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Most assets are traded in multiple interconnected trading venues. This paper develops an
equilibrium model of decentralized markets that accommodates general market structures with
coexisting exchanges. Decentralized markets can allocate risk among traders with different
risk preferences more efficiently, thus realizing gains from trade that cannot be reproduced
i centralized markets. Market decentralization always increases price impact. Yet, markets
in which assets are traded in multiple exchanges, whether they are disjoint or intermediated,
can give higher welfare than the centralized market with the same traders and assets. In
decentralized markets, demand substitutability across assets s endogenous and heterogeneous
among traders.
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1 Introduction

In classical economic theory, markets are centralized. All units are exchanged through a single
market clearing at the terms of trade that apply to all agents equally. In today’s markets,
essentially all financial assets are traded in multiple coexisting and interconnected trading
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venues. Trade away from centralized exchanges is common not only for assets and goods with
heterogeneous units such as real estate, but also for homogeneous assets. Indeed, most bonds
(government, municipal, and corporate) are traded over the counter, as are currencies, loans,
and (more recently) stocks.! In fact, the past two decades have seen new types of marketplaces
that offer different types of market clearing — direct matching with an intermediary, trading in
a dealer network, or an electronic centralized exchange — to institutional and retail investors.
This paper examines the potential for a decentralized market to create gains from trade.
What are the economic mechanisms in decentralized markets that have no centralized market
counterparts?

The growing literature on decentralized trading emphasizes important frictions that are
associated with decentralization of trade, such as search, counterparty risk, or asymmetric
information. With “decentralization” introduced as a friction in a competitive model, a typ-
ical result argues that the absence of frictions would correspond to maximal welfare. To
understand the potential for welfare gains with decentralized trading, we consider markets
with any number of strategic traders and divisible assets. The sole assumption of the cen-
tralized market model that we relax is that a single market clearing determines all agents’
allocations. Namely, the market consists of exchanges, each defined by the subset of agents
who trade there and the subset of assets traded, each with a separate market-clearing price.
A market is centralized if there is a single exchange for all traders and assets and decentralized
otherwise. Traders can participate in many exchanges in which the same or different assets
may be traded. This accommodates market structures with coexisting exchanges, including
centralized markets and empirically common market structures with private exchanges (with
restricted participation), public exchanges, and intermediation. Preferences and assets are
described by CARA utilities and Gaussian payoffs. Gains from trade come from risk sharing:
endowments (which are agents’ private information and are independent) and risk preferences
are heterogeneous. FEach exchange operates as a (uniform-price) double auction, and agents
submit demand and supply schedules in the exchanges in which they participate. Thus, the
model is a decentralized market counterpart of double auction models in the tradition of
Kyle (1989), Vives (2011), and the CAPM. This permits a direct comparison of predictions
for centralized and decentralized markets.

Why might a decentralized market be more efficient? In markets with strategic traders, the
Pareto efficiency result of the First Welfare Theorem does not apply: even if the total number
of traders is large, traders in decentralized markets generally have a strictly positive price
impact in the exchanges where they participate. In any market, centralized or decentralized,

1 In the U.S. equity market, the NYSE executes less than a quarter of the volume in its listed stocks; the

remaining volume is created in over 10 public exchanges, more than 30 private exchanges (liquidity pools),
and over 200 broker-dealer networks. Over the past few years, trading in private exchanges has grown by
more than 50% in the U.S. and has more than doubled in Europe (Schapiro (2010)). Similarly, while prior
to 2007, equity markets in Europe were characterized by dominant exchanges in each domestic market, the
Markets in Financial Instruments Directive (MiFID) in 2007 created more than 200 new trading venues in
which equities, bonds, and even derivatives are traded. As of 2012, these alternative venues accounted for at
least 30% of total equity turnover. Duffie (2012) provides an overview.



equilibrium allocations of each trader is a combination of his initial endowment and an aggre-
gate risk portfolio (which corresponds to risk nondiversifiable in equilibrium). Our starting
observation is that in noncompetitive centralized markets, unless all traders’ risk preferences
are symmetric, the aggregate risk portfolio that all traders trade towards differs from the
efficient portfolio (which maximizes the total utility over feasible allocations, is independent
of the market structure, and corresponds to risk nondiversifiable in the market, or systematic
risk). In addition, the centralized market allocates risk in a particular way: relatively less risk
averse agents face a more inelastic residual supply and hence have larger price impact. Thus,
less risk averse agents will be reluctant to trade, and highly risk averse traders will retain
a large fraction of their endowment risk in equilibrium. This suggests that the efficiency of
the centralized market allocation depends on the distribution of endowments among agents
with different risk preferences. This further suggests that, to increase welfare, a decentralized
market would have to reallocate systematic risk towards less risk averse agents. We show that
a decentralized market can increase the total welfare compared to the centralized market.
In fact, simply breaking up the centralized market to create disjoint exchanges can increase
welfare.

We present the following main results. First, when a market becomes more decentralized
— some agents trade with fewer other traders or trade fewer assets — traders’ price impacts
weakly increase in any exchange and are thus lowest in the centralized market. This holds
regardless of the asset structure in the more decentralized market. Furthermore, a general
complementarity holds: any change in the market structure that lowers price impact “locally”
in an exchange lowers price impact in all other exchanges as long as they are indirectly
connected. For instance, creating new private exchanges, in which participation is restricted,
weakly improves liquidity in the market.?

Second, although the centralized market minimizes price impact for all traders, a decen-
tralized market with the same traders and assets may give higher total welfare. The key is
that decentralized trading changes the agents’ ability to diversify: since their participation in
the exchanges differs, agents trade distinct components of the aggregate risk portfolio. Given
that the centralized market aggregate risk portfolio is generally inefficient, utility can increase
despite the higher price impact. Moreover, traders’ equilibrium price impacts are no longer
linked to risk preferences in the particular way in which they are with centralized trading.
Essentially, by allowing heterogenous access to traders and assets, a decentralized market can
allocate risk among traders whose risk preferences differ more efficiently.

Our results imply that restricting trader participation, while increasing all traders’ price
impacts, may increase welfare. In particular, under conditions, the fact that trading is non-

2 One expects that this holds more generally when new exchanges do not affect too much inference about

values in the existing exchanges. The creation of new exchanges has increased competition and substantially
decreased liquidity costs in the U.S. stock market. Similar decreases in trading costs occurred in Canada,
Europe, and Asia, where different regulatory environments allowed electronic exchanges to develop earlier
than those in the United States (Knight Capital Group (2010); Angel, Harris and Spatt (2011); and O’Hara
and Ye (2011)).



competitive makes the case for various forms of market decentralization recently implemented
or debated: breaking up exchanges and asset deconsolidation (such as ring-fencing of invest-
ment banking units and swaps push-out required by the Dodd-Frank act and MiFID, de-
merger, or specialization in trading certain assets) may increase welfare;®> moving an asset
from centralized to OTC clearing and intermediation may increase welfare.

When should one expect a decentralized market to increase efficiency? We show that when
all traders’ risk aversions are symmetric, the centralized market maximizes welfare among
all market structures. This holds regardless of the distribution of initial endowment risk.
With sufficiently heterogeneous risk preferences, the welfare-maximizing market structure is
decentralized for some endowment distributions, particularly those for which the lowest risk
aversion agents hold large nondiversified endowments initially. More precisely, what matters
is not the endowment shocks per se but how the inefficient part of endowments, and hence
the need to trade is distributed across traders. Welfare gains from decentralization exist even
if the number of traders is arbitrarily large — sufficient heterogeneity in risk preference needs
to hold only for a few market participants, and endowments need not become more extreme
as the market grows.

Underlying certain decentralized-market effects that have no centralized market counter-
parts is that when trading is decentralized, demand substitutability for assets (i.e., demand
Jacobian) is endogeneous and generally differs among traders. Namely, we show that in cen-
tralized markets, all traders’ equilibrium price impacts are always proportional to the assets’
fundamental covariance. The factor of proportionality depends on the trader’s risk-aversion,
with less risk-averse traders having greater price impact. In contrast, when the market is
decentralized, the within- and across-exchange price impact induced by others’ behavior de-
pends on who participates in each exchange and which assets are traded so that price impact is
generally not proportional to fundamental risk. This non-proportionality of incentives in risk
implies that demand substitutability for the same assets is heterogeneous among traders who
participate in different exchanges. In contrast, in centralized markets, agents’ demand substi-
tutability always corresponds to the assets’ fundamental payoff substitutability and hence is
the same for all traders. The endogenous demand substitutability creates incentives for agents
to specialize in trading different assets — as specialist intermediaries or non-intermediating
dealers — and may increase welfare in the Pareto sense, even without affecting aggregate risk.
Specifically, by changing who trades which assets without necessarily changing who trades
with whom, decentralizing a market may allow for a reduction in idiosyncratic risk, whose
changes do not affect the risk that is nondiversifiable in equilibrium.

The methods we introduce will be useful to other researchers studying games and general
equilibrium on networks and hypergraphs. A hypergraph generalizes a graph by allowing an

3 In practice, markets are decentralized (in our sense) also because different participants trade different

assets — by choice or regulation. Even large financial institutions typically participate in only a few trading
venues and trade a small subset of existing securities; e.g., pension funds cannot trade many types of deriva-
tives, banks are allowed to hold but not trade loans, and most hedge funds have a clear specialization in
trading a limited number of securities.



edge to connect any number of nodes, beyond just two (e.g., Berge (1973)). Relative to the
existing literature on games on networks, such games allow applications with strategies that
have multiple dimensions over actions and attributes. The model allows equilibrium analysis
of traditional industrial organization questions (market power, competition, pricing, product
and market design, mergers) in decentralized markets. Let us note that decentralized market
games are not (super- or sub-)modular, and results that have been established for modular
games do not allow us to draw conclusions about welfare in decentralized markets. We charac-
terize the comparative statics of equilibrium and welfare with respect to preferences, assets,
and market structure for decentralized markets with arbitrary market structures, multiple
assets, and any number of strategic agents.

RELATED LITERATURE. This paper is part of the growing literature on decentralized markets.
Most modern models are based on graphs, random or fixed. The random search and matching
approach assumes that trade occurs in large markets among a continuum of traders, in which
centralized trading would be efficient (e.g., Gale (1986a,b); Duffie, Garleanu, and Pedersen
(2005); Vayanos and Weill (2008); Weill (2008); Duffie, Malamud, and Manso (2009, 2013);
Lagos and Rocheteau (2009); Lagos, Rocheteau, and Weill (2011); Afonso and Lagos (2012);
Huggonier, Lester, and Weill (2014); Atkeson, Eisfeldt, and Weill (2015)). Empirically, while
some markets are best described by random meetings among traders who are small relative
to the market, in others (e.g., dealer networks or interbank systems), relationships are not
random* and are dominated by large institutional investors, who have price impact. Dealing
with price impact often serves as a primary motivation to create an OTC exchange.® Thus, the
fact that agents are non-negligible in trading matters for why markets are decentralized. This
paper considers markets with any number of traders, all of whom are strategic. Allowing (not
assuming) noncompetitive behavior is central to our predictions and turns out to be important
for thinking about certain implications of decentralized trading. We take the market structure
(who trades with whom) as given and, in this sense, are closer to the strand of literature that
views agents as interacting on a fixed network (e.g., Kranton and Minehart (2001); Gale and
Kariv (2007); Blume, Easley, Kleinberg, and Tardos (2009); Gofman (2011); Manea (2011);
Nava (2011); Condorelli and Galeotti (2012); Choi, Galeottti, and Goyal (2013); Babus and
Kondor (2016); Elliott (2013); Rahi and Zigrand (2013); Bramoullé, Kranton, and D’Amours
(2014)). Like the random matching models, the existing networks literature largely views
decentralization as a restriction on the efficiency of trade.

In addition, just as the standard equilibrium theory is based on a single market clearing
for all traders and assets, the existing literature on decentralized trading makes the opposite

4 Tt is well documented that dealers or brokers trade via an established network structure and that

trading relationships exist between banks. An average bank trades with a small number of counterparties,
and most banks form stable relationships with at least one lending counterparty; e.g., the U.S. Federal Funds
market (Bech and Atalay (2010); Afonso, Kovner, and Schoar (2013)), interbank markets (Craig and Peter
(2010); Cocco, Gomes, and Martins (2009)), and U.S. municipal bonds market (Li and Schiirhoff (2012)).

> E.g., Biais, Bisiére, and Spatt (2010), Knight Capital Group (2010), Angel, Harris, and Spatt (2011).
Biais and Green (2007) attribute the historical shift in the U.S. municipal and corporate bond markets toward
OTC trading to the increased importance of institutional investors.



assumption that all transactions are bilateral.® We study networked markets with coexisting
exchanges (i.e., hypergraphs). A model which accommodates market structures described
by hypergraphs is not essential to our welfare results. It allows studying equilibrium in any
market structures “between” centralized and bilateral trading in which groups of traders in-
teract. During the past two decades, transactions occurring outside open exchanges have
largely shifted to “auctions” (market clearing via aggregation of multiple demands and sup-
plies) introduced for large institutional traders, dealers and retail investors. Moving beyond
bilateral links also enables one to examine when a decentralized market can behave like the
centralized market, why, and the conditions under which equilibrium behavior differs.

Finally, both random and fixed graph models typically derive the terms of trade from
bargaining (e.g., take-it-or-leave-it offers) or posted prices and have efficient surplus sharing
on each link. In our model, trade occurs through the uniform-price double auction in which
agents submit demand or supply schedules (equivalently and in practice, combinations of
limit and market orders) in the exchanges where they participate. The uniform-price market
clearing is a precise analog of the market clearing in centralized market models — in general
equilibrium and their game-theoretic counterpart of games in demand and supply functions.
As we show, traders have nonnegligible price impact — the behavior of prices and allocations
differs from that in trading environments with efficient risk sharing per link.

2 A Decentralized Market Model

MARKET: TRADERS, ASSETS AND EXCHANGES. Consider a market with I traders who trade
K risky assets in IV exchanges. Each exchange has separate clearing prices. We index agents
by 1, assets by k, and exchanges by n. An ezchange n € N is identified by the subset of agents
I(n) C I who trade there and the subset of assets traded K(n) C K. The set of exchanges
M = {(I(n), K(n))},, which we take as a primitive, represents the market structure. Thus,
M is a nonempty subset of the power set of I x K, which, together with the set of agents
I and assets K, corresponds to a hypergraph.” Agents can participate in many different
types of trading venues for possibly non-disjoint subsets of traders (e.g., a public exchange,
in which all traders participate, a private exchange, which restricts participation to a subset
of traders, and intermediation). We assume that at least three agents participate in every
exchange: I(n) > 2 for all n.®

6 Corominas-Bosch (2004) and Elliott (2011) allow for multilateral bargaining with search. Some models

(see Duffie, Garleanu, and Pedersen (2005); Lagos and Rocheteau (2009); and Lagos, Rocheteau, and Weill
(2011)) assume that trade can only happen through special intermediaries (dealers) who provide liquidity.
Rahi and Zigrand (2013) study trade of price-taking investors intermediated by arbitrageurs.

7 A hypergraph is defined as a pair (X, E), where X is a set of elements called nodes and E is a set of
nonempty subsets of X called (hyper-)edges. In our model, X = (I, K) and an edge (I(n), K(n)) represents
exchange n with I(n) agents and K(n) assets.

8  As is well known, in centralized markets with two traders, a linear equilibrium with trade does not exist
with independent private values (e.g., Kyle (1989)). With negatively correlated values, equilibrium exists for
any number of traders (Rostek and Weretka (2015b)).



The K risky assets have jointly normally distributed payoffs R ~ N(d,X) with positive
definite covariance ¥; a riskless asset with a zero interest rate (a numéraire) is also available.
Each trader i maximizes the expected CARA utility function E[—exp(—a;(—q!/p + (¢ +
¢:)'R))], where q; is agent i’s absolute risk aversion, ¢) is his endowment vector of risky
assets, ¢; is 1’s vector of trades of risky assets, and p denotes the vector of prices. Endowments
are (independent) private information. Using the fact that asset payoffs R; are normally
distributed, we have E|[—exp(—a;(—qlp + (¢ + ¢;)*R))] = —exp(—a,;Us(q;)) with
Q;

5 (@ +a) (P +a)— T4, (1)

Ui(g:) = d"(q7 + @) —
and hence, equivalently, trader ¢ maximizes the quasilinear-quadratic utility function (1).

In the analysis, we treat assets traded in different exchanges as different assets. That is,
we do not impose a priori that identical assets (in the sense of A'(d, X)) will trade at the same
prices in different exchanges.® Thus, we treat a market with K assets traded in N exchanges
{(I(n), K(n))}, as a market with > ,, K(n) (replicas of) assets and a (>_ ,K(n))x (>, K(n))
positive semidefinite covariance matrix V, induced by covariance ¥ and the set of exchanges.
This paper studies how the fact that exchanges are interlinked, through traders or assets,
affects market behavior. V describes the interconnectedness among the exchanges via traders
and assets. We use capital bold notation for objects defined directly in a decentralized market.

A trader i who participates in a subset of all exchanges N (i) C N maximizes
Q;

5 (@) + Qi)TVN(z‘) (&) +a) — (pnvey) @ (2)

Ui(a:) = di]\;(i)(qg +qi) —
where V ;) is the submatrix of the covariance matrix V, which corresponds to the assets
traded by agent 7 in exchanges N (i), dy(; is the subvector of the expected payoff vector d,
¢¥ € RY® and ¢; € RY® have the dimension of RV given by ZneN(i) K(n)," and png) =
(pj)jen() denotes the vector of prices in exchanges N (7). Market structure {(/(n), K(n))}, is
equivalently described by trader participation in the exchanges {N(i)};, given agents I and
assets K.

Example 1 (Centralized and Decentralized Markets) (i) The centralized market with
multiple assets: All agents I trade assets K in one exchange; N = {(I, K)}, and V = X.

(ii) A decentralized market for one asset: All agents I trade the same asset 1 with a variance
Y = 0% N = U{({({),1)}s; and the covariance matrix V is singular and has rank one,
V = 021 where 1 is a matrix with all elements equal to one.

9 For a discussion of arbitrage, see footnote 21.

10 We will be referring to the risky part of endowments, because this is the part that matters for the results.
With K assets, the actual dimension of the endowment vector is K. We use notation RV(® to represent that
the same asset can be traded in many exchanges: replicas of the same asset traded in different exchanges
correspond to different coordinates, and the split of a given asset’s endowments among the exchanges where it
is traded is arbitrary. Equilibrium allocations do not depend on the split of the endowment across exchanges.



(iii) Private exchanges: In addition to the public exchange for K’ C K assets, defined anal-
ogously to (i), there are L private exchanges (e.g., liquidity pools) in which only subsets
of agents can trade different subsets of assets. There are L (possibly nondisjoint) subsets
I(1),--- ,I(L) C I of agents, each trading in exchange [ € L; N = {({, K")}U{(1({), K(¢))}s
with K’ + >, K({) assets. Essentially all existing financial assets — most notably curren-
cies, fixed income instruments (e.g., government and corporate bonds), and all derivatives
— are traded in market structures that can be described as multiple interconnected private
exchanges.

Agents can participate in many different types of trading venues for possibly non-disjoint
subsets of traders (e.g., a centralized exchange, a dealer network, liquidity pools); there can
be intermediation between traders in different types of trading venues. 0J

Given the quasilinearity of the utility functions in cash (the numéraire), total welfare can
be compared across market structures through the sum of the utilities (2) evaluated at the
corresponding equilibrium allocations. Quasilinearity and market clearing imply that total
welfare does not depend on prices,

Z Ui(%’) = ZdT%Q - Z % (qz('] + Qi)TVN(i) (Qz('] + Qi) . (3)

i

It is clear that cash transfers exist for which one market Pareto dominates another if and
only if the sum of equilibrium utilities is larger in the former.

DECENTRALIZED DOUBLE AUCTION. Each exchange n operates as the standard uniform-
price double auction for traders i € I(n) (e.g., Kyle (1989); Vives (2011); CAPM). Trader i
submits a (net) demand schedule ¢;(py(;)) : RY ) — RN which specifies demanded quan-
tities of assets in the exchanges in which he participates; the demand is strictly downward-
sloping in each exchange. The market clears simultaneously in all exchanges as ), g; (p}"v(i)) =
0, where g;(pn()) : RY — R¥ is defined as equal to ¢; on N (i) and zero on other exchanges
N \ N(i). This market clearing condition defines the equilibrium price vector p*; trader i
receives ¢; = qi(p*N(i)) and pays p*N(i) -q; = p*-q. All traders are strategic; in particular,
there are no noise traders.

EQUILIBRIUM. We study the Bayesian Nash equilibrium in linear bid schedules (hereafter,
equilibrium). With divisible goods, equilibrium is invariant to the distribution of independent
private uncertainty.!! Equilibrium with strategic traders in any market structure, centralized

1 Equilibrium schedules are optimal even if traders learn the independent value endowments ¢ (or

equivalently, stochastic marginal utility intercepts, d=d- aXq)) of all other agents. The key to this ez post
property of Bayesian Nash equilibrium is that permitting pointwise optimization — for each price — equilibrium
demand schedules are optimal for any distribution of independent private information and are independent of
agents’ expectations about others’ endowments. Equilibrium is linear if schedules have the functional form
of ¢;(*) = ap+ ;4 + a; pp. Strategies are not restricted to linear schedules; rather, it is optimal for a trader
to submit a linear demand given that others do. The approach of analyzing the symmetric linear equilibrium
is common in centralized market models (e.g., Kyle (1989), Vayanos (1999), Vives (2011)). Our analysis does
not assume equilibrium symmetry.



or decentralized, can be characterized through two conditions which correspond to individual
optimization and market clearing (Proposition 1 and Theorem 1).

3 Equilibrium in Centralized vs. Decentralized Markets

In this section, we compare how centralized and decentralized markets allocate risk. We begin
with centralized trading to separate the changes relative to the competitive equilibrium due to
noncompetitiveness itself vs. market decentralization. The characterization of equilibrium for
heterogenous risk aversion — which, to the best of our knowledge, is new as is the uniqueness
of the linear equilibrium for many assets (divisible goods) in Proposition 1 — is the key to the
welfare effects of centralized and decentralized trading.

3.1 Equilibrium and Allocation of Risk in Centralized Markets

Suppose that all traders participate in a single exchange: N(i) = N = {(/, K)} and V() =
¥ =V for all i € I (Example 1 (i)). In equilibrium, the (net) demand schedule of trader i
equalizes his marginal utility with his marginal payment for each price,

d— % (q] + ¢) = p+ N, (4)

where A; measures the price impact of trader ¢ in the exchanges in which he participates (i.e.,
‘Kyle’s lambda’). A; is the K x K Jacobian matrix of the inverse residual supply of trader
17, which is defined by aggregation through the market clearing of the schedules submitted
by other traders, {g;(p) : R¥ — R®}, ;. The inverse of price impact is a common measure
of liquidity: the lower the price impact, the smaller the price concession a trader needs to
accept to trade, the more liquid the market. It follows from (4) that if trader ¢ knew his price
impact A;, which is endogenous, he could determine his demand by equalizing his marginal
utility and marginal payment pointwise. Let g; (-, A;) : R® — R¥ be the schedule defined by
pointwise optimization (4) for all prices p by trader i, given his assumed price impact A;,

4(p, Ai) = (X 4 A) 7N (d — p— ;X)) (5)

Equilibrium price impacts {A;}; can now be determined by market clearing. Namely, the
equilibrium condition requires that the price impact assumed by trader ¢ in his pointwise
optimization (5) is equal to the actual slope of his inverse residual supply, resulting from the
aggregation of the other traders’ submitted schedules. Proposition 1 shows that the system
for equilibrium price impacts can be solved explicitly.

Proposition 1 (Centralized Market Equilibrium) A profile of demand schedules and
price impacts {q;(-, A;), A; }; is an equilibrium in a centralized market if and only if

(i) each trader ¢ submits schedule (5), given his price impact A;,



(ii) trader i’s price impact is

Furthermore,
(iii) Equilibrium exists and is unique.

(iv) Trader i’s price impact A; is proportional to the covariance matrix ¥,

2
O./Zb—2+ \/(O./Zb)z—f—él’ <7)

where b € Ry is the unique positive solution to - (a;b + 2+ /(a;b)? +4)~1 = 1/2.

A; is monotone decreasing in «;.

Conditions (i) and (ii) jointly provide an equivalent representation of Nash equilibrium in
schedules: (i) traders optimize given their assumed price impacts, (ii) which are correct.
Analyzing price impact directly will be useful for understanding the implications of noncom-
petitive behavior.'? Using (5), trader ¢ submits the schedule

%(p) = %i(E) ' (d —p — ;). (8)

With positive price impact A; > 0, trader ¢ demands (or sells) less (7; < 1) than if he

had submitted his competitive schedule; v; = is the trader’s noncompetitive demand

1
1484
reduction relative to his competitive demand (%Hi: 1) and S; can be interpreted as price
impact per unit of risk. That is, as I — oo, then A; — 0 for all 7, and the competitive limit
bid coincides with the inverse marginal utility, given the quasilinearity of the utility function.
Figure 1A illustrates: It depicts the best response net demand of trader i given his price
impact A; > 0 relative to his marginal utility. For prices such that ¢; > 0, trader 7 is a buyer;

for prices such that ¢; < 0, he is a seller.

The central message of this paper is that, given the set of traders and assets, the centralized
market may be inefficient in allocating risk relative to a decentralized market structure.
Corollary 1 characterizes how centralized markets allocate risk and is the starting point for
understanding why decentralized markets might be more efficient. Let v = (7;) and ¢° = (¢?)
be the vectors composed of 7; and ¢!, respectively.

12 For symmetric risk aversion, equilibrium from Proposition 1 coincides with that in Rostek and Weretka

(2015a), which coincides with Kyle (1989, without nonstrategic traders and assuming independent values),
Vayanos (1999), and Vives (2011). For a nonstrategic characterization of equilibrium in a general equilibrium
setting (i.e., in terms of price and quantity levels, rather than demand functions), see Weretka (2011). Rostek
and Weretka (2015a) introduce the Nash equilibrium representation and the equivalence result in Proposition
1 for centralized market games by formulating conditions on demand schedules and price impacts.

10
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FIGURE 1: A. OPTIMAL DEMAND SCHEDULE; B. EXAMPLE 2

Corollary 1 (Centralized Market Allocations and Prices) Let & = %%

¢ = (Z %) Zw? = a Zq? + (Z %) I1Cov(v,q"). 9)

Equilibrium trade and allocation of agent i are, respectively,

and

¢ =70y 'q" — ¢)) and ¢; + ¢ = vio; '+ (1= 7)qf, (10)

and the vector of market clearing prices is given by p = d — Y¢*.

In the competitive centralized market, equilibrium allocation coincides with the efficient
allocation, which maximizes total welfare (3) over the set of all feasible allocations {{¢;}; :
>oia = > q)}, or equivalently, minimizes the total utility loss due to risk exposure, and is
given by
q;k* _ Oéi_lq**, where q** _ (Z Oéj_l)_l Zq? (11)
J J

When traders have price impact, each trader’s allocation is a combination of endowment
risk ¢? and portfolio ¢*, which is common to all traders. The equilibrium allocation differs
from the competitive one in two ways. First, a trader retains a fraction ~; of his initial endow-
ment ¢). While 7; can be characterized in terms of primitives, it is useful to relate it to price
impact (using v; = (1/(1 + ;) and equation (7)): The smaller a trader’s price impact, the
closer ; is to 1, the less of his initial endowment the trader retains in equilibrium. Second,
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the common portfolio ¢* that gets allocated to all agents differs from the efficient portfolio,
unless traders’ risk preferences {a;}; are symmetric (then, v, = =2 for all 7). Equilibrium
noncompetitiveness gives rise to a discrepancy between systematic risk 3q**, which is defined
by (11), independent of the market structure and represents risk nondiversifiable in the mar-
ket, and the risk that is nondiversifiable in equilibrium, which we refer to as aggregate risk.

Definition 1 (Aggregate Risk) Aggregate risk d — p represents the risk that is not diver-
sified in equilibrium and corresponds to the risk premium in prices relative to the mean return
d. In the centralized market, ¢* is the aggregate risk portfolio: d — p = ¥¢*.

In competitive markets, aggregate and systematic risk coincide and depend on the ag-
gregate endowment » ; q? alone. In noncompetitive markets, aggregate risk is a function
of equilibrium price impact. This is intuitive: what constitutes risk that is nondiversifiable
in equilibrium depends on price impact. A smaller +; lowers the contribution of agent i’s
endowment to aggregate risk and equilibrium prices. In equation (9), & is the counterpart of
aggregate risk aversion in the competitive market.

Example 2 shows that breaking up the centralized market into disjoint exchanges can
increase welfare. It builds directly on and illustrates Corollary 1.

Example 2 (Splitting the Market Can Increase Welfare) Consider a market for one
asset with variance o2 = 1 and three classes of agents of equal size M > 3, with risk aversion
«; in each class i = 1,2,3. If all agents’ endowments were efficient, they would not trade
(this holds for any market structure, Corollary 2), and adding or subtracting the efficient
allocation would not change the conclusions. Therefore, without loss of generality, we may
conveniently assume that the aggregate endowment Y, ¢} is zero, and hence, by (11), ¢&* =0
for all i.

Suppose that each agent of classes 1 and 2 is endowed with —q and ¢ units of the asset,
respectively, while class 3 has an endowment of zero, and a; < as < as. It is easy to see that
the efficient allocation would have each agent of class 2 sell ¢ units to class 1, and agents of
class 3 would not trade, since they are already holding their efficient allocation.

However, in the noncompetitive centralized market, class 3 agents do trade in equilibrium,
despite their efficient initial allocation, because the aggregate portfolio differs from the efficient
one: iy > oy implies o > v1; hence by (9), ¢* > 0. Price is below its competitive level, which
makes it optimal for agents of class 3 to hold ¢J + g3 = v3a3'¢* > 0. The other classes do
not diversify fully: ¢ + ¢; = (1 —%)q¢® + iy 'q*, i =1,2.

Consider next a decentralized market created by breaking up the centralized market into
two exchanges, one for classes 1 and 2 and the other for class 3. In the second exchange, since
class 3 agents have identical endowments, they do not trade, which is efficient; ¢§ + qu it —
0. In the first exchange, price impact increases strictly for all traders; we will show that
an increase in price impact is a general result of decentralization (Theorem 2). However,
having excluded class 3 agents, the relative price impacts (and weights {v;};) change so that
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the aggregate risk increases: Denoting the aggregate risk portfolio in the first exchange by
¢~ we have ¢S = (30 Z—i)_l > je1Vid] > ¢ With sufficient heterogeneity in
initial endowments (for any risk aversion), the increase is such that by buying a smaller
fraction (due to the larger price impact) of the larger aggregate portfolio class 1 traders
attain an allocation closer to the efficient allocation of zero than in the centralized market;
in equilibrium, 0 > ¢} + qf phitl ¢) + q1. Moreover, compared to the centralized market,
the inefficiency is concentrated among class 1 and 2 traders. Given the concavity of utility,
with sufficient heterogeneity in endowments, the total welfare increases (Appendix D provides
details).

Figure 1B illustrates the corresponding shifts in demand and residual supply of class 1.
In the centralized market, the residual supply of a class 1 agent aggregates the net demands
of all other agents; in the split market, it aggregates the net demands of all other traders
excluding class 3. In response to their larger price impact in the split market, A\; < )\fp lit,
class 1 agents reduce their net demands for all prices. However, the residual supply of class
1 shifts having excluded class 3 agents from the exchange and class 1 agents buy more in the
split market: ¢;7" > ¢;.

Heterogeneity in risk aversions is crucial: with symmetric risk preferences, aggregate risk
would be the same in the two market structures. While allocation would not be efficient due
to price impact, we will show that when this is the only type of inefficiency, the centralized
market is still the second best (Proposition 3). However, this need not be the case when
some traders do not trade monotonically towards the efficient allocation, as this example
illustrates: If some agents’ initial endowments are close to efficient, in the centralized market
they will trade inefficiently (class 3); conversely, if some agents’ initial endowments are highly
inefficient and their risk aversion is low (price impact is high), they will trade too little relative

to what a decentralized market allows (class 1). U

The result of Example 2 is striking. In centralized competitive markets, removing agents
from the market cannot improve welfare for other agents; the competitive allocation is in the
core. Equation (9) provides the first key observation: Unless agents’ risk preferences {«;};
are symmetric or agents’ price impacts are zero (y; = 1 for all 4), the aggregate risk portfolio
q* differs from the efficient portfolio q**, which is independent of the market structure. In
particular, aggregate risk depends on the joint distribution of endowment risk {¢?}; and risk
preferences (equilibrium price impact {7;};) rather than on the aggregate endowment alone.

The second main observation is that the centralized market allocates risk in a particular
way. Namely, in the centralized market, less risk averse agents have greater price impact: if
ap < oo < ap, then Ay > --- > Ay; less risk averse agents face a more risk averse residual
market, and therefore a less elastic residual supply (cf. equation (6)). Since less risk averse
agents will be reluctant to buy (or sell), equilibrium prices will be low (or high), and if
their endowment happens to significantly differ from their efficient allocation, other agents
will retain a large fraction of their nondiversified risk. Thus, in noncompetitive markets,
the efficiency of the centralized market allocation depends on the joint distribution of initial
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endowments and risk preferences. This also suggests that a decentralized market can be more
efficient than the centralized market if it reallocates risk so that more risk averse agents attain
allocation closer to the efficient one. We will next characterize how in a decentralized market,
equilibrium price impact and the aggregate portfolio depend on the market structure.

3.2 Equilibrium and Allocation of Risk in Decentralized Markets

Theorem 1 below shows that conditions analogous to those in Proposition 1 characterize
equilibrium in the general model of decentralized markets. Consider the optimization problem
(2) of a trader ¢ who submits a demand schedule in exchanges N (i), in which he participates,

¢i(pny, i) = (Vv + M) (dnvgy — vy — Vv ay)- (12)

Recall that V is the covariance matrix of all assets traded on all exchanges and V ;) is its
submatrix with rows and columns from exchanges N (i) C N. In analogy to (5), trader i’s
demand equalizes his marginal utility and marginal payment, which depends on his price
impact A; in the exchanges in which he participates: the N(i) x N (i) Jacobian matrix A; =

8(p17"' 7pN(z)) . M .
<—8(Qi,17"'7Qi,N(i))> = <8qi7k>k,£ . Entry (k,¢) represents the price change of asset ¢ that results

from a marginal increase in the demanded quantity of asset k.

In equilibrium, trader ¢’s price impact A; must equal the slope of his residual inverse
supply, which is defined by aggregation through market clearing of the schedules submitted
by other traders, {g;(pn(;)) : RYY) — RYU)},. ;. In a decentralized market, traders’ price
impacts are of different dimensionality, correspond to different assets, and in general are not
independent across exchanges, so the market clearing condition cannot be written exchange-
by-exchange. To apply market clearing to all assets in all exchanges, we use the procedure
of lifting, which restores common dimensionality. For a given subset N(i) C N, decompose
RN = RN® g RNM\VG) a5 a direct sum of two subspaces corresponding to coordinates that
agent i trades and those that he does not trade, where R is the space of asset holdings of
K(n). Any symmetric matrix A can be decomposed into a block form

Aii A
A- (A'T" A) (13

1,—1

dimension )

where A;; = An() acts on subspace RN, A_j i = Ann() acts on the complementary
subspace RV and A; _; is a rectangular block.
Definition 2 (Lifting) For any matriz A;; € RNO*NO et A, denote the lifted matriz

which acts on RY, and with a slight abuse of notation, let A;il denote its inverse:'

. _ —1
/_17;7; = Alﬂ 0 s A,L_Zl = Az,z 0 . (14)
’ 0 0 ’ 0 0

13 AZ il is the Moore-Penrose pseudoinverse (Penrose, 1955) of A4, ; if A;; is not invertible.
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In what follows, for simplicity of notation, we use ¢; € RY and ¢° € R to also denote
the vectors ¢; € RV® and ¢ € RY® “completed” by zeros in their RNV coordinates. In
this notation, we can write the lifted demand schedule of agent i as ¢;(pn@)) = (o V() +
Ry d—p— V).

