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Abstract

We derive representations for the stock price drift and volatility in the

equilibrium of agents with arbitrary, heterogeneous utility functions

and with the aggregate dividend following an arbitrary Markov diffu-

sion. We introduce a new, intrinsic characteristic of the aggregate div-

idend process that we call the ”rate of discounting volatility” and show

that, in equilibrium, the size of market price of risk is determined by

the market price of discounted dividend volatility (DDV), discounted

at that rate, and multiplied by the aggregate risk aversion. The stock

price volatility is equal to the market price of DDV plus a volatility

risk premium. In particular, stock price volatility is larger than the

dividend volatility if the aggregate risk aversion is decreasing, dividend

volatility is countercylical and the rate of discounting volatility is

procyclical. We also obtain a representation for the optimal portfolios.

Under the above cyclicality conditions, we show that the non-myopic

(hedging) component of an agent’s portfolio is positive (negative) if

the product of agent’s prudence and risk tolerance is below (above)

two, and the sign is reversed for the reversed cyclicality conditions.

Keywords: equilibrium, heterogeneous agents, volatility, optimal

portfolios

JEL Classification. D53, G11, G12
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1 Introduction

What is the equilibrium prediction for the market price of risk and volatility

of the risky asset in a complete market economy populated by heterogeneous

agents? And what is the hedging behavior of those agents in equilibrium?

Those are the two main questions we answer in this paper.

The basic intuition comes from Merton’s continuous-time analog of CAPM.

That is, with a CRRA representative agent with risk aversion γ and the div-

idend following a geometric Brownian motion with volatility σ, equilibrium

behavior resembles that of the standard CAPM: the market price of risk

is given by γσ, stock price volatility equals σ, and the optimal portfolio is

myopic and instantaneously mean-variance efficient. We extend these results

and allow for

• an arbitrary dividend process;

• heterogeneous agents with arbitrary utility functions.

We show that

• the market price of risk is obtained as the expected value, under the

risk-neutral probability, of the aggregate (relative) risk aversion multi-

plied by dividend volatility discounted at the rate we call the “rate of

discounting volatility”. This rate depends only on the structure of the

dividends process;

• the rate of discounting volatility can be interpreted as the speed of

mean-reversion of the log-dividend process1 if it is positive, and rate of

growth if it is negative;

1Possibly after a deterministic transformation.
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• the stock price volatility can be decomposed into excess component and

fundamental component. The fundamental component is given by the

market price of dividend volatility, discounted at the above mentioned

rate;

• excess volatility is given by a volatility risk premium, whose sign is

determined by the co-movement of the dividend with aggregate risk

aversion and discounted dividend volatility;

• the non-myopic (hedