2) is jointly convex.

Proof. It is enough to show that, for fixed z, y ∈ Rn and A,F ∈ Sn,

z′A−1z + y′F−1y ≥ (z + y)′(A+ F )−1(z + y). (A.1)

We first note that there is C ∈ GL(n) such that C ′AC = I and D := C ′FC
is diagonal. Indeed, A = U ′U for some U ∈ GL(n), and (U−1)′FU−1 is
symmetric; so there exists V ∈ O(n) with V ′(U−1)′FU−1V diagonal, and
C := U−1V will do. Thus (A.1) is equivalent to

|ž|2 + y̌′D−1y̌ ≥ (ž + y̌)′(I +D)−1(ž + y̌), ž := C ′z and y̌ := C ′y,

or, with D = diag(D11, . . . , Dnn), to

n∑
j=1

(
|žj|2 + |y̌j|2

/
Djj
)
≥

n∑
j=1

|žj + y̌j|2

1 +Djj
.

But the last relation is true because for j = 1, . . . , n, we have

(
|žj|2 + |y̌j|2

/
Djj
)
− |ž

j + y̌j|2

1 +Djj
=

∣∣žj√Djj − y̌j
/√

Djj
∣∣2

1 +Djj
≥ 0.

Lemma A.2. In the setting of Section 3.1, fix δ > 0. If a predictable Rn-
valued process κ with

∫
κ dB in BMO(P ) satisfies∥∥∥∥∫ κ dB

∥∥∥∥2

BMO2(P )

<
1

3|δmax
t /δ|2 + 3δmax

t /δ + 1
, (A.2)

then κ is in Kδ.
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Proof. We show that κ satisfies (3.3). For p > 1 to be specified later and for
any stopping time τ valued in [t, T ], we have

EPκ

[
exp

(∫ T

τ

1

2
κ′sΛsκs ds+

∫ T

τ

Λsκs dBs

)p/δ∣∣∣∣Fτ]
= EP

[∣∣∣∣E(2
∫

(p
δ
Λ− I)κ dB)T

E(2
∫

(p
δ
Λ− I)κ dB)τ

∣∣∣∣1/2exp

(∫ T

τ

κ′s

(p2

δ2
Λ2
s −

3p

2δ
Λs +

1

2
I
)
κs ds

)∣∣∣∣Fτ]
≤ EP

[
exp

(∫ T

τ

2κ′s

(p2

δ2
Λ2
s −

3p

2δ
Λs +

1

2
I
)
κs ds

)∣∣∣∣Fτ]1/2

by the Cauchy-Schwarz inequality. The John-Nirenberg inequality (Theorem
2.2 of Kazamaki [11]) implies that this is bounded uniformly in τ if(2p2

δ2
|δmax
t |2 + 1

)∥∥∥∥∫ κ dB

∥∥∥∥2

BMO2(P )

< 1,

which is satisfied for the choice p =
√

3/2 under the assumption (A.2). Using
additionally Jensen’s inequality, we obtain analogously that

EPκ

[
exp

(∫ T

τ

1

2
κ′sΛsκs ds+

∫ T

τ

Λsκs dBs

)1/δ∣∣∣∣Fτ]
≥

∣∣∣∣∣EPκ
[
exp

(
−
∫ T

τ

1

2
κ′sΛsκs ds−

∫ T

τ

Λsκs dBs

)1/δ∣∣∣∣Fτ]
∣∣∣∣∣
−1

is bounded away from zero uniformly in τ if( 2

δ2
|δmax
t |2 +

3

δ
δmax
t + 1

)∥∥∥∥∫ κ dB

∥∥∥∥2

BMO2(P )

< 1,

which is again fulfilled under the assumption (A.2). This implies that, after a

division by exp
(∫ τ

t
1
2
κ′sΛsκs ds+

∫ τ
t

Λsκs dBs

)p/δ
, the conditional expectation

on the right-hand side of (3.3) is bounded away from zero, and the left-hand
side of (3.3) is bounded. Therefore, there exists a constant C such that (3.3)
holds, which concludes the proof.

Lemma A.3. In the setting of Section 3.3, we have(∫
Z dB

)
◦ Ut =

∫
(Z ◦ Ut) dBu. (A.3)

for any predictable process Z on Wiener space with
∫ T

0
|Zs|2 ds <∞ a.s.

33



Proof. By Itô’s representation theorem, any local martingale is of the form
c+
∫
β dB for a constant c and a predictable process β with

∫ T
0
|βs|2 ds <∞

a.s. Therefore, (A.3) is equivalent to〈(∫
Z dB

)
◦ Ut,

∫
β dB

〉
=

〈∫
(Z ◦ Ut) dBu,

∫
β dB

〉
(A.4)

for any predictable β with
∫ T

0
|βs|2 ds <∞ a.s. To prove (A.4), we note first

that P ◦ U−1
t = P by the invariance of Wiener measure under orthogonal

transformations, and thus

E[X ◦ Ut] = E[X] for all X ∈ L1. (A.5)

This implies that the (local) martingale property is invariant under Ut, i.e.,
for an adapted integrable process M , we have

M is a (local) martingale ⇐⇒ M ◦ Ut is a (local) martingale. (A.6)

Indeed, if τ is a stopping time and Mτ∧· is a martingale, then τ ◦ Ut is a
stopping time and we have for any s ∈ [0, T ] and A ∈ Fs that

E
[
(M ◦ Ut)(τ◦Ut)∧T1A

]
= E

[(
Mτ∧T1U−1

t (A)

)
◦ Ut

]
= E

[
Mτ∧T1U−1

t (A)

]
= E

[
Mτ∧s1U−1

t (A)

]
= E

[
(M ◦ Ut)τ∧s1A

]
by (A.5), using also that U−1

t (A) ∈ Fs. This gives “=⇒” in (A.6), and “⇐=”
follows by symmetry.

We are now ready to prove (A.4). Its left-hand side equals〈(∫
Z dB

)
◦ Ut,

∫
β dB

〉
=

∫
d

〈(∫
Z dB

)
◦ Ut, B

〉
β, (A.7)

and by (A.6) we have〈(∫
Z dB

)
◦ Ut, B

〉
=

〈(∫
Z dB

)
◦ Ut,

(
(1[[0,t]]I + 1]]t,T ]]u

−1)B
)
◦ Ut

〉
=

〈∫
Z dB, (1[[0,t]]I + 1]]t,T ]]u

−1)B

〉
◦ Ut

=

∫ t∧·

0

Z ′ ds+

(∫ t∨·

t

Z ′(u−1)′ ds

)
◦ Ut.

Since
(∫

Z ′(u−1)′ ds
)
◦ Ut =

∫
(Z ◦ Ut)′u ds, we obtain from (A.7) that〈(∫

Z dB

)
◦ Ut,

∫
β dB

〉
=

∫ (
1[[0,t]]Z

′β + 1]]t,T ]](Z ◦ Ut)′uβ
)

ds

=

〈∫
(Z ◦ Ut) dBu,

∫
β dB

〉
,

which shows (A.4) and concludes the proof.
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The following result is the analogue of Proposition 5.5 for case (II).

Proposition A.4. Under the assumptions of case (II) in Section 5.3 with
the additional requirement that R is Ŷ-predictable, the BSDE

Γs = G−
∫ T

s

1

2
Z ′rΛ

−1
r Zr dr +

∫ T

s

Zr dŶr, 0 ≤ s ≤ T (A.8)

has a unique solution (Γ, Z) where Γ is a real-valued bounded continuous(
Ŷ, P̂

)
-semimartingale and Z is an Rn-valued Ŷ-predictable process such that∫ T

0
|Zs|2 ds <∞ almost surely. Moreover, for any s ∈ [0, T ],

V G
s = − exp

(
−γΓs −

1

2
EP̂

[∫ T

s

|λr|2 dr

∣∣∣∣Ws

])
a.s. (A.9)

Proof. This follows the same idea as Proposition 5.5, using additionally that
the mean-variance tradeoff

∫ T
0
|λr|2 dr is in case (II) attainable by trading in

S. In more detail, we replace P in Section 2 by P̂ and set

B := Ŷ , F := Ŷ, α := 0 and χ := 0

to bring (A.8) into the form (2.1). By Lemma 2.2, (A.8) has a unique solution
(Γ, Z), and

∫
Z dŶ is in BMO

(
Ŷ, P̂

)
. Since Rλ is bounded,

∫
Z dY is a

(G, P )-martingale, and because Γ is bounded, we obtain from (A.8) that

EP
[

1
2

∫ T
0
Z ′sΛ

−1
s Zs ds

]
<∞, which implies EP

[∫ T
0
|Zs|2 ds

]
<∞ due to (4.2).

To deal with the term involving λ, we use Itô’s representation theorem as in
Lemma 1.6.7 of Karatzas and Shreve [10] and obtain a W-predictable process

η = (ηs)0≤s≤T with EP̂
[∫ T

0
|ηs|2 ds

]
<∞ and

1

2γ

∫ T

0

|λs|2 ds =
1

2γ
EP̂

[∫ T

0

|λs|2 ds

]
+

∫ T

0

ηs dŴs

=
1

2γ
EP̂

[∫ T

0

|λs|2 ds

]
+

∫ T

0

η′sλs ds+

∫ T

0

ηs dWs. (A.10)

Here we use that λ is W-predictable in case (II), recalling that W = FW . As
λ is bounded,

∫
η dŴ is in BMO

(
G, P̂

)
and so

∫
η dW is in BMO(G, P ) by

Theorem 3.6 of Kazamaki [11]. For the solution (Γ, Z) of (A.8), we set

(
Γ̌, Ẑ, Ž

)
:=

(
Γ +

1

2γ
EP̂

[∫ T

·
|λs|2 ds

∣∣∣∣W·],−η +R′Z,
√
I −RR′Z

)
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and calculate

dΓ̌s = dΓs +
1

2γ
d

(
EP̂

[∫ T

0

|λr|2 dr

∣∣∣∣Ws

]
−
∫ s

0

|λr|2 dr

)
= dΓs + η′sλs ds+ ηs dWs −

1

2γ
|λs|2 ds

=
(γ

2

∣∣Žs∣∣2 − Ẑ ′sλs − 1

2γ
|λs|2

)
ds− Ẑs dWs − Žs dW⊥

s , 0 ≤ s ≤ T

by (4.1), (4.4) and (A.10). Therefore,
(
Γ̌, Ẑ, Ž

)
solves (5.1) and we also have

EP

[∫ T

0

(
(ηs +R′sZs)

′(ηs +R′sZs) + Z ′s(I −RsR
′
s)Zs

)
ds

]
≤ 3EP

[∫ T

0

|Zs|2 ds

]
+ 2EP

[∫ T

0

|ηs|2 ds

]
<∞.

Finally, (A.9) follows from the uniqueness of solutions to (5.1).
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