Treating assets traded in different exchanges as distinct assets and dealing with aggrega-
tion through lifting allows us to characterize equilibria in any decentralized market by two
conditions: (i) each trader submits a schedule that equalizes his marginal utility and marginal
payment given his price impact (i.e., submits g; (-, A;)), and (ii) the price impact A; in ¢; (-, A;)
is correct (i.e., it equals the slope of the residual supply resulting from the aggregation of
other traders’ schedules, projected on the assets relevant for trader 7). Recall that for two
symmetric matrices A, B, matrix A is larger than B in the positive semidefinite order if A— B
is positive semidefinite; we write A > B.

Theorem 1 (Decentralized Market Equilibrium) A profile of demand schedules and
price impacts {g;(-, A;),A;}; is an equilibrium in a decentralized market with trader par-
ticipation {N (i)}, if and only if

(i) each trader i submits schedule (12), given his price impact,

(ii) 4’s price impact (projected on the exchanges N (i) where he participates, after lifting) is

Ai — (Z(O[ij(j) + /_Xj)_1> y Z 6 ] (15)

77 N (i)
Furthermore,

(iii) Equilibrium exists and is locally unique, generically in risk aversions and the covariance

matrix.

(iv) For any decentralized market, the set of equilibrium price impact tuples has unique
maximal and minimal elements in the sense of the positive semidefinite order. Equilib-
rium price impacts are positive semidefinite. If the covariance matrix V y(;) is invertible
for any 4, price impacts are positive definite.'®

Although covariances V y(;y and price impacts A; are for “local” exchanges, when lifted, the
same aggregation condition (6) as in the centralized market applies. Theorem 1 thus allows a
direct comparison of equilibrium in decentralized and centralized markets. In contrast to cen-
tralized markets, price impacts are generally not proportional to the fundamental covariance

14 That is, for almost every positive definite matrix with respect to the measure induced by the Lebesgue
measure on the set of positive definite matrices.

15 Induced by the covariance matrix ¥ and trader participation {N(i)};, V@) can be singular only
if agent 7 can trade the same asset in different exchanges. In this case, agents are indifferent about which
exchange to trade in and so (replicas of) assets trade at the same prices.
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matriz. In fact, A; is not proportional to V y(; for generic V ;. The positive semidefinite-
ness of price impact is implied by equilibrium: By (15), if price impact were not positive
semidefinite, o;Vy(;) + A; would not be either for some j.%6 Then, for some portfolio y,
y"(a;Vng) + Aj)y < 0 and buying an infinite amount of y would be optimal.

The double auction game — centralized and decentralized — can be equivalently seen as a
game in which agents choose their demand slope S; = (a; V() + A;)~!. Since these demand
slopes are positive semi-definite, we can study them using the positive semi-definite order
extended to tuples and say that one tuple is larger than another one if it is larger coordinate
by coordinate. In the centralized market, the set of slope tuples {.S;}; is a lattice; this follows
from the proportionality of price impact in the covariance so that (a;X+A;) ™t = (X))~ and
hence the order coincides with the natural order on R’. In decentralized markets, since the set
of symmetric matrices is not a lattice with respect to the positive semidefinite order,'” Tarski’s
fixed point theorem cannot be applied to prove the existence of equilibrium and comparative
statics. Nevertheless, we show that the price impact of each agent is monotone increasing (in
this order) in the price impacts of others; standard arguments then give existence. Exploiting
properties of positive definite matrices and refining the iterative procedure allows us then to
prove existence of unique maximal and minimal elements in the set of equilibria.'® We show
that for any equilibrium in a less decentralized market, there is an equilibrium in the more
decentralized market that has a larger price impact. All statements about more decentralized
markets in Theorem 2 hold for any such equilibrium in these markets. In the sequel, we refer
to either the minimal or maximal equilibria, which are unique.'?

Let us remark that if a trader who knows his own utility knows his own price impact in

16 Indeed, if o V ;) +A,; is positive semi-definite for each j, then so is (o; V ;) +A;) ™! (because inversion
preserves positive semi-definiteness), and hence so is also the right-hand side of (15).
17 Tt is generally not possible to define the greatest lower bound and the least upper bound for a bounded set

of positive semidefinite matrices. For example, consider A = (é (2)) and B = <1 ;) Note that both A ? B

a c\ .

p) 8
the least upper bound of A and B if C > A, C > B, and any other matrix C’ satisfying C’ > A, C' > B also
satisfies C! > C. However, C > A and C > B is equivalent to a > 1,b > 2, (a — 1)(b—2) > max{c?, (c —1)?}.
Clearly, one can decrease a and increase b without violating these inequalities, which implies that C' cannot
be the least upper bound. Separately from the absence of the lattice order on strategies, an agent’s utility
differences are, in general, not monotone in the changes of strategies by others — the decentralized-market
game is not supermodular.

18 While Theorem 1 only establishes the existence of an equilibrium, we conjecture that equilibrium is
globally unique. This is true in all of the examples in the paper and is confirmed by extensive numerical simu-
lations. Equilibrium, defined as {¢;(-, A;), A;};, is locally unique for generic parameters (this is a consequence
of real analyticity of the equilibrium system; see, for example, Hugonnier, Malamud, and Trubowitz (2012)).

19 Let us relate our uniqueness results in Proposition 1 and Theorem 1 to that in Lambert, Ostrovsky,
and Panov (2016), who consider a (centralized) game in which strategies are quantities (market orders). We
analyze games in demand and supply functions. In that paper, there is a single asset and a single liquidity
provider; thus, there is a scalar price impact, the same for all agents, and this one number solves a quadratic
equation that has a unique positive solution, hence the unique equilibrium. By contrast, we have multiple
assets, multiple exchanges, and multiple heterogeneous price impacts that are matrices and solve a system of
non-linear equations.

and A £ B hold, because the positive semidefinite order is incomplete. By definition, matrix C' =

16



the exchanges in which he participates, then by Theorem 1, his strategy ¢;(-, A;) would not
be altered by knowledge of the market structure {/N(i)};, the terms of trade in exchanges
N\ N(i), or even the submitted schedules or preferences of the traders in N \ N (7). Despite
the potential complexity of the trading environment, through the fixed-point condition (15),
price impact A; is the sufficient statistic for the optimality of trader ¢’s schedule in exchanges
N(3), given the schedules of all traders j # 4 in all exchanges n € N (i.e., A; € RNO*NG)
is sufficient for {g;(-) : RNU) — RN}, ;). Thus, the opacity of decentralized markets is
without loss of generality for equilibrium in trading environments with independent private
values.

By Theorem 1, analysis of the equilibrium properties effectively reduces to studying the
properties of the solution to the fixed point system (15) for price impacts. We illustrate the
properties of this system with the following example.

Example 3 (Equilibrium Price Impacts) Consider a market with two exchanges for one
asset and three classes of agents, with M; agents in each class i = 1,2,3. Agents of class 1
trade only in exchange 1, agents of class 3 trade only in exchange 2, and the agent of class
2 (M3 = 1) trades in both exchanges. Price impacts A; and Az are scalars, while A, is a
matrix. The lifted price impacts and the covariance matrix for the market are given by

- Ay O - 0 0 - AL AL2 o’ o?
A = Ay = Ay = Ay = |2 2] v =
1 ( 0 0) ) 3 (0 Ag) ) 2 2 <A§1 A%Q ) 0_2 0_2 )

where o is the asset variance, and the fixed point system is

A = <((M1 — DA+ Vi) (A 4 0 V) Ma(As + Ozg\_f22)_1)_1>

11

Ay = ((Ml(/_\l +a Vi) 7+ (A + V) 4 (M3 — 1)(As + OZ3\_/—22)_1>71>22 (16)

Ay = (Ml(]\l + a1 Vi) My(As + ag\_722)_1)_1 .

We can rewrite the equation for A, as follows: by the definition of lifting,

Mﬁl(Al —+ 061V11> 0
Ay = ! : 17
2 ( 0 M3_1(A3 + a3V11) ( )

We will show (Theorem 2) that equilibrium price impacts of traders in both exchanges de-
crease when the number of traders increases in exchange 1 or the connected exchange 2, or
their risk aversion decreases: The less risk averse the traders of class 1 are and the larger
their number M, the more liquidity they provide to class 2, lowering As, and in turn, the
more liquidity the trader of class 2 provides to class 3, lowering Aj. 0]

The interdependence among price impacts is anticipated by Theorem 1: In general, the
equilibrium price impact of trader ¢ in exchanges N (i) depends, and positively so, not only
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on the price impacts of other traders in exchanges N (i) but also on the price impacts of the
traders in all other exchanges N \ N(i) (in the same connected component), including those
with whom he is linked only through counterparties (e.g., classes 1 and 3 in Example 3).
More generally, a trader’s price impact in a decentralized market also depends on the price
impacts of the traders in exchanges in which his counterparties do not participate.

Example 3 also shows that even if the total number of traders is large, when trading is
decentralized, traders generally have nonnegligible price impact in the exchanges in which
they participate. In general, when agents have access to a perfectly liquid exchange n, they
will have strictly positive price impact in the other exchanges N (i) \ {n} in which they
participate.

Corollary 2 characterizes equilibrium trades and prices in decentralized markets. Corollary 4
in Appendix D explicitly characterizes allocations for markets with one asset.

Corollary 2 (Decentralized Market Allocations and Prices) Let

—1
Q = (D (Vap+8) ] D T (18)
j j

and T'; = (;Vy() + Ai) 7' Vivg). The equilibrium allocation of agent ¢ is
G+ q) = (@i V@ + Ai)_lQ*N(z‘) + (Id - Ty)g}, (19)

and the vector of market-clearing prices is given by p = d — Q*. If the initial allocation is
efficient, ¢? = ¢;* for all 4, then there is no trade.

As in the noncompetitive centralized market equilibrium, each trader is exposed to en-
dowment and aggregate risks. Q" is the decentralized market counterpart of the aggregate
risk X¢*; it represents the risk premium d — p = Q* in prices and is defined by market clear-

ing applied to all traders’ demands.?>-?! Like Y¢*, Q* is also in risk units; unlike X¢*, Q
is not separable in the covariance. In addition to the effects brought by noncompetitiveness

20 The linearity of equilibrium prices in endowments leads us to interpret Corollary 2 in CAPM terms. A

decentralized market CAPM holds, even with strategic traders whose price impact is non-negligible. In each
exchange, expectations of asset payoffs lie on a security-market line defined by an agent-specific portfolio. With
many assets, agents diversify risk through different (and multiple) funds, which depend on their participation
in exchanges. See Malamud and Rostek (2016) for a decentralized market CAPM.

21 Malamud and Rostek (2016) show that when exchanges are linked by one trader, prices of the same
asset generally differ; with two or more common participating traders, price impacts and prices for the same
asset equalize between exchanges and are generically noncompetitive. In turn, the presence of one (or many)
trader(s) who can engage in pure riskless arbitrage would not affect the main conclusions. In fact, this often
is not possible, for instance, in dealer-intermediated markets. Even if an arbitrageur could place buying and
selling orders in two exchanges, in a noncompetitive market, he would have price impact. A large enough
round-trip order would change prices and result in strictly negative profits. That is, in contrast to competitive
markets, profits from arbitrage are not infinite, but bounded. Thus, unlike the competitive model, sufficient
fixed entry costs can discourage outside investors from arbitraging the liquidity effect. In practice, entry costs
involve not only explicit trading costs but also costs associated with learning and monitoring the characteristics
of particular stocks.
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itself (A; > 0) — i.e., allocation retains endowment risk, aggregate and systematic risk differ
— decentralized trading makes both the risk nondiversifiable in equilibrium Q* and a trader’s
equilibrium demand reduction Id — I'; depend on the market structure. Namely, both are
a function of asset covariance, and Q* also depends on distribution of endowments across
exchanges. As a result, the quantity of aggregate risk allocated to a trader in the exchanges
in which he participates generally depends on the preferences of agents and the covariance
of assets from all exchanges. We should note that the dependence of risk Q*N(i) and weight
Id — T'; on the covariances in exchanges N \ N(i) as well as N(i) arises in a decentralized
market because price impact A; is no longer proportional to covariance V ;. Example 4
illustrates how the properties of aggregate risk differ in decentralized and centralized markets.

Example 4 (Aggregate Risk) Consider the market from Example 2, and suppose that one
of the agents of class 1, denoted by 1d (a dealer), can trade in both exchanges 1 and 2. The
market is then less decentralized than the split market (cf. Definition 3 below), and agent 1d
serves as an intermediary between class 2, class 3, and other agents of class 1. Using Example
3, the price impact of trader 1d is diagonal,

ANy = (M —1)(Ay + )t + M(Ay + ap)™? 0 _1
1d — 0 M(Ag—l—@g:,))‘ .

As in Example 2, we assume that class 1 agents are endowed with —¢ units of the asset, class
2 agents are endowed with ¢ units, and agents of class 3 have zero initial endowment. Then,??

;qu? _ <(MF2 - (1\04 -~ 1)F1)q) Ty, (:Z@ |

and Corollary 2 implies that the aggregate risk is given by

o (Q0) (M = 1)(Ar+ 1)t + M(Ay + )™ 0 -1 B
Q - <Q§) B (( 0 M(A3 +Oé3)_1> + (A1d+OZ1V) )

y (((Mr2 - (J\04 - 1)F1)q) ”w(:g@) , where V = (zz Zi) .

Observe that (i) the aggregate risk is common to all traders in a given exchange n = 1,2;
however, (ii) Q! is a weighted average of the endowments of all agents in the market (in
a connected component of the graph on exchanges). In addition, (iii) since the exchange-
specific coordinates Q7, Q3 of the aggregate risk vector generally differ, the same asset trades
at different prices in different exchanges. In particular, (iv) in contrast to the centralized
market (definition (1)), the aggregate risk is not separable in the covariance V due to the

non-proportionality of price impact to V in decentralized markets; contrary to the standard

22 The split of endowment —q of trader 1d across the two exchanges can be arbitrary, because endowment

affects only the marginal utility for the first unit, which is the same in both exchanges (equation (12)).
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CAPM, the risk premium cannot be written as VQ for some vector Q — otherwise, prices of
identical assets would be equal across exchanges. Indeed, if V = 1, all coordinates of VQ are
equal.?

The equilibrium allocation of risk in this intermediated market is given by

A+ a =N +a)'Q—(1-T1)q, g5+ g = (A4 a2)7'Qf + (1 — I'y)g,
qg + Q3 = (A3 + a3)_1Q§7 (20)

@+ qa=(1,1) - ((Ald +a V)™ (g;) + (Id —I'yg) (:ZZ)) :

where the multiplication by (1, 1) in the last line sums the holdings of agent 1d in exchanges 1
and 2. The intermediary trades both components Q7, Q3 of aggregate risk, whereas all other
traders buy or sell its distinct components. 0

It follows from Corollary 2 that decentralized trading changes agents’ ability to diversify
in two ways (cf. Proposition 1): aggregate risk (prices) changes, since agents now acquire
exchange-dependent components of Q*, which may make it optimal for some to trade closer
to their efficient allocation; and equally risk averse agents with identical endowments need
not diversify in the same way. In Example 2, the component of aggregate risk for class 1
(the natural buyers) increases, thus lowering prices, which leads class 1 to buy more, while
the natural sellers (classes 2 and 3) sell less. Additionally, classes 2 and 3 do not equalize
their equilibrium allocation of aggregate risk v;a; '¢%P" n = 1,2, as they would in the
centralized market.

4 Market Decentralization: Price Impact and Welfare

Before we analyze how market decentralization affects welfare, we first examine how it affects
traders’ price impacts. Let us make precise how market structures and price impacts are
ranked.

Definition 3 (More Decentralized Than) Fix the set of traders and assets (I, K). Con-
sider two markets with the sets of exchanges Ml = {(/(n), K(n))}, and M' = {(I(n'), K(n')) } s
We say that the market M’ is more decentralized than M if for any exchange n’ in M, there
exists an exchange n in M such that I(n') C I(n) and K(n') C K(n).

Thus, a more decentralized market restricts the participation of some agents in trading,
with respect to traders or assets. By definition, any decentralized market is more decentralized
than the centralized market. Suppose that M’ is more decentralized than M, and let {AM},

’ N(i) an * represent how aggregate ris affects a trader or an exchange, respectively. In the
23 Ny and Q t h te risk Q* affects a trad h tively. In th
presence o% shocks, these trader-specific and exchange-specific risks can be seen as measuring systemic risk,
various formalizations of which in the literature share its dependence on equilibrium and position in the
network.

20



and {AM}; be the corresponding equilibrium price impacts (which are symmetric and positive
semidefinite, by Theorem 1). We say that the price impact tuple {AM}; is smaller than {AM'};
and write {AM}; < {AM'}, if for all 4,
M M
() < A

If price impacts are higher in the positive semidefinite order,?* the agents behave as if the
assets they are trading are riskier. Recall that if two symmetric positive semidefinite matrices
A, B satisfy A > B, then the diagonal elements satisfy A;; > By; for all ¢ (however, no
implication for the ordering of the off-diagonal elements follows), An@) > By for any i, and
At < BT

4.1 Price Impact in Decentralized Markets

Given a map A from the set of positive semi-definite covariance matrices into the set of positive
semi-definite matrices, we say that this map is concave if A(0.5(V+V’)) > 0.5(A(V)+A(V'))
for any positive semi-definite matrices V, V' . Similarly, a map A from ]Rfr to the set of positive
semi-definite matrices is concave if A(0.5(a + a’)) > 0.5(A(a) + A()) for any a,a’ € RL.

Theorem 2 (Price Impact Monotonicity and Concavity) The following is true.

(1) Fix the set of traders and assets (I, K). If M’ is more decentralized than M, then
{AY ) = (A

(2) The equilibrium price impact tuple {A;}; is increasing and concave in risk aversion {c; };
and the covariance matrix Y and is decreasing in the number of agents in the market.

(3) Fix the market structure M.

(1) If N(Z) = N(j) and Q; S aj, then Al Z Aj.

(ii) If N(i) D N(j) and trader j participates in a single exchange for one asset, then
a; < a; implies that the equilibrium price impact of trader i in exchange N (j) is
larger than that of trader j,

(A)ng) = Ay

Theorem 2 reports two complementarity results on how the interconnectedness among
exchanges {N(i)}; affects a trader’s equilibrium price impact in exchanges N(i): Changes in
either the market structure or the characteristics of traders or assets that lower any trader’s
price impact in some exchange lower the price impacts of all traders in all directly and
indirectly connected exchanges.

24 One cannot generally conclude that the dealer’s price impact in exchange 2 is lower than in the split
market: One can only compare the price impact in the exchanges in which the agent participates in both
market structures (cf. definition 4). In particular, it could happen that Aﬂ{\gQ > /\fgl’t if the risk aversion of

class 3 agents is sufficiently low.
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Part (1) of Theorem 2 considers the effect of changes in the market structure on equilibrium
liquidity. Theorem 2 implies that creating a new exchange for a subset of agents which
operates along with the existing exchanges always (weakly) lowers the price impacts (improves
liquidity) in all exchanges. Indeed, if agents participate in a new exchange, the price impact
of these agents in their existing exchanges decreases, which lowers the price impact of their
counterparties in those exchanges, and so on. In turn, splitting an exchange (e.g., Example 2)
always weakly increases price impact. Moreover, this holds for any asset structure in the new
market. In general, price impact is monotone in both the set inclusion of traders and assets
and is thus minimal in the centralized market. It follows from Theorem 2 that the lowest
price impact that agents I who trade assets K can achieve occurs when all agents participate
in all potential exchanges — a market structure equivalent to a centralized market.?> The
liquidity effects of market decentralization (i.e., lowering trader participation) characterized
by Theorem 2 hold for any number and risk aversion of traders and any covariance matrix of
assets in the exchanges before and after the change.

Part (2) of Theorem 2 deals with the impact of varying the primitive characteristics of
traders and assets. Relative to the observation that equilibrium price impacts are interdepen-
dent across exchanges (Theorem 1), Theorem 2 demonstrates a general complementarity of
price impacts in a decentralized market: A trader’s price impact in exchanges N (i) depends
positively (in the sense of the positive semidefinite order) on the market characteristics in both
exchanges N (i) and N\ N(i). Intuitively, an agent’s price impact from increasing his trade in
exchanges N (i) represents the price concessions required for other agents j # i in exchanges
N (i) to absorb the trade. With decreasing marginal utility («; > 0), more risk averse coun-
terparties j in exchanges N (i) demand larger price concessions to compensate for the trade’s
impact on their own marginal utilities (cf. the first-order condition (4)), thus making residual
supply less elastic, and hence price impact larger, for all other agents in N(i). In addition,
when trading is decentralized, the fewer and more risk averse agent ¢’s counterparties’ trading
partners are in exchanges N \ N (i), the larger the price impacts of those counterparties j in
their exchanges N(j) and the larger the price concessions they require in exchanges N (7).

The concavity of price impact in the fundamental asset covariance contrasts sharply with
centralized markets, where price impact is proportional to the covariance (Proposition 1).
The concavity holds because the riskiness of assets in an exchange in which trader i par-
ticipates affects his incentives through the residual riskiness of these assets, net of the risk
that can be diversified in other exchanges by ¢ and his counterparties. Mathematically, a
Gaussian conditioning argument applies: Denoting by S = > j(aij(j) + A;)~! the slope of
the aggregate (net) market demand, the condition that price impact is the harmonic mean of
(lifted) inverse demand slopes can be written as follows:

A = (S we = (((Swvw) ™ = (Vg +A) )7, (21)

25 Malamud and Rostek (2016) show that sufficient trader participation among exchanges suffices for

liquidity to be as high as in the centralized market.
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where ((S‘l)N(i))_l = Sii—S;,-i5-; _;SF_;, using the notation for S from (13).% That is, the
projection that defines the residual risk of the assets traded in exchanges N (i) is endogenous,

as it depends on price impacts. Equation (21) is equivalent to
(A7 + (Vv +8)7) ™ = (87w

and since the harmonic mean function f(z) = (z7! + (v + 2)~')~! is convex, its functional
inverse is concave, hence A; is (weakly) concave as a function of S~'. In the centralized
market, since S~! is proportional to V = 3, so is A,;. In a decentralized market, since price
impact depends on the residual risk in ((S71) N(i))fl rather than the fundamental risk X,
proportionality is absent and the concavity matters.

Notably, the concavity implies that lower risk (X) or lower risk aversion {a; }; play a greater
role in the determination of a trader’s price impact than high-risk assets and highly risk averse
traders. Having access to such low-risk assets or low risk averse traders — whether directly
in one’s own exchanges N(i) or indirectly via interconnections with one’s counterparties’
exchanges N \ N(i) — lowers the price impact of i ’s trades in N(i) more than access to
high-risk assets or highly risk averse traders would.

Part (3) of Theorem 2 provides a link between price impact and the participation of
different agents. It implies that one can make a systematic prediction about the link between
the trader’s “position” in the market and price impact: If more connected agents are weakly
less risk averse, they have higher price impact. This is intuitive: since the price impact of
each agent in a given exchange is determined by the risk exposure of the other agents in that
exchange, the ability of the more connected trader i to diversify risk in exchanges N (i) \ N(j)
lowers his risk exposure in exchanges N(j) relative to trader j’s exposure, and thus the price
impact of j in exchanges N(7j).

4.2 Welfare in Decentralized Markets

By Theorem 2, the centralized market minimizes price impact for all traders. Nevertheless,
as Example 2 shows, a decentralized market can give rise to strictly higher welfare with
the same traders and assets. To examine more systematically the source of the welfare gains
from decentralization, we begin with a characterization of indirect utility as a function of price
impact, substituting equilibrium trade ¢; = (a; Vg + Ai)*l(Q*N(i) — a;Vn(¢?) and price
into agents’ utility function U;(q;) = d%(i)(q? +q;) — % (q) + )" Ve (@ + @) — (ovey) a4

T 1 1
UM A q)) = (6))" dyey — §(Q§)>T04iVN(¢)Q? + er(aaiVN(i) + Ai)gi. (22)
Utility wz'tvhout trade Equilibrium S@?&)lus from trade

26 Sii— Si,,iS:,i_iSZli is a shorted operator. The proof of Theorem 2 is based on the monotonicity and

concavity properties of the matrix harmonic mean that are derived in Anderson (1971) and Anderson and
Duffin (1969) using the theory of shorted operators.
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To interpret, in any market structure — centralized or decentralized, competitive or noncom-
petitive — equilibrium utility from trade derives from the risk premium benefit in the payment
q - (d%(i) —p) = ¢ - Q" y(;) net of the utility cost of buying risky assets —a;q] Vg In the
competitive centralized market, Q* = ¥¢** and the equilibrium utility surplus from trade is
qiT(%aiE)qi = q! (2 — %aiE)qi. In a noncompetitive market, price impact exposes a trader
to additional risk due to others’ equilibrium behavior, hence the marginal equilibrium utility
per unit of quantity traded is (; Vg + Ai) — %aiVN(i) in the surplus of equation (22).

Proposition 2 shows that the (non)proportionality of price impact in fundamental risk
V@) has important implications for welfare effects of market decentralization. It is useful
to write equilibrium trade of trader 4 in utility (22) as ¢; = Si(Q*n() — V@ ¢)), where
S; = (V) + A;) 7t is his demand slope and (Q*N(i) — a; V@) can be interpreted as his
gains from trade (given that traders have price impact):

UiM(Ai; CI?) = (Q?)Td%(i) - %(q@o)To‘ivN(i)qu_'—(Q*N(i) _OéiVN(i)qz('])TTz‘(Az‘)(Q*N(i) —Oéz'VN(i)qu)a
(23)

where matrix T;(A;) = S; — %SioziVN(i)Si is the marginal utility per unit of risk, since both

quantities in (Q* NG) — o; V N(i)q?) are expressed in units of fundamental risk a;V n().

Proposition 2 (Marginal Equilibrium Utility) Suppose that market M’ is more decen-
tralized than M, and let AM and AM be the corresponding price impacts. Then,

(i) If AM is proportional to V), then T;(AM) < T;(AM).

(i) In general, T;(AM)LY;(AM), ie., T;(AM) need not decrease as the market becomes
more decentralized.

Proposition 2 presents the paper’s two main implications for welfare. Using (23), by
part (i), a necessary condition for a decentralized market to increase utility relative to the
centralized market is that the components of the aggregate risk Q* in (Q* NG) — @ Vi)
must change in some exchanges so that the equilibrium allocation can become closer to the
efficient one. Indeed, if aggregate risk is the same as in the centralized market, equation
(23) and part (i) of Proposition 2 imply that every agent is better off in the centralized
market. Example 2 illustrates part (i), in which price impact in the less decentralized market
is proportional to the covariance, as is the case in the centralized market: the element of Q*
in exchange 1 increases, and class 1 allocation increases and is more efficient; the element
of Q* in exchange 2 decreases, and class 3 allocation decreases, which is efficient. Section
4.3 further examines this necessary condition. In turn, using (23), part (ii) of Proposition
2 indicates that making a decentralized market more decentralized might improve welfare in
the Pareto sense, even if it does not affect aggregate risk. We will show in Example 5 that
this is the case and examine the new effect in Section 4.4.

Part (i) of Proposition 2 implies that for market decentralization to increase welfare, risk
sharing among traders must improve. Part (ii) implies that decentralizing a market can also
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increase welfare by improving diversification, since in a decentralized market, the relative
weights across assets in a trader’s equilibrium portfolio may differ from those in the efficient
portfolio. Indeed, a risk-efficient portfolio is given by ozz»V;,b)(d — p), while the agent buys
(A; + aiVN(i))*l(d —p). If Ay = 3V () is proportional to the fundamental covariance
matrix, diversification weights are efficient while risk allocation is imperfect, as the agent
buys only a fraction 1/(1+ ;) of the efficient portfolio. However, when A; is not proportional
to V(, both risk allocation and diversification are imperfect. While Theorem 2 guarantees
that making the market more decentralized always reduces the number of units of the risky
assets the agents are willing to absorb for every price (AM > AM) Proposition 2(ii) implies
that diversification of an individual trader can actually become more efficient in a more
decentralized market, and the latter effect can potentially offset the former in markets with
multiple assets. Mathematically, without proportionality, a change in the market structure
affects how trades of correlated assets substitute in creating utility, i.e., (¥;)pm, n # m
(Example 5 gives the proof of part (ii)).

4.3 When Does a Decentralized Market Increase Welfare?

At the primitive level, heterogeneity in risk preferences is central to welfare gains from market
decentralization. Proposition 3 shows that when all traders care equally about risk, the
centralized market maximizes total welfare for any endowment distribution, regardless of the
asset structure in a decentralized market.

Proposition 3 (Welfare and Heterogeneity in Risk Aversion) If traders’ risk aversions
{a;}; are sufficiently close, then the total welfare in the centralized market is strictly higher
than in any decentralized market with the same traders and assets for any endowments:
there exists € > 0 such that total welfare in the centralized market is strictly higher than in
a decentralized market for any endowments whenever (max; o;/ min; o) < 1 + €.

Intuitively, recall that a decentralized market tradeoffs larger price impact with the potential
benefit from reallocating risk among traders with different risk preference by letting agents
trade distinct components of aggregate risk. Nevertheless, when traders’ risk preferences
are close, the benefit from reallocating risk is small. Differential allocation merely increases
dispersion of allocations, thus reducing welfare.

Proposition 4 shows that when some traders’ risk preferences are sufficiently heterogenous,

the welfare-maximizing market structure is decentralized for some endowment distributions.?”

27 Equilibrium exists if there are at least three traders in a market. Hence, there must be at least six
traders in the split market. In addition, for the allocation to be sufficiently affected by the split in at least
one group, that group must have at least four traders. One of these four agents is highly risk averse; if there
were only two agents with low risk aversion, the residual supply of each would be effectively determined by
one other agent, thus it would be close to inelastic, and so their allocation would be close to their initial
endowments, and hence their utility loss from decentralization would be high.
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Proposition 4 (Splitting the Market Can Increase Welfare) Let a1 < ap < -+ <
ay. Suppose that I > 7 and «a;_3/as is sufficiently large. Then, there exists an open set of
initial endowments and a partition of the set of traders into two exchanges such that the total

welfare in the split market is higher than that in the centralized market.

By Proposition 2, for welfare to increase with decentralized trading, the joint profile of risk
preferences and endowment risk must be such that the increase in some agents’ Q?\/(i) is
sufficiently strong to countervail the higher price impact (lower {Y;};). Welfare gains from
decentralization exist for some endowment distributions even if the number of traders is
large — the condition on the heterogeneity in risk aversion in Proposition 4 needs to hold
only for a few lowest- and highest-risk-preference traders. For the same reason, for a market
decentralization to increase welfare, the endowments need not become extreme as the number
of traders grows. Propositions 3 and 4 summarize the role of heterogeneity in primitive risk
aversion as a necessary and sufficient condition.

One can further ask: which joint distributions of endowments and risk aversion tend to
make the centralized market less efficient than a decentralized market? To identify a joint
condition on the primitives, one must account for both the inefficiency due to imperfect
diversification of the initial endowment (I'; < Id) and the fact that the equilibrium aggregate
portfolio differs from the efficient one. Proposition 10 in Appendix D provides two general
conclusions: A market structure gives rise to low welfare compared to other market structures
when the highest-price impact agents have the largest need to trade (i.e., a large (in absolute
value) inefficient part of the endowments). Moreover, since Q* assigns higher weights to
the endowments of less risk averse traders (cf. (19)), when traders with low risk aversion
have large (non-diversifiable parts of) endowments, the difference between the efficient and
equilibrium allocations for the traders with low and high risk aversion tends to be the largest.
In particular, low risk averse agents trade too little, and high risk averse agents trade too
much, as in Example 2.

Splitting the market into two disjoint exchanges in Example 2 is an extreme instance of
market decentralization. An intermediated market may further improve welfare over a market
with disjoint exchanges (Example 6 in Appendix D). One can show that when intermediation
improves welfare over the centralized one-asset market, a decrease in the utility of the trader
who connects exchanges®® (relative to an otherwise identical trader who does not intermediate)
is a general feature of two-exchange decentralized markets. Intermediation is socially efficient
but requires compensation. In the next section, we show that types of intermediation specific
to multiple-asset markets do not require compensation to be welfare-improving.

28 This contrasts our welfare effects with those based on price discrimination, where the objective of the

monopolist (here, the connecting trader) typically involves maximization of the payment alone and is not
affected by diversification motives.
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4.4 Idiosyncratic Risk

In this section, we show that a change in the market structure may improve diversification
of idiosyncratic risk, that is, risk whose changes do not affect the risk that is nondiversifiable
in equilibrium Q*. The possibility to improve welfare by changing idiosyncratic risk alone is
specific to markets with multiple assets. We compare two decentralized markets, M and M,
such that M’ is more decentralized than M. To isolate the role that idiosyncratic risk plays in
determining welfare, suppose that there is no aggregate risk in either market: Q™ = Q*M, =
0.2 While then the centralized market is best by Proposition 2(i), Proposition 5 shows that
decentralizing a market may increase welfare in the Pareto sense.

Proposition 5 (Market Decentralization Can Be Pareto Improving) Consider two de-
centralized markets M, M’ and suppose that Q"™ = Q*M/ =0. Let also oy <y <--- < ay.

(1) If there is one asset, the total welfare is always higher in the more centralized market.

(2) If there are at least two assets, I > 5, and a;_1/as is sufficiently large, then there
exist an open set of covariance matrices, a non-empty set of endowments, and two
decentralized markets M and M such that M’ is more decentralized than M, and for

any covariance X in this set, each trader is better off in M.

Result (2) is due to the endogeneity of demand substitutability in decentralized markets:
The nonproportionality of price impact in the fundamental covariance ¥ implies that demand
substitutability, defined by the cross-asset elements of the demand slope

L[ smose
Si = (aiVN(i) + Al) = ( 5321 Sj22 > ) (24>
J J

is endogenous and differs from the payoff substitutability of the assets, as defined by the
exogenous covariance Y. By definition, demand substitutes have a positive cross-price elas-
ticity (a higher price of one asset increases the demand for other assets), which corresponds
to the negative off-diagonal element of the demand slope. Payoff substitutes correspond to
positive off-diagonal elements of X. In the centralized market, demand substitutability always
corresponds to the fundamental substitutability of the assets. This applies in decentralized
markets when A; is proportional to V ;) (e.g., the case with disjoint exchanges). More gen-
erally, decentralizing a market changes how assets substitute in traders’ demands. This may
increase welfare despite the larger price impact. Example 5 illustrates this point.

Example 5 (Endogenous Demand Substitutability and Welfare) There are two classes
of agents, with risk aversions «; and M; agents in each class ¢ = 1,2, and two assets with a

29 Consider a subset J of traders who all have the same risk aversion and participation; (o, N(i)) is

independent of ¢ for all ¢ € J. Then, all traders in J submit identical demand schedules; their aggregate
(net) demand depends only on the aggregate endowment of J, QY = Yics ¢); and the aggregate risk Q* is
independent of the distribution of initial endowments within the class.
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L p
p 1
agents of class 1 trade both assets 1 and 2; agents of class 2 only trade asset 2. Price impacts
A € R?*2) A, € R satisfy

0 0 N\

0 0 N\
Ay = ((O (Mo — 1)(Ag + Oz2)_1> T+ V) )

Consider a more decentralized market M, in which some number M of class 1 agents trade

non-singular covariance matrix and variances normalized to 1, V = . In market M,

22

only asset 1 and the remaining class members, whom we denote as 1d, trade both assets;
Myq = My — M. In terms of participation, M is characterized by {N(1) = {1,2}, N(2) =
{2}}, while M is characterized by {N'(1\ 1d) = {1}, N'(2) = {2}, N'(1d) = {1,2}}.

In market M, agents 1d serve as intermediaries who trade with other agents. In this
regard, M’ resembles the market structure in Examples 3 and 4, the main differences being
that the two assets are not identical and intermediation is not monopolistic. Price impacts
A, A}, A4 are characterized by the system

o <<<M_ e : —1> +M1d(A1d+Oé1V)1)_

0 MQ(A/2+O{2)
11
-1
M(A/—i‘@l)fl 0 _
A/ = 1 M A V 1
2 (( 0 (My — 1)(Ay + ap)1 ) T MathataV)
22
-1
M(A/—l-@l)*l 0 _
Ay = 1 My — 1)(A Vv)!
1 (( 0 Mo(Ay + ap) ™ (e = Ddia+ V)

Suppose that the heterogeneity in risk aversions is sufficiently large, and p > 0. There are 6
traders in the market, M; = My = 3 and M =1, so that My = My — M = 2.

Class 2 agents as well as agents from class 1\ 1d are worse off in the more decentralized
market M, regardless of their endowments. Indeed, class 2 agents trade only one asset, and
hence Proposition 2 (i) implies that Y3 > T 30 Likewise, since agents 1\ 1d lose the ability
to diversify in the exchange for asset 2, we naturally expect that their price impact increases,
and TM > Y™ 4 € {1\ 1d}; thus, their utility surplus decreases as well for all endowments.
On the other hand, agents of class 1d may be better off in M': By Proposition 2 (ii), it
is possible that T % TIY because a change in the market structure affects how trades of
different assets substitute in creating utility, i.e., (T%/)LQ. This can offset the within-exchange

30" Since they can only trade one asset, both Ay and V N(2) are scalar, and hence Ay is always proportional
to VN(Q).
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effect and increase equilibrium utility for some initial endowments, as we show next.

By assumption, two assets are payoff substitutes (p > 0), and hence they are complements
in demand slopes and the utility surplus matrix; that is, (T%5);, < 0. Crucially, this surplus
complementarity between assets 1 and 2 is endogenous, since it depends on price impact, and
decreases when market M becomes more decentralized: (T%);, < (Y¥); 5. By equation (23),
this lower complementarity can increase utility if and only if T2 % Tllvg, which is equivalent

to
2

> [ = (Th):s) (26)

=1

(Tia)12 — (T2

using that Ti% — T%’ is not positive semi-definite if and only if its determinant is negative.
That is, the utility gain from the weaker complementarity (L.h.s.) must exceed the loss from
the higher price impact in each market (r.h.s. of (26)). If TY, — T is sufficiently large, the
total welfare increases despite the lower surpluses of classes 1 and 2. We used that equilibrium
utility (23) allows attributing welfare effects of market decentralization to changes in price
impact of different assets and exchanges.

When can one expect the welfare effect of the change in idiosyncratic risk to be significant?
Assets must be correlated imperfectly and sufficiently strongly. It is clear that assets cannot
be independent: if correlation p is close to zero, all price impacts and surplus matrices are
almost independent (the Lh.s. of (26) is close to zero), implying that all agents are worse off in
the more decentralized market. They cannot be perfectly correlated either: if the correlation
p is close to one, both surplus matrices T35, Tll\g and their difference are proportional to the
(almost singlular) matrix V, and thus the difference between the Lh.s. and the r.h.s. of (26)
is close to zero.

Hence, the possibility of a welfare increase by reduction of idiosyncratic risk in Proposition
5 is a multi-asset effect. In one-asset markets, while the asset traded in different exchanges can
be an imperfect demand substitute, its trades are perfect substitutes in the utility surplus 1;.3!
Since with constant aggregate risk Q*, (Q"y;) — o Vyie!) = X; is independent of market
structure, Theorem 2 implies that the risk premium benefit X'S;X; in the utility surplus is
monotone decreasing in market decentralization (demand slope S; is always smaller in the
more decentralized market). Thus, for the utility to increase, the cost O.5OziXZ-T SiVn@ySiXi
must decrease sufficiently to offset the decrease in X! S;X;. However, in one-asset markets,
the second part is proportional to V, and hence singular. One can show that the total welfare
gain from decentralization is inverse U-shaped, and for the total welfare surplus to be positive,
p must be sufficiently different from zero and one. Then, there exists an open set of initial
endowments such that agents of class 1d are strictly better off in M, while other agents have
zero endowments and the same utility in Ml and M. That is, M’ weakly Pareto dominates
M. O
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The (welfare-improving) decrease in surplus substitutability T, ., is exactly offset by the liquidity
decrease T, ,, within each exchange n.
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In the more decentralized market M’, some agents of class 1 specialize in trading asset
1 and refrain from trading asset 2. While such specialization unambiguously increases price
impact (Theorem 2), Example 5 shows that it can be Pareto improving, even among equally
risk averse agents. The gains from trade in the more decentralized market structure come
from the effect of specialization to lower the demand substitutability of imperfectly correlated
assets, which decreases the utility cost of holding correlated risky assets Y,, ,, m # n. In fact,
the same assets can turn from demand and utility substitutes into complements (i.e., in the
sense of S; and T;, respectively). Changing who trades which assets without necessarily
changing who trades with whom allows reducing idiosyncratic risk without affecting aggregate
risk.

With strategic traders and heterogeneous risk preferences, both centralized and decentral-
ized markets can generally be Pareto efficient (i.e., no other market structure would make
some agents better off, without making others worse off), hence our focus on total welfare.
This section shows that regulation that aims to make an existing market structure less de-
centralized, if applied without discretion, might have unintended consequences for utility of
all agents.

5 Conclusions

The results in this paper recognize the potential for decentralized markets to increase welfare
compared to the centralized market. This holds even with homogenous assets and even
if locating counterparties has a cost (which we have taken to be zero throughout). We
have shown that when trading is noncompetitive, the centralized market is efficient for all
endowment distributions only if risk preferences of all market participants are sufficiently
symmetric. Decentralized market structures may strictly dominate in total welfare sense when
risk preferences and need to trade are sufficiently heterogeneous for some market participants.
We identify two ways in which decentralized trading can enhance the role of markets in
allocating risk: It may reallocate more risk to less risk averse traders despite the larger price
impact, by enabling agents to trade distinct components of aggregate risk. Additionally, by
changing how the trade of correlated assets substitutes in creating equilibrium utility, it may
allow traders to reduce idiosyncratic risk, even without affecting aggregate risk.

We have taken the exchanges and available assets in decentralized markets as exogenous.
Nevertheless, our results imply that in general, allowing agents to choose with whom they
want to trade and which assets will not result in the centralized market — some traders
would prefer to trade separately. Our analysis also suggests that the study of the endogenous
formation of exchanges in decentralized markets, with respect to welfare or other objectives,
should not be separate from security design. In fact, the endogenously heterogenous demand
substitutability for identical assets traded in decentralized markets implies the existence of
profit and efficiency opportunities from security design as well as specialization in trading
certain assets that are not available in centralized markets.
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Our results suggest a rich theory of the ways in which intermediation — a decentralized
market phenomenon — can improve efficiency and of the forms such intermediation can take.
We show that the introduction of strategic intermediaries may mitigate both inefficiency due
to imperfect diversification of idiosyncratic risk and inefficient aggregate risk.

The centralized market theory of asymmetric information has provided arguments as to
why private information (e.g., adverse selection) or more information (e.g., information re-
vealed through prices) may create incentives for some traders to trade in a separate market.
When these incentives are also associated with a welfare increase, those results suggest addi-
tional reasons for decentralization when trade is motivated by not only diversification but also
asymmetric information (e.g., Rostek and Weretka (2015b); Babus and Kondor (2016); the
lemon markets model by Akerlof (1970) could also be interpreted this way). This paper shows
that arguments based on risk sharing and diversification can be made for decentralization of
trade, even in the absence of information-related reasons.

One might wonder whether the uniform-price mechanism is significant to the main con-
clusions. The starting point for identifying the possibility of welfare improvements is the
inefficiency of (centralized or decentralized market) allocation due to price impact. Based on
the results in the theory of games with (two-sided) private information, one expects ineffi-
ciency to be present in equilibrium and the welfare gains from market decentralization to exist
for other pricing mechanisms. Fundamentally, these gains stem from the possibilities that
decentralized trading creates for alignment of agents’ risk preferences and their equilibrium
risk exposure via the market structure. One might also wonder if our conclusions based on
a static model are useful given that most markets are dynamic. Dynamic trading changes
incentives and motivates a separate study of welfare effects. In a dynamic model, traders
have price impact in every trading round. The centralized market inefficiency and all the
decentralized market effects that we identify in the static model are present in all rounds.
With gains to diversification renewed through endowment shocks, the static effect we identify
will be first-order. Our results suggest the potential for welfare improvements in markets in
the cross section (their market structure) as well as in time series.

Appendix 1

A Equilibrium Characterization

Proof of Proposition 1.

(i), (ii) That the equilibrium characterized by schedules and price impacts {g;(-,A;),A,}, is
equivalent to a Bayesian Nash Equilibrium in a decentralized market follows from Lemma 1 in
Rostek and Weretka (2015a).

(iii) For uniqueness, diagonalize 3 by multiplying (6) from the left and right by ¥~'/2 and denote
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/NXZ‘ = E_l/QAi 2_1/2,
-1
Ai= D (aJd+ A" L iel. (27)
J#i
One expects that any solution to this equation is of the form A; = Bia;1d for some 8; > 0, i € I,
and consequently A; = 5;a;%. Lemma C.4 in Appendix C shows that this is the case. The analytic
characterization of equilibrium follows by Lemma D.1 in Appendix D.

Part (iv) follows directly from the harmonic mean condition: defining B = Y,(A; + ;%) 71,
and noting that by (iii), A; = B;a;X for some f3;, we get B = bX~! for some b > 0, and (ii)
implies A; = (B — (A; + a;3)~1)~1, which is equivalent to B;a; = (b — (B + a;)~1) 7L This is a
quadratic equation for §;, and it has only one positive solution given by (7). Substituting 3; into
b=">,(Bicvi + ;)" 1, we get the required equation for b. m

To prove Theorem 1, we will need several auxiliary results. Let ST be the set of I-tuples {A;};
of positive semidefinite matrices with A; € RN@*N@ — On this set, we introduce a partial order:
{A;}i < {Al}; for a pair of tuples {A;};, {Al}; if A; < Al for all i € I. Recalling that the negative
X of the slope of i’s demand and i’s price impact are linked through X; = (a; V n(;) + A;)~!, we can
rewrite the fixed point condition (15) as a fixed point condition for demand slopes as follows. Define
the map G = {G;}; : ST — S via

Gz({Xz}z) = <((ZXJ)1>N(1) + aiVN(Z-)> , 1 €1 (28)

JF

Essentially, the decentralized market model can be seen as a game in which agents choose their
demand slopes. Let us denote by G™({A;};) the n'" iteration of the best response map. Standard

properties of the positive semidefinite order imply that G is monotone increasing in {X;};.
Lemma A.1 Map G is monotone increasing on S’.

Let F = {F;}; : S — S be the map defined by the right-hand side of (15). By construction, maps
F and G are simple transformations of each other. It is more convenient analytically, however, to
work directly with map F'; consequently, all proofs that follow use this map. Passing from F to G is
then straightforward. The following result then follows from Theorem 1.

Lemma A.2 A tuple of linear demand schedules with slopes {X;}; is an equilibrium if and only if
it is a fixed point of the best response map. That is, {X;}; = G({X;}4).

Proposition 6 (Monotone Convergence) Pick an arbitrary starting tuple {X?}; such that {X?};
G{X?}) ({ X0} > G({X?}:)). Then, iteration G™({X?};) is monotone increasing (decreasing) in

n and converges to an equilibrium tuple.

Let D = diag(z), z € RY be a diagonal matrix. Multiplication of (15) by Dy ;) from the left and
right gives the following scale invariance property of price impacts.
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Lemma A.3 Let V' = DV D. Then, the map given by {A;}; — {Dn(;)AiDn)}i defines a one-to-
one correspondence between equilibria in markets defined by V and V’.

Proof of Theorem 1.

(i), (ii) Treating assets traded in different exchanges as distinct assets and lifting before aggrega-
tion gives the first order condition (4) and the system of I price impact harmonic mean equations. (4)
gives demand function (5) for each trader ¢. Given the lifting procedure, that the equilibrium char-
acterized by schedules and price impacts {g;(-,A;), A, }, is equivalent to a Bayesian Nash Equilibrium
in a decentralized market follows from Lemma 1 in Rostek and Weretka (2015a).

(iii) Existence of equilibria when V ;) is nonsingular for any i follows from Proposition 6. For
the general case, let V¢ = V 4 ¢ld and let F* be the corresponding map. By Proposition 6, for
any ¢ > 0, there exists an equilibrium {A$}; corresponding to V. Pick a sequence ¢, = 1/k and an

equilibrium {A:*};. Since F* is monotone increasing in €, we have
{AF" )i = FoR({A7*}) = oo ({A7 )

and hence by Proposition 6, there exists an equilibrium {A5*"'}; < {AS*};. Thus, we can construct
a monotone decreasing sequence {A:*}; that converges to an equilibrium corresponding to & = 0.
To prove generic determinacy, let, for each ¢, X; = A; +@; V() , and define a map @ : L=

via
-1

e({X)) =Xi— | | D X!
i N (i)

The equilibrium equation can be written as ®({X;};) = {a; V() };. Let U1 be the image of the
map V — {a;V ;) }i defined on the set of positive semidefinite matrices.?? Let © be the subset of
ST such that for any {X;}; € ©f, we have that ®({X,};) = {a;V () }; for some positive definite
matrix V. ©7 is an algebraic variety, and therefore can be represented as a finite union of irreducible
algebraic sets that are smooth manifolds. The same is true for U/. By Sard’s theorem, almost every
{aiVN(i)},- € U! has a regular preimage under ®; that is, equilibria are determinate for generic
covariance matrices. The finiteness of the set of equilibria follows by the standard compactness
arguments and the fact that all equilibria belong to a compact set.

(iv) For the positive semidefiniteness of price impacts, observe that A; +a; V N (i) must be positive
semidefinite for any trader ¢ in equilibrium. Suppose otherwise. The utility of agent ¢ who acquires
portfolio y € RN is given by (¢¥ +y)7d — y* (p* + Aiy) — 0.5(¢? + y)Tozl-VN(i) (¢ +vy), where p* is
the equilibrium price vector if agent i does not trade. If A; + a;V y(;) were not positive semidefinite,
then the agent could attain infinite utility; that is, if there is a y such that y” (A; + @iV )y <0,
then buying an infinite amount of portfolio y gives an infinite utility. If A; + a; V() is positive
semidefinite for any 4, then so is A; by (15).

Let now C(V) = diag({Vﬁﬁ/Q})Vdiag({Vﬁﬁ/Q}) be the correlation matrix of the assets. For
any exchange n and agent i, define a; .. = a; min(eig(C(V)n(;)) and of* = a; max(eig(C(V)n@y));

i

32 Note that if some of the assets are replicas of each other, the covariance matrix V belongs to a subspace

of RVXN In this case, we apply Sard’s theorem to the map into this subspace with respect to the induced
Lebesgue measure.
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o+« and o can be interpreted as the bounds on the assets’ effective riskiness (see Section 4.4). For

any exchange n, define two constants A**(n) = min;e () @ and AX™(n) = max;ej(,) . Further,
Asex (1 Vnn A*(n nn
let {Az mln} {dlag( (( )) 2 )N(l)} and {Az max}l - {dla‘g( (( ))VQ )N(Z)}Z and

{Xio,min}i = {(aZVN( ) + A?max) 1}i7 {Xzo,max}i = {(alVN( ) + Azomln) l}i‘

A direct calculation implies that

{X'Bmin}i < G({Xzo,mm}l) and {Xzo,max}i > G({X'gmax}i)

and, similarly,
{A?,min}i < F({A?,mm}l) and {A?,max}i > F({A?,max}i) :

We now construct the minimal and maximal equilibria by the explicit iterative procedure described
in Proposition 6. To this end, recurswely define two sequences {AZ minti € ST and {AF .} e ST,
E > 1 via {AZ winki = F{AML “minti) and {Al e ti = F({AFL ‘maxJi)- By Proposition 6, the se-
quence {A

k > 0, is monotone increasing, whereas {A k > 0, is monotone decreasing;

zmln}’L7 zmax}“

these sequences converge to equilibria (the fixed points of map F') that we denote by {A;min}i

and {Ajmax}i, respectively. The corresponding demand slopes are determined via {X;min}i =

{(anN(z) + Ai,max)_l}ia {Xi,max}i = {(anN(z) + Ai,min>_1}i'
Pick an arbitrary equilibrium {A;};. Then, for all i € I,

-1 -1

A= [ D (VA" < [ Do (e Tdyg) + Ay : (29)
7 N () 7 N ()

Let F4 be the map corresponding to the right-hand side of (29). Then, iterating F4 and using
Proposition 6, arrive at the conclusion that F4 has a fixed point {A*}; satisfying {A;}; < {A*};.
By Lemma C'.4, this is the unique diagonal fixed point. Then, A}* is diagonal, and for any exchange

n, the scalar price impacts {(Af*),n}: coincide with price impacts in a centralized exchange for a

(2
single asset with variance 1 and risk aversion o;*. The same iteration argument as above implies

that these price impacts are monotone increasing in o, and therefore, satisfy

I(n )

Hence, by the monotonicity of map F, {A;},= F"({A;};) < F"({A? max i) = {0 max i Similarly,

A:*S IdN() 1€ 1.

-1 -1

A; = Z(ajv + At < Z(aj,**IdN(j) +4;)7
J#i N(5) J# N(i)

The same argument as above implies that

I(n) -
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and the same iterative procedure completes the proof: {A,},= F"({A,},) > F"({AQ }) — {Az‘,min} N

4,min 7

B Comparative Statics and Welfare

Proof of Theorem 2.
(1) Consider two markets which differ only in participation {N(i)}; and {N'(i)}s, N(i)) 2 N (i)
for all ¢+ € I. Pick an equilibrium {A;}; corresponding to {N'(7)};. By Lemma E.2,

—1 -1
M) vy = [ | D (Vi + 457 < | [ DoV + A ™
7 N() 7 N()
for all ¢ € I. Therefore, by Proposition 6, there exists an equilibrium {Az}l corresponding to
participation {N(i)}; and satisfying {A;}; > {(As) v} the claim follows.

(2) Fix a parameter « and let us rewrite the equilibrium equation as {A;}; = F({A;};,«). By
definition, for both o = M; and o = «;, map F' is monotone increasing in « in the sense of the
positive semidefinite partial order.

Fix oy < a and let {Aj(a1)}; be an equilibrium. Then

{Aj(a1)}; = F({Aj(an)}j, 1) < F({Aj(an)}, ag).

By Proposition 6, there exists an equilibrium {A;(a2)}; satisfying {Aj(c2)}; > {Aj(a1)};.
The next claims follow by a similar argument using Theorem 24 in Anderson and Duffin (1969).

Finally, part (3) follows from Lemma D.3 in the Supplementary Appendix. m

Proof of Proposition 2.
(1) The expression for the surplus matrix follows by direct calculation: Denoting by - the inner

product in RV, we observe that the equilibrium utility is given by

@ -d—g-(p—d) — 053 + &) V(T + @)

= @ d+G (Q — VL +aVE) — 0.5(@ + @) - s V(E + @)

= ¢ d-058 V@ + G- (Q"—a;VE) —0.5¢ - ;) V (30)
= ¢ -d—05¢ - Vg + (Q" —aiV§) - (A + V) Q" — i V)

—0.5(Q" — i V@) (Ai + i V) e V(A + s Vin)) HQY — ai V@),

and the claim follows because

TZ(A) = (]\z + ai\_/‘N(i))_l — 0.5(]\1‘ + ai\_/N(i))_la,-V(]\i + ai\_/N(i))_l . (31)

(2i) Suppose that we change a market structure M to a more decentralized market structure M.
Let A;, A} be the corresponding price impacts of agent ¢, and denote by X and X' the slopes of the
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demand schedules in the two market structures. It follows from Theorem 2 that Aj > (A;) (i), and
therefore by Lemma FE.2,

X = (i Vg + M) > (Ve + M) nvre) ™ = (Vi +A) ™ =X (32)

Using formula (32), we can see that it suffices to show that the inequality X — 0.5, XVX > X' —
0.50; X’V X’ holds if X is proportional to V and X > X’. Let X = V! and let Y = V1/2X'V1/2,
Note that X < (;V)~! and hence 8 < ai_l. Then, we have Y < SId. Multiplying the required
inequality from both sides by V1/2 yields

X —050;XVX > X' - 050, X' VX' & (B-0508H)1d > Y —0.50;Y?,

and the claim follows because f(z) =z — 0.5a;22 is monotone increasing on [0, a; *].
Part (2ii) follows because by the Lowner Theorem (Donoghue (1974)), the function f(x) is not
matrix monotone. M

M

Proof of Proposition 3. There exists a map (a matrix) £ such that the equilibrium allocation

is given by
(@ + a7)i = (E"(a)i)i

where EM is a function of equilibrium price impacts A;, and can be written as such explicitly using
Corollary 2. The efficiency of a given market structure in allocating risks is then encoded in the way
the matrix EM “redistributes” endowments. For instance, in the centralized competitive market with

a single asset,
EM(g))i = (a7 )ig™.
That is, the image of the matrix ¥ is one-dimensional and coincides with the span of the efficient
allocation (oci_l). Hence, EM is a projection onto the efficient allocation, and it has only two eigenval-
ues, one and zero. Thus, decomposing any vector of endowments into the efficient and the inefficient
part,
(a))i = (a5 D)ig™ + ((a])i — ™ (a;)s),

the matrix EM keeps the efficient part unchanged and completely eliminates the inefficient part.
Denote by S; = (A; + ai\_/'N(i))_l the lifted slope of agent i’'s demand. We have

E"@); = & + S <Blzé—}-aiV(j§)— adi;?) (33)

Let D = diag(o;V); and BV = (SiB_ISj)Z{j:l and PM = diag(S;). Then, we have
e =1d + (B -P")D
and equilibrium total welfare loss can be rewritten as ((¢))7.AM(¢?), where

AN = (EMTpeM = (1d + DB™ - P")D(1d + (BM - PY)D).
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Suppose first that all risk aversions are symmetric. For equally risk averse traders it is efficient to hold
equal shares of the total market portfolio; hence, the set of efficient allocations coincides with vectors
(¢?) for which ¢ is independent of i. Denote the subspace of such vectors by X C RE*N_ Then, the
matrix AM keeps that subspace invariant in the sense that AMz = z for all z € X, and this holds
independent of the market structure M. Indeed, this is the case because both EM = (SM)T and D keep
this subspace invariant, and hence so does AM = (EM)TDEM. The orthogonal complement X+ of X
in REXN coincides with the set of initial endowment allocations for which the aggregate endowment
is zero. Our goal is to show that the utility loss in a decentralized market is always higher; that is,
that AM > A*. Denote by R the orthogonal projection on X. Then, by Corollary 1, the centralized

2 2
market matrix 4* on that subspace coincides with (%) D. That is, RA*R = (%) RDR . Since
the matrices AM and A* both keep X’ invariant, it suffices to show that

B

RAMR > RA*R = | —
s - (12

2
) RDR .
Denote B =D + D(B" —PM)D. Then, by direct calculation, AM = BD~' and hence the required
inequality takes the form

B
1+

Using the fact that D and R and D and B commute and multiplying the required inequality by

2
RBD'BR > ( ) RDR.

D~1/2 from both sides, we conclude that we need to show that

2
RD2BD1/2R)2 > <5> R

which is equivalent to RD~/2BD~1/?R > %R assuming we can show min(eig(RD~Y2BD~1/2R)) >

0. That is, we need to show that all those eigenvalues of D~/2BD~1/2 that are below 1 are also above
8/(1+B).

Without loss of generality, we normalize the common risk aversion to be a = 1. In order to
determine the eigenvalues of the matrix D~1/2B8D~1/2, we note that they coincide with the eigenvalues
of D~V2(D~12BD~ /D2 = DB = £M33 Fix a v € R and let us calculate the inverse of
(EM — vId). Our goal is to show that it is invertible for all v below 8/(1 + f3).

Writing equation (EM — vId)X = Z with X = (¢¥) we get ((1 —v)Id —T;)¢) + SiQ* = Z,
implying that ¢ = ((1 — v)Id — [;)"1(Z; — SiQ*). Recalling the definition of Q*, we get

Q" = B'Y Sa;Vg = BT S V(1 - v)Id-Ty) " 1(Z - SQ),
which is equivalent to

1
Q" = (B + ZSZOJZV((l — I/)Id - f2)151> ZSZOJZV((l — V)Id — fi)*lZi,

33 For any invertible matrix 7 and any matrix C, the eigenvalues of 7 1CT coincide with those of C.

37



and (EM — vId) is invertible if and only if the right-hand side of this equation is well-defined and
finite.

The first key observation is that for each 4, the matrix S;o; V((1 — v)Id — [';)~1S; is symmetric.
This follows because

V(L =m)Id=T) ™" = Vye (L -v)ld=SVyp)™h = (L-v)Vy, —S)™ (34)

The second key observation is that for v < %, the matrix Vy(;((1 — v)Id — T;)~! is positive

semidefinite. This is equivalent to the claim that (1 — V)V;Vb) — &; > 0. The latter follows because
by Theorem 2, S; < ﬁV;&i). Thus, for v < %, the matrix B + Y. Sio; V((1 — v)Id — T;)7LS; is
positive definite and hence is invertible.

Fix now a market structure. Let N be the subset of exchanges for which the market structure is
not equivalent to that of a centralized market (see Malamud and Rostek (2016) for a full character-
ization of such market structures). Then, on the complement of these exchanges, a straightforward
application of the iteration procedure used for equilibrium construction in the proof of Theorem 1
implies that the price impacts on that subset of exchanges are strictly below 5. Using continuity
arguments it is then possible to show that the inequality &; < ﬁﬁiV;&i) still holds when the het-
erogeneity in risk aversion is sufficiently small, and then the arguments above imply the required

welfare comparison result. The proof is complete. ®

Proof of Proposition 4. Without loss of generality, we normalize the asset’s variance to one.
Let us split the market in two so that agents I — 2,1 — 1, I trade in a separate exchange numbered
2. Furthermore, without loss of generality let us normalize a;_3 = 1. Our goal is to show that for
sufficiently small € = a3 there exists a vector of initial endowments such that the split market has a
higher total welfare than the centralized market. For simplicity, we assume that a; = as = az = €.
Denote by A; and A, the price impacts in the two market structures. Then, a direct calculation
implies that b = %571 + 6y, V' = %5*1 + 6(, and
2e 4 51— 6y 2e 4 51 -6y

Ni= = 4+ 24 0EN), N = T 4 2L 0@E?), i >3
3+96 o +0(e”), A 3+96 o +0(e”), i >3,

while \y = & — 0pe?3, Ny =& — 0)e?2 where Oy = 33", ;a7 ', 6 =33, . ; ,a;'. Denote by
s; = (M\i+a;)7! the lifted slope of agent i’s demand. Suppose also that ¢ = 0 fori =1-2,1—1,1.

Then, the equilibrium allocation is given by

q; + q? = q? + s (b_l Zsiaiq? — ajq?> . (35)
i

Let D = diag(c;), B = (sib~'s;);;, and P = diag(s;). Then, denoting & = Id + (B —P)D, we get
E(q?)j = (gj + qJO-)j, and the equilibrium total welfare loss can be rewritten as ((¢?))TA(¢)) , A =
(Id+D(B — P))D(1d + (B — P)D). Similarly, we use A’, B’, P’ to denote the corresponding objects
in the split market. Our goal is to show that there exists a vector of initial endowments (¢?); such
that (¢))TA(¢?)i > (¢9)T A'(¢));. That is, the total welfare loss is higher in the centralized market.
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Equivalently, we need to show that max(eig(.A — A’)) > 0. Denote 7; = a;s;. Then,

A=D+2DBD —2DPD + DBDBD — DBDPD — DPDBD + DPDPD

= ((ai = 2aimi + im)Lizj)ij + (2’)_1 +072) 5W> (min5)i (36)
l

— b (im; (i + 1)) -

Hence, by direct (but tedious) calculation, the difference between A and A’ (restricted to endowments

corresponding to agents in the first exchange) is approximately given by

g2 11

(00— 09) "M (A= A) ~ == (LimyLi<a)iy — 1z (1))i (37
4 *
+2((1 = Lis3,53)Kij)ij + 562(772‘77}*(?% +17))ig)

for some k;; € R, where 1] =1 — 0.51;<3. Hence, the diagonal elements of this matrix for all 7 > 3
are positive, and therefore it cannot be negative semidefinite. m

Proof of Proposition 5. Part (1) is proved in the text. Part (2): Without loss of generality, we
may assume that there are 5 agents in the market. We also assume for simplicity that three low risk
aversion agents have the same risk aversion ai, and the two high risk aversion agents have the same
risk aversion oy > ao. Consider the two market structures similar to those from Example 5. Namely,
we assume that in the more centralized market, two of the less risk averse agents trade only asset 2,
while two high risk aversion agents and the third low risk aversion agent trade both assets. Then,
price impacts satisfy

~1
A1:<<82mrim*>+“““”wq+@h+wvrﬁ

-1
0 0
As = <<0 2(A2+042)1> +2(A1+alv)_l> .

—1
0 0
Ay = 2(A V)L 4+ (A V)t
2 ((0 (A2—|—a2)_1>+ A+ a1 V)" 4+ (As + V) )

22

In the less centralized market, we prohibit the third low risk aversion agent from trading asset 2, so

that 1
AL+ 062)71 0 _
A/ — ( 3 / V 1
1 (( 0 Agray) TTAY)

-1
, 0 0 , _
ne (szwﬂﬁ0+““+mwl> %

11

, Ay + o) 0 , _ -
o <<< 3+0 ! (A’2+a2)1> Hm V) 1)

22
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When the correlation p is zero, the price impact of class 1 agents satisfies
A = diag(Allv A21) ) Afk - diag()‘alv /21) )
where \j1 = (2 — anb; + \/(a1b;)?2 +4)/2b;, Ny = (2 — anb + /(aqb;)? + 4) /20, , where

224 a1by + V(« + (2 4+ agby + v/ (a2by)? —1/2

(40)
2+a1bz—|—\/ —|—3 2—{—0&21)2—}—\/ agbg —1/2.
At the same time, in the less centralized market, we have
2(2 4 arbi + 1/ (a1b))2 +4)7H 4+ (2 + agb] + 4/ (a2b))2 +4) "1 =1/2 "
41

2(2 4 arbhy 4+ 1/ (arbh)2 +4) 71+ 2(2 + agbly + 1/ (agbh)? +4)71 =1/2.

In particular, by = b} and hence liquidity for the first asset is the same in both markets. At the
same time, b, < by and hence liquidity for the second asset is higher in the more centralized market.
It is possible to show that when as — 0, by = i§ + O(ag) and A1 = )\’11 = G + O(az) while

by = & and \o; = 2a2 . At the same time, b’ ~ \/2% nd \; ~ 23/2 Suppose now that

~ p*\/ag. Then, Iy = I' + Jaoly + O(ag), T} = T + /aal”, + O(as), where T' = § — 0.5a, 52
with S = diag((4 4+ 1)1, a7 "). Our goal is to show that T'y # I, for some values of p*.
The first observation is that by Proposition 7, to the highest order (i.e., \/a2), A; only depends
on p through 1 — p? = 1 + O(ae) and hence A = A* + O(az). At the same time, ignoring the terms
of the order of o, we have that

, A0 , I 0 0 , )
"o <<( ) z(A'Q)l) HEey ) e ((0 2<A;>1> e )

, (A~ o0 : N
Ay = (( 0 (A;)1> 2 1+a1v>_>

0 1
Substituting V = Id + p*\/az (1 O) and using the implicit function theorem, we get A} ~ A, +

22

JazA. Calculating I, using this expression yields the required result.

To prove the last claims of Proposition 5, we will need the following auxiliary result.

Lemma B.1 Within Proposition 7, let the equilibrium price impact of trader 1 be A;. Then, any
Ay < Ay can be attained as an equilibrium price impact by adding an additional trader to the
exchange.

Proof. See the Supplementary Appendix. m
Lemma B.1 implies that by adding/removing traders to/from the illiquid exchange, the required
changes in price impact can be achieved. The claim now follows from Proposition 2(ii).3* Assume

34 While Proposition 2(ii) only claims that T may be non-monotone in A, it is straightforward to show

that it is in fact always non-monotone in A when A is not proportional to V ;.
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that the endowments are such that there is no inter-class trade and also no intra-class trade, except
for agents of class 1. As we discuss in the main text, this can done independently of price impacts.
For simplicity, we may assume that the total endowment of each class is zero, so that = 0. We
can also assume that class 1 consists of 2 traders with endowments q? and —q?, so that we are free
to choose this endowment without affecting aggregate risk. m

Appendix II (For Online Publication)

C Additional Existence and Uniqueness Results

Proof of Lemmas A.2 and A.1. {A;}; is an equilibrium if and only if {A;}; = F({A:}:).
By direct calculation, defining X; = (Aj + s V() ™t we get {Ai}i = F({A:}:) if, and only if,
{X;}i = G({Xi}:i). That F and G are monotone increasing follows because matrix inversion ¥ —
Y ~! is monotone decreasing (e.g., Horn and Johnson (2013)), and projection onto N (i) Y — Yy
is monotone increasing in the positive semidefinite order. m

Proof of Proposition 6. Pick an arbitrary starting tuple { X?}; such that {X?}; < G({X?"},). By
direct calculation, the corresponding price impacts A? = (X?)~1—a; V ;) satisfy {A}; > F({A%},).
Since map F' is continuous and monotone with respect to the defined partial order, recursively
applying F' to inequality {A%}; > F({A?%};), we can see that F"({A%},) is monotone decreasing and
hence converges to a fixed point of F. For the price impact tuple satisfying {A%}; < F({A%},), the
sequence F"({A?}Z) is monotone increasing. Therefore, to prove convergence to a fixed point, we
need to show that it is bounded from above. To this end, pick o > 0 sufficiently large so that {A;};
defined by

Ai = adiag((I(n) = 2) Mneng) (42)

satisfies {A}; < {A;};, where I(n) is the number of agents in exchange n. An analogous argument
implies F({A;}:) < {A;}i. Let Q = {{A;}; € SM: A; < A, Vj}. Then, for any {A;}; € Q,

F({Aj})) < F({A}) < {Ai)s (43)

and hence F maps (2 into itself. Therefore, the sequence F™({A%};) is monotone increasing, bounded
from above by {/L}l, and hence converges to a fixed point of F. =

Equilibrium uniqueness is equivalent to the uniqueness of the fixed point of map F. It therefore
suffices to show that F' is a contraction on a suitably defined normed space. We can identify the
strategy of an agent in the game (i.e., his demand schedule) with its slope (o; V NG+ A;)~! and find
conditions on the demand slopes for this to be the case.

Lemma C.1 For any ¢, suppose that 0 < {B;}; < {A;}; are such that any equilibrium tuple {A;};
satisfies {Bz}z < {(OéZVN(Z) +/_\1)_1}1 < {Az}z Suppose that for any {Xz}za {B’L}’L < {Xz}z < {Az}z,
2

(M; = D)X7+ > MX? < [ (M = D)X;+> MX; | ,j=1,---,1. (44)
i#] i#]
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Then, map F' is a contraction on the set {B;}; < {X;}; < {A;}i, and hence there exists a unique

equilibrium.

Note that when X; are positive numbers (or commuting matrices, in which case they can be
simultaneously diagonalized), a direct calculation implies that condition (44) holds. However, absent
commutativity, this is generally not true. The usefulness of Lemma C.1 depends on a good choice
of bounds {B;}; and {4;};. The next result provides a simple and easily verifiable condition that
guarantees the applicability of Lemma C.1, based on the choice {B;}i = {(A{ . + @iVy@) i
and {A;}i = {(A] iy + @i Vi) ™' 1

Corollary 3 Suppose that

Then, equilibrium is unique.

Intuitively, the left-hand side of (45) measures how competitive an exchange is, whereas the
right-hand side reflects the dispersion of payoff riskiness across exchanges. If this dispersion is high,
there is a lot of ‘room’ for non-commutativity and uniqueness can only be guaranteed when strategic

effects are small; that is, when I(n) is sufficiently large.

To proceed further, we first establish auxiliary results.
Lemma C.2 If there is only one asset and one exchange, then equilibrium is unique.

Proof. The proof follows by Lemma C.1. Indeed, in this case, the conditions of Lemma C'.1 hold,

and therefore map F is a contraction and has a unique fixed point. =

Lemma C.3 Let {4;}; € ST be a tuple of diagonal matrices. Consider a map F4 : ST — ST defined

Via
-1

Fail{nih) = [ | D (A + A7
s N (i)

This map has a unique fixed point in the class of diagonal matrices.
Proof. Since F' is a contraction on the set of diagonal matrices, Lemma C.1 gives the proof. m

Lemma C.4 Let {A;}; € S’ be a tuple of diagonal matrices. Then, map F4 from Lemma C.3 has

a unique fixed point.

35 As an example, consider the case when all pairs of assets are equally correlated with correlation p, all

agents have the same risk aversion a, and max; |[N(i)] < N. Then, max(eig(C(Vy()))) < max{l + p(N —

1),1 — p}, min(eig(C(Vn))) = min{l + p(N —1),1 — p}, and (45) imposes upper and lower bounds on
the correlation p. For example, in the symmetric case when I(n) = Iis independent of n and p > 0, we

obtain the simple condition p < +=2=. For Corollary 3, one could also pick {B;}; = {(A¥, .. +a: V@) )

- ~ [+N—-2°
and {A;}; = {(Aﬁmin + aiVN(i))_l}i for any k > 1.
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Proof. Let {A{'}; be an arbitrary fixed point of Fj, and let {AX*}; be a diagonal fixed point,
which is unique by Lemma C.3. Pick 81 € Ry so that (8 satisfies S1ldy) < Af for all ¢ and
B1 < min; min(eig(A;)). Similarly, pick Sz € Ry so that B2 satisfies Baldy() > Af for all 7 and
B2 > max; max(eig(A;)). Define {By}; = {Beldyg}i, & = 1,2, and let Fp,, k = 1,2 be the
corresponding maps. Then define {Af’“ Vi = Br {diag((I(n) — 2)" ") (i) }i- We have

{A7}i = Fi, (A7 }).
Iterating the inequality
(A7} = Fp, (107 )) < Fa({A7' ),

we obtain that F}{({AéB '};) converges to a diagonal fixed point of F4, and hence by Lemma C.3
converges to {A*};. A similar argument implies that F7}({A2};) also converges to {A*};.
Now by the definition of B, k = 1,2, we also have

Fp ({Ai}i) < Fa({Ai}i) < F,({Ai}i)

for any {A;}; € ST. Therefore, by the monotonicity of map Fa,
FR{ATY) < FAUAM) < FA({AT}).

Taking n — oo and using the fact that F({A};) = {A2};, we get {A7*}; < {A2}; < {A¥};, and

the claim follows. m

In the sequel, we use the following convenient notation:
Notation. For any z,y € RY, we write y’z = (x,y). Given a triplet X, A, B of symmetric matrices
of the same dimension, we use notation X € [B, A] when B < X < A.

Proof of Corollary 3. For simplicity, we work directly with the correlation matrix and assume
that V.= C(V). By the proof of Theorem 1 (iv), any equilibrium {A;}; satisfies

AO < Ai,min < Az < Ai,max < AO el

4,min 2,nax’
Therefore,

i I(n)—2 o -1 a I(n)—2 ;
diag <(I(n) - 1))\**(n)>N(i) S it aiVg)™ < disg ((I(n) — 1)A**(n)>mi> e d

and the claim follows from Lemma F.5. ®

D Additional Comparative Statics and Welfare

Proof of Lemma B.1. Suppose that there are IV traders such that

At +(ozl\~/'z+1~Xl)_1 = B_l, i=1,---,N.
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Pick an arbitrary Ay < Aq and define B via f\fl + (alvl + Al)_l = B!, Then, define A; via

A;I‘F(Oéivi—l—[\i)_lzé_l, 1=2,---,N.

This defines A; uniquely: A; = Vg/Qf(V;/QBV;/Q)VZ-l/Q and (A;+V;) ™' = V;l/Zg(Vg/zévg/z)V;l/Q.

Then, define A = 3, (A; + V;)~!. Tt therefore suffices to show that there exist M > 1 and V4
and the corresponding price impact A ~N+1 such that

~

ALy + (anve1 Vg + Avi) ™ =B and A+ (Ms — 1) (an41Vsr + Avyr) = A

-1
+1°
This gives the required matrix V3 = (M; (B — A))~! — (M3 (A4 (M3 —1)B~"))"". =m

The following result gives the analytic characterization of equilibrium in Proposition 1.

Lemma D.1 (Functional Calculus for Symmetric Matrices) For any continuous function f(z)
and any symmetric matrix A, we can define f(A) as follows. By the eigen-decomposition theo-
rem, there exists an orthogonal matrix U and a diagonal matrix D such that A = U7 DU, where
D = diag(d;) and d; are the eigenvalues of A. Then,

f(A) = U diag(f(d;))U.

In general, matrix U is not unique. The uniqueness holds only if the eigenvalues of A are
all distinct. However, even if U is not unique, f(A) is uniquely determined, and so it is well-
defined. The following lemma explicitly links price impact A; with the aggregate liquidity measure

B = Zj(aij(j) +Aj)7L Let fi(a) = (2—a+ Va®+4)/2 and f(a) = fi(a)/a.
Lemma D.2 Let Y; = (B™!)y(;). Then

A— Yi1/2f1(}271/2%‘71\](1’)%71/2)1@1/2'
If V() is invertible, then

Wiz (46)

—1x71/2
Y Ve Ve

Ai = @iV @iV ()

)
Proof of Lemma D.2. The assertion is a direct consequence of Lemma F.6. m

Proof of Corollary 2. The expressions follow by direct calculation from market clearing,
Yo (a3 + 85(B) T (d—p—a;Vnja)) = 0. m

Next, we consider how the extent to which a trader is connected with the market and his more
or less central position in the market, measured by participation in different exchanges, influence his
equilibrium price impact relative to other traders in a given exchange. The equilibrium price impacts
of different market participants are linked through the aggregate liquidity measure B. Namely, let

®(Ai, i Vi) = (A7 + (Vi) + A) 7)™ (47)

be the harmonic mean of two matrices A; and A; +a;V (). Then, by Theorem 1, ®(A;, a; V() =

(B™) N(i), for any class i. In particular, the price impacts of two classes ¢ and j that are connected
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(i.e., N(i) N N(j) # 0) are related as follows

~1
(‘I’(Ai’aivN(i)))N(i)mN(j) - ((I)(Aj’ajVN(j)))N(i)ﬁN(j) = (B7)N@nNG)- (48)

Suppose that N (i) D N(j); for instance, class i is better connected than class j. A concavity
property of the harmonic mean (47) implies the following relationship among the price impacts in
the exchanges in which both classes i and j participate, (A;) ;) and A;.

Lemma D.3 Suppose that class i has greater market participation than class j, N (i) D N(j). Then

(I)((Ai)N(j)a OéiVN(j)) =z <I>(Aj, O‘jVN(j)) : (49)

Proof of Lemma D.3. By (48), (®(As,aiVn)))ng) = ®(Aj,a; V(). By Theorem 5 in
Anderson (1971),
(@ (A, aiVivo)Ing) < @((Ai)ng) @ Ving))

and the claim follows. m

Function ®(A, o'V) is monotone increasing in A, and therefore, for the case of scalar A;, inequality
(49) immediately yields the last item of Theorem 2.

Nevertheless, with many assets, one cannot extrapolate this result by using (49) to conclude
that (A;)n¢j) > Aj. The non-commutativity is, again, the key. Let 4; = @((Ai)N(j) ) ozl-VN(j)) and
Ay = <I>(Aj , ajVN(j)). Then (using Lemma D.2),

(Az')N(j) :aiV1/2- f(aiV1/2 AI1V]1\{2 )V1/2 ’ Aj :ajV1/2 f(ajV1/2 A;lV]lf )V1/2

N() N () ) " NG) N(j) N(j) (1) " N@G)”
where
2—a+Va®+4
flay= 2= (50)
a
is monotone decreasing in a. Inequality A; > As (Proposition D.3) implies
X, = V}\{(Qj)Al_lVJl\{(Qj) < V}\{(Qj)AQ_ 1V11\{(2j) = Xs. However, given two non-commuting symmetric

matrices X and X3 and a monotone decreasing function f(x), inequality X; < Xy does not generally
imply f(X1) > f(X2). A function f that satisfies f(X1) > f(X2) for any X; < X5 is called matriz
monotone. In particular, to conclude that (A;)n(;y > Ay, function f in (50) must be matrix-
monotone, which is not the case.?%

One can still compare price impacts through an eigenvalue order instead of the (weaker) positive
semidefinite order, using that with positive semidefinite matrices, there is a min-max interpretation
of eigenvalues. For the eigenvalues of a symmetric m X m matrix A ordered to be decreasing,
eig(A) = {p1(A) > -+ > um(A)}, we write eig(A) > eig(B) if ui(A) > pi(B) foralli =1,--- ,m.

36

In fact, f is not matrix monotone on any interval. This noteworthy property does not have any scalar
analogues. This implies that with sufficiently many assets, for any A > 0 there exists B, B < A, such
that B is sufficiently close to A and the monotonicity fails (by the Lowner’s Theorem). A function f(z) is
matrix monotone on some (even an arbitrarily small) interval if and only if it can be approximated by convex
combinations of simple hyperbolic functions ﬁ, a € Ry, B € R. For the general theory of monotone matrix
functions, see Léwner (1934) and Donoghue (1974).

Note that non-commutativity is essential here. If A and B commute, they can be diagonalized in the same

basis and, clearly, the implication A > B = f(A) < f(B) holds for diagonal matrices.

45



Lemma D.4 (Relative Price Impact: Many Assets) Suppose that class i has greater market
participation than class j, N(i) D N(j). Then, if oy < o, equilibrium price impact of class 4 in
exchanges N (j) is larger than that of class j in the following sense:

1/2 —1/2 L x,—1/2 —1/2
i M) Vi) = eig(og Vg i AV gy)-

. “1xr—
eig(oy Vi 0

Lf ‘lc(l;le matrices V;,Z)Q (Ay) N(j)V;,l(]/.)Q and V;,t]/)z AjV;,tﬁ commute, then the stronger inequality (2)
olds.

L 1x,—1)2 ~1/2 L 1x,—1)2 ~1/2
Proof of Lemma D.4. 2 Let W1 = VN(J.) (AZ-)N(]-)VN(J.) and Ws = o VN(J.) AjVN(j)

Wi = f (aiV}\{é)AEIV}\{U)), k = 1,2. Since eigenvalues are increasing in the positive semidefinite

. Then,

order, Proposition D.3 implies that

1/2

eig(aiVN(j)Al_lVl/2

Noy) < eiglag VG ATV ).

N () N ()

Therefore, eig(W;) = f(eig(aiV%(Qj)AflV%(Qj))) > f(eig(ozjV]lV/fj)A;lelv/fj))) = eig(Ws). If W) and

Wy commute, diagonalizing them in the same basis implies that eigenvalue order and the positive
semidefinite order are equivalent. m

To prove part (2) of Proposition 5, we first characterize a class of markets. For each i, write

Vii Vi
Vg = ’ ’ )
N (sz sz)
the block decomposition of V in RN® = RNO\NG) g RNOONG) - For any i # j, Vi = Vi —

Vi,,i(V,i,,i)_lVL,i e RVO\WUGDX(N@O\NG)) is the conditional covariance for the residual risks in
N (i) \ N(j), which cannot be hedged in the liquid exchange N (7).

Proposition 7 (Price Impact and Residual Riskiness) Let I; be a set of agents with risk aver-
sion a; and let N(j) be the set of exchanges in which they participate. Assume I; > 2. Then, in
the limit as a;/I; — 0, equilibrium price impacts in exchanges N (j) become zero, A; — 0, whereas
equilibrium price impacts in exchanges N (i) \ N(j), Ay j = Aj niy\n (), solve the system

-1

kel NG\NG)

Furthermore, the demand slope of agent i in exchanges N (i) coincides with (a;Vy; + Ay ;) and
(VQ)n() = 0.

Proof of Proposition 7. Suppose that M; > 2. Since, by assumption, there are at least three
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agents participating in each exchange, an € > 0 exists such that

-1

A, = /_\i)_l + Z(Oéij(j) + /_\j)_l
i N (i)
< (e + (M; = D)o V1 + Ai)*l)‘l)N(,) — (eld + (M; — 1)(c|[V[[1d + A)) 1) !

Let £ > 0 be the largest eigenvalue of A;. Then, we get £ < (eld + (M; — 1)(a;||V||Id —|—€)_1)_1.
By direct calculation, this inequality implies that ¢ — 0 as o; — 0 or M; — 0.
Pick any trader i # j. Then,

— 1 _ —1
(M) vy < (M (a5 |VI+ M) +eld) ) viynney = (Mi(ag | VI+ A) ™+ €1d) ) wi)nn)-

Since (a;||[V]| + A;)~! diverges to oo, we get the required result.
Finally, the last claim follows because lima, 0 A; = (I_Xi\j) N(i)» and hence, using the Frobenius
— . Ay —1
formula (Lemma E.1), (Vi +40) ™) vgyava = Aoy 5V s N6\ N ()
To prove the result about the limit allocation, we need to study the asymptotic behavior in
greater detail. This is done in the following proposition.

Proposition 8 Let M; > 2. Then, for sufficiently small o = «;, an equilibrium price impact tuple
{Ai(a)}; exists that satisfies Aj(a) =~ ﬁVN(j), and for all i # j, to the first order in a,

M.
( O‘VN( ) (0, JQ)IJ\T WVNU) Wia(i)Wa (i) !
M, ,
me( ) WIQ( )TVN( ) Az\j + O(Al(\]) NG)

. Wii(i) Wia(e - - _

The first order equilibrium response {A }Hg, is the unique solution to the system

M; — o —1
m Wia ( ) Waa (Z) )
S N()\N (i)

AR; = | Waa(i Z ZkA(l) Zy + Wiali ) Vi1

where Z; = (ai\_fN(i) + A (0)7L 0 #£ 5
Proof. The fixed point equation is

Ai(a) = (@ V) + 8) 7+ W(i,00) 7Y

and the claim follows by direct calculation from the Frobenius formula (Lemma FE.1). Furthermore,

M;—1 M;—1 -1
B!~ ( aJVN(J)( ~2)1, — O (AL, ~2)01 VN(J) Wi2Woy >
~ M )
O‘ji(Mj_z)Mj W22 WHEVNG) W2\17L aJWQ(\i
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where

Wi W _ R
W= P =Y MoV + Ak(0) !

Thus, the trade of an agent j is approximately given by

M: —9 M; — M; —2
1 J 0o_ —1 J 0
(@ Vng) +8)7Qug) = 3, =74 =9 M — v HWG) T 1
We have?” M, -
-1 (0) 1-(0)
YoM - Y () Qo) ~ My (XNU) ~ WiWar X )>
where M. —2
_ - -1 & i
XO =37 (05 Vg + 85(00) " 0V @) + 37— Q0

J#i

In contrast, agents i # j trade (a; V() + A;(0)7t (QN(i)\N(j) - aiVN(i)q?), since Q) =0. m m

We will now restrict our analysis to markets from Proposition 7. For simplicity, we will assume
that there is a single illiquid exchange in which all agents participate, so that n = N(i) \ N(j)
is the same for all agents. By Proposition 7, the problem reduces to studying the price impact
A = Aj\; of agent 7 in the (illiquid) exchange n. Let I,y be the orthogonal projection onto the
subspace of assets traded in exchange n and let Q = (VQ)K(n) and q~? = (q?)K(n). With V; = Vi
defined as in Proposmon 7, T = (V) ITi(Vi, A) (i Vi)™, Ay = (Vi) P Ai(Vi, Ay (i Vi) L,
and Ai + (AZ- + ozﬂ/;) — B for all i, which implies a global upper bound on the price impact of

all agents,
A; < 2B (51)

Lemma D.5 In the markets from Proposition 7, 'ij = %(BINX]B - B) and QAj = SINXjB]\j —
A,BA,BA, .

Proof of Lemma D.5. For brevity, let T =71 = onV A= A B = B. Then,

]\za

1 1 1 1
(a; V) 'Yy Vi) ™' = 5(V+A)—1+§(V+A)—1A(V+A)—1 = 5(B—A—l)+5(B—A—1)A(15>—A—1)

and the claim follows. For A, we have

(OéjVN(j))_lA(OéjVN(j))_l = A(A + V)_1V(A + V)_lA =
AA+V)TIA —AA+V)TIAA+V)TIA = AB-A")A—AB—AHAB - A YA

and the claim follows by direct calculation. m

The following lemma shows that within the general framework of Proposition 7 we can directly

study welfare with the “reduced” matrices of price impact and surplus from trade.

37 —1M72V M;—1 X(O) o —1M;-2

M;—
@5 M N(])aJVN(J) (M; —2)M NG) T Y = VN(J)aJ (M; 2)M VN(J)W12W22 N\N(j) approx-
imates the left hand side and equals the right hand side.
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Lemma D.6 Let

5 . 1 - - . s 1- - - . _
T, = (OziVj—l-Aj)_l <2aiVj + Aj) (CkiVj—l-Aj)_l and Aj = EA(O@V]‘—i—Aj)_laiVj(aiVj—i-Aj)_lAj.

Then, the utility U; of agent from class j with initial holdings q,g with (qg) = 0 (i.e., no initial

N\K(n)
holdings in exchanges N \ K(n)) is given by

Uj(Aj; ) = (1;Q, Q) — 2(o; V;15Q, ) — (A0, Gi)- (52)

Proof. Let V; = V ;. Then,
1 1 1 -1 -1
Tj =5V +45)7 + 5oV +A5) 7 AV + Ag) ™,

and hence (T;Qn ), Qng)) = (TjQ, Q), because Q. (n) = 0 and price impact in exchanges other
than x(n) also vanishes. Furthermore, a direct calculation implies that

1 1
a; Vi1 = §(Id — Ai(@Vi+A)™H + §(Id = Ai(@Vi+A) " HA(aVi+ Ay
and hence (o Vi TiQp (i), q)) = (a;V;1,Q, ). =

Proposition 9 (Commutativity, Connectedness and Price impact) IfBl/2VjIBI/2 and Bl/ZVjQBW
commute and le < \7]-2, then Aj > Aj,. However, for any B and le that do not commute and
satisfy B > 2\~7j_11, there exists V;, > V;, such that /~Xj1 7 /~\j2.

Proof of Proposition 9. For simplicity, we normalize all risk aversions to 1. Let j; =1, jo = 2.
We first show that for any Vi, Vs, and B there exists a market in which they are realized. To prove
this, consider a market with three classes and let us show that we can pick Vs accordingly. First,
equation A; ' + (V; + A;)~! = B implies (by Lemma D.2) that

A = VI pVIPEVYVY
and

(/~\¢ + \Nfi)_l _ Vf1/2g(v'1/255‘~,'1/2)‘~,'—1/2‘
Denote A = (\71 + Al)_l + (\72 + Az)_l. Then, A5 satisfies

Az =(A+ (M3 —1)(Vs+As) ) ' =(B—(Vs+A3) )"

and therefore to complete the proof it suffices to show that there exist positive definite matrices
A3, V3 satisfying

Ayt — (Mz — 1) (V3 +A3) L= A, A1+ (Vs +A3)" L =B.

Solving this system, we get

(Va+A3) ™' = Mg Y(B—A), A;' = My (A+ (M3 —1)B7Y).
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Since A + (M3 — 1)B~! > B~! — A whenever M3 > 1, the matrix

V= (M3 (B~ A)) ™ — (M (A+ (M; —1)B™1)) ™!

is positive definite. Finally, B > 2\71_ s \71_ T4 \72_ 1> A, completing the proof of existence.

Lemma D.7 None of the functions f, fi, ¢ is matrix monotone.

Proof. By the Lowner Theorem (Donoghue (1974)), it suffices to show that none of these functions
can be analytically continued to the whole upper half-plane. This follows directly from the fact that
2¢ is a branching point for all these functions. m

By Lemma, f; = 27“% Va?+4 g not matrix monotone on any interval, and consequently, for any
positive definite matrix X7 of sufficiently high dimension, there exists a matrix Xo > X; such that
fl(Xz) L fl(Xl) . Let X1 = 3_1/2{71B—1/2. Then, define \72 = Bl/2X2B1/2.

Now, by Lemma D.2,
Ay = BY2f1(X1)BY? # BY2f1(X2)BY? = Ay,

and the proof of Proposition 9 is complete. m

The proof of Proposition 3 shows that the eigenvalues of the map M play a crucial role in
determining the welfare properties of decentralized markets. We complete this Appendix with a
discussion of the structure of these eigenvalues and their link to price impact. For simplicity, we

assume that there is only one asset traded on all exchanges.?®

Corollary 4 (One Asset: Equilibrium Allocations) Consider a decentralized exchange for a
1

single asset (Example 1 (ii)). Suppose that A; is nonsingular.? Letting (1 — M) = TTawta(AcT)

the allocation of trader ¢ is given by
g +a) =(1-7"A"ATQ + ). (53)

The scalar fy%w is the decentralized-market counterpart of the degree of diversification by trader
1. The overall liquidity tr(A;l) of a trader who participates in multiple exchanges for a homogenous
asset determines the fraction of the initial endowment he retains. In one-asset markets, equilibrium
price impacts of all traders are diagonal without loss (see Malamud and Rostek (2016)), allowing us
to use the trace. O

In a noncompetitive market (either centralized or decentralized), the map £PM still keeps the
gDM(

a; )i = (a;'); (Corollary 2). However, in addition to this

efficient allocation unchanged, ;

eigenvalue of one, it has other eigenvalues that are non-zero. The magnitude of these eigenvalues
shows precisely how efficient the map £PM is in terms of eliminating the inefficient parts of the initial

38
39

The case of multiple assets is similar, but the notation is more cumbersome.
This is without loss of generality and is always the case if the market structure is a tree. See Malamud
and Rostek (2016).
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allocation.*® Recall that v; = 1 — see Corollary 4) is the degree of diversification by

N S (
THa;o2tr(A;h)
trader 4 in the decentralized market. In order to characterize the eigenvectors e of EM, we substitute

the eigenvalue condition e = ve into (53) and arrive at the following result.

Proposition 10 Suppose that there is one asset and that (1 —;) # ¢; for all ¢ # j, and the market
hypergraph is connected.*! Then, the map ™ has I different eigenvalues v;, i = 1,--- , I satisfying

0<(1—’)/1) < v < (1—’)/2><"'< V]_1<<1—’)/[)<V[=1. (54)

The eigenvector for the eigenvalue vr = 11is the efficient allocation e; = (a; *);, while for an eigenvalue

v =v;, 1 <1 —1 the corresponding eigenvector is given by e(v) = (¢;(v));, where

0; —p=
G =~ ITAQ ), (55)

Q*(v) is the corresponding aggregate risk, and the eigenvalues v;, i = 1,--- ,I — 1 are determined
by the zero aggregate endowment condition 17e(r) =0 for all 4 < I — 1.

The zero aggregate endowment condition is straightforward: By market clearing, we always have
17&Me = 17¢ and hence, if e(v) is an eigenvector with v # 0, we must have v17e¢ = 17e implying
that either v = 1 (and then e is the efficient allocation) or 17e = 0. By the zero aggregate endowment
condition, the efficient (competitive) trade would have ECMe = 0. But price impacts do not allow the
agents to diversify away their endowment risk. An eigenvector e(r) corresponds to initial endowments
for which exactly the fraction 1 — v of initial endowment is be diversified away.

The eigenvectors and eigenvalues of the map £ can be used to derive the decomposition of the
action of EM. Indeed, let V be the matrix of eigenvectors of £ so that EY = VDV L. For any vector
Q% = (¢?) define Q? = (V71Q%; to be the coordinates of Q° in the basis of eigenvectors of EM.
Then, Q¥ = > Q?ei and

" = > 19). (56)
i

If the eigenvalues v;, i < I, are sufficiently small, the map EM essentially eliminates the inefficiency
of the allocation and pushes it all the way to the efficient one. Otherwise, it only “contracts” the
inefficiencies along the directions of the corresponding eigenvectors, and the degree of contraction
is given by v; € (0,1). The smaller v; is, the more efficient the market structure is in diversifying
away the initial endowment risk. In particular, if the initial endowments are given by the eigenvector
e1 corresponding to the minimal eigenvalue v, then the given market structure is highly efficient
in diversifying initial endowment risk. In general, if a vector of initial endowments is a linear
combination of ej,--- ,er, then, on average, a fraction p € [1 — vp,1 — ] of initial risk can be
diversified away.

By Proposition 10, the degree of diversification 1 — v; is locked between the individual traders’

degrees of diversification 7;,7;+1. By Theorem 2, (1 — ;) are always monotone increasing as the

40 Sannikov and Skrzypacz (2015) use a similar decomposition in a slightly different setting and show that
these eigenvalues determine how quickly the initial allocation converges to the efficient one over time.

41 That is, for any two exchanges, there is a trading path connecting them. The general case is analogous,
but the notation is more complicated.
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market becomes more decentralized. Hence, if a given vector e of endowments is an eigenvector
of both EM EM" and M’ is more decentralized than M, we expect that the diversification gains
lower in the more decentralized market. However, a key property of decentralized markets is that
the eigenvectors are different across different market structures: An endowment vector with a high
degree of diversification in market M may have a low degree of diversification in M. For example, e}!
may be close to el}ﬂll in which case ellw will be almost diversifiable in M and almost non-diversifiable
in M.

Welfare Calculation in Example 2 For ag — oo, class 3 agents do not trade, and hence x; =
avfpm, Ty = xgpm. When a3 < oo, then z3 > 0, and hence z1 + 20 = —x3 < 0 = a:ISplit +m§p”t. That
is, when «sg is sufficiently large, then x1 +x9 < 0, implying that z; decreases faster than zs increases
as ag decreases. It follows that 0 > xfp it x1 for large as; class 1 agents buy more despite the
larger price impact.

Split
3

Given z = 0, the split market dominates the centralized market in total welfare (3) if and

only if the agents’ utility losses from risk exposure satisfy

Splity2 Splity2 2 2 2
a1(z7P")? + ag(@5P")* < anxi + asxs + asTs .

fp“t| < |x1|, it suffices to verify that the total welfare

loss of classes 2 and 3 is lower in the split market, that is, that (mgp lit)Q + 0% < 23 + 23. We have

Split Split Split Split .
P = P = P 4 aSP" Using 23 + 23 = 0.5(z2 + 23)% + 0.5(z3 — 12)?,

the inequality xo + x5 > ac‘gp it combined with sufficiently large |x3 — z2| gives the desired inequality.

Suppose, for simplicity, that ae = as. Since |z

T3+ To = —x1 > —X

Example 6 (Intermediated Market Can (Further) Increase Welfare) Consider the

market from Example 4, in which agent 1d participates in both exchanges and equilibrium allocation
is given by (20). Example 2 demonstrated that total welfare in the split market with allocation
(2 P1 5PHE 2Pl s higher than in the centralized market. We wish to understand whether the

intermediated market can increase welfare even more, and if so, why this may be the case; that is,

under what conditions we may have
2 2 2 2 Split\2 Split\2 Split\2
agM (x5 + x3) + an (M — 1oy + 214) < aaM((2577)" + (2577)7) + aa M (2777)7, (57)

where we assume a1 < ag = ag (two classes) for simplicity, as in Example 2.

The common participating trader lowers price impact in exchange 1 (Theorem 2), while also
changing the aggregate risk in the exchanges. In particular, intermediation does not fully eliminate
the inefficient trade of class 3. However, as we show next, the efficiency improvements over the
centralized market due to heterogeneity in aggregate risk across exchanges are affected only slightly
by (the single endowment of) the intermediary. When class 1 is large enough, the welfare benefits
due to lower price impact dominate and total welfare increases.

Equilibrium aggregate risk satisfies Q] > ¢°Pl1 given the lower price impact in exchange 1 and

Split,1

recalling that ¢ is the aggregate risk portfolio in exchange 1 of the split market.*?> In turn,

Q3 < 0, since the endowment of 1d is negative and the endowment of class 3 agents is zero.

42 Heuristically, 1d trades only a fraction ; the endowment in exchange 1, and the total endowment in

exchange 1 is not —Mq+ Mq=0but —ug— (M —1)g+ Mqg= (1 — u)g > 0.
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The price impact of intermediary 1d is higher than that of other agents of class 1 in exchange
1 (this is, in fact, a general result for intermediaries; Theorem 2 (3)). If, as in Example 2, ag
is sufficiently high, class 3 agents trade little with 1d and his trade in exchange 1 is insufficient

to maintain the amount of trade he does in the split market: 0 > xy > x14. Since price impact
(Theorem 2) and price (Q} > i7"

0>z > xfp it x14- If M is not too small, the welfare gain of non-intermediating agents dominates

) are lower in exchange 1, class 1 agents buy more of the asset:

the utility loss of the intermediary,
ar(M —1)a? +22,) < ay M(z77"™")?2

The utility change of class 2 is ambiguous. Their aggregate risk in exchange 1, QJ, is higher,
and the lower price discourages selling. At the same time, their price impact is lower than in the
split market (by Theorem 2), since the intermediated market is less decentralized than the split
market. When as is sufficiently high, the contribution of the aggregate risk, (A + ao) ' Qf, is small
and the effect of lower price impact dominates, efficiently lowering (the natural sellers’) allocation
Ty = (Ay + a2)7'Qf + (1 — T'y)q relative to the split market. Since risk aversion ag = ag is
sufficiently large, the inefficient trade and allocation of class 3 is small, and altogether we have
oM (23 + 23) < QQM((.’Egplit)Q + (xgplit)Q). O

In Example 6, welfare improves even with a common participating trader who takes the same
(buying) position in both exchanges, while the intermediary’s utility decreases.

E Useful Linear-Algebraic Results

Lemma E.1 (Frobenius Formula) By direct calculation,

-1

A B B (A— BD'BT)~! ~A"'B(D - BTA-1B)~!
BT D)  \—-(D-BTA'B)"'1BTA! (D—BTA-1B)!

Lemma E.2 For a positive definite matrix A, A=t > fljvl(i).

Proof of Lemma E.2. Let B=A"!, 2 € RN® and y € YN\N@_ Then

i B = ((By; — B12B;,' B . 58
yeﬂ@&\r}w)< (z,v), (z,y)) = ((Bu1 12835 Ba1)z, x) (58)

By the Frobenius formula (Lemma FE.1), By — 3123521321 = (B YY)t = Aﬁl. Therefore,
(AN (&, ), (z,9)) = (B(z,y), (z,y)) > (A} m,2) = (A7) (z,9), (,9))

for any (z,y) € RY, and the claim follows since A;; = A NG)- ®

Proof of Lemma C.1. Let us calculate the derivative of map F'. That is, consider an infinitesimal
change {A;}; — {A; +Y;};. Then, a direct calculation based on the identity, used twice,

U+eV)trUut—cu~tvu!
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implies that the Frechet derivative of F, 5 { A } ({Y} ), is given by

—1 -1
yx) (S (s
i+ i% i#j NG)
Introduce a norm of the set of I-tuples of positive semidefinite matrices via [||{Y;}:||| = max; ||Y; | n ),
where || - || ;) is the standard norm on matrices in RY (@) defined by
Y|
Y =

zeRN z£0 ||z|

For simplicity, in the sequel we omit the index N (i) for the norms. For a symmetric matrix, ||Y|| =
max |eig(Y')|, and therefore, Y; € [—||Yi|[Idy) , [|Yillldy(;)] . Suppose now that condition (44) holds.

Then,
-1

ZXE in <1,

z;é; i i

and hence,
-1
OF;
e i< | |D.x > Xll{Yi bl Td ) X < [HYi}il Hdn -
' i#j i#j NG)

The same argument implies
OF;
8{A;},~({m}i) > —[[{Y:}ill[Tdn )

that is,

[Fannl

Hence, map F' is a contraction on this set and cannot have more that one fixed point. =
Lemma E.3 If X € [B, A] and Xq = z then (g, z) > max {(Bq,q), (A2, 2)}.

Proof. Since X > B, we have (Bq,q) < (X¢q,q) = (¢, 2) and the first claim follows. To prove the
second claim, pick an € > 0. Then, X < A implies (X +eld)~! > (A + eId) !, and therefore,

XAT'X < X(X 4eld) 71X

Since z%(z + &) "l < @ for any x > 0, functional calculus implies X (X +¢Id) "' X < X. Taking the
limit as € | 0, we get XA™'X < X and the following completes the proof

(A™"2,2) = (A7'Xq, Xq) = (XA Xq,q) < (Xq,q) = (2,9).
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Lemma E.4 Consider function W, (21, ,z1) = >, ||zi* — || Zi# 2i||? and let

wlq) = maX{‘I’j(Zla L 21) 1 % € RN(i), (g, 2zi) > maX{<Bz’QaQ>a <Ai_1ziazi>}v i€}
If max gy p1(q) <0, then the conditions of Lemma C.1 are satisfied.
Proof. The claim follows directly from Lemma E.3 if we define X;q=z2;. =

Lemma E.5 Let a; = ||4;|| and @ = max;es a;. Suppose that ald < Y, B;. Then, the hypothesis

of Lemma F.4 is satisfied.
Proof. Pick a tuple z; € RN i € I, satisfying (¢, z) > max{(B;q,q), (Ai_lzi, zi)}, @ € I. Then,
a; Mzl < (A7 2, 2) < (g, 2), i€ 1.

Normalize ¢ so that g = 1. Then, we can decompose z; = (g, z;)q + 2;- with z;- € RN, (2, ¢) = 0.
Let §8; = (q, z;). Then,

2 2
et = ($6) 1T (Ta)
i£j i i i

and therefore,

2
Wiz, 521) = Z Izl = 1Dzl < aiBi = 1Y all> <D aifi — (2@)

i#] i i#] @

(=)

and the claim follows because by assumption, >, 3;>>". (¢, 2,) >>". (¢, B,q) > a. =

IN

Lemma E.6 Let Y, Z be nonnegative definite, with Y positive definite. The unique positive definite
symmetric matrix A solving
A=Y= (Z+0)"H

is given by
A= Yl/zfl(Y_l/QZY_l/Q)Yl/z,

where f1(a) = (2 —a+ Va? +4)/2. If Z is invertible, then we can also write
A= ZV2f(ZY2y 1712y 712
with f(a) = fi(a)/a. Furthermore,
(Z 4 A)fl — Z*l/Qg(Zl/nylzl/Q)Zfl/Z
with g(a) = (f(a) + 1)7! =2a/(2 + a + Va2 + 4).
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Proof. Multiplying by (Y ~! — (Z + A)~!) from the right gives
AY = (Z+N)hH=1d
Multiplying by A~! from the left gives
Y i=Atr(Z+AN)"h (59)
Multiplying from the left and right by Y'/2 (we do this to preserve symmetry), we have
Id=L"'+ Y V2zy-124+ 1),

where L = (Y"Y2AY"Y2). Let A = Y~Y/2ZY /2. Let us first show that A and L commute.
Indeed, multiplying (A + L) from the left and right gives

(A+ L)Lt +1d=(A+L)=L ' (A+L)+1d
Subtracting Id from both sides and multiplying by L from the left and right gives
LA+ L?>=L(A+L)=(A+L)L=AL+L?

and the claim follows. Thus, A and L commute, and therefore, there exists an orthonormal basis in
which both A and L are diagonal in this basis. For an orthogonal matrix U, both UAUT and ULU™

are diagonal and
Id=UIdUT = UL 'UT +UA+ L) 'UT = (0LuD) ' + WAUT +ULUT)™ L,

Since all matrices on both sides are diagonal, each diagonal element has the same form with the

unique positive solution f(a) of

Therefore, we obtain
L=UTfUAUTU = f(A) = f(Y~V22y~1/2),

Similarly, assume that Z is positive definite. Then, there exists a positive-definite invertible matrix
ZY/2 Multiplying (59) by Z'/2 from the left and right, we get

K=B1'4+(1d+B)™,
where K = Z'/2Y=17'/2 and B = Z~Y/2AZ~/2. Multiplying (Id + B) from the left and right,
K+BK=(Id+B)K=B"'+2ld=K(Id+ B) = K + KB,

which implies that K and B commute. By an argument analogous to the above, with the unique

positive solution fi(a) to




we get that B = f1(K). =

Lemma E.7 Let H C RY be a subspace, let B a symmetric positive definite matrix on H and let
A be a positive definite matrix on RY. Then, A > B if and only if (A~1)y < B~%.

A_po (A An 7
and hence by (58), A — B > 0 if and only if Ags — A%Aﬁlfhg — B > 0. By Lemma FE.1, this is
equivalent to (A7) < B!, =

Proof. We have

Lemma E.8 There exists a matrix B < A such that Bq = z if, and only if, (A712,2) < (g, 2).

Proof. We normalize z so that ||z|| = 1. Suppose first that B < A satisfies B¢ = z. Then,
(q,2) = (B7'2,2) > (A'z z). Suppose that (A~'z,2) < (q,z) and define B = ({(g,2))"'(-,2)2.
Let H be the span of vector z. By Lemma E.7, it suffices to check that (A7')y < B~!. Since
(A" g = (A712 2) and B~! acts as ({g, z)) on this subspace, the claim follows. m
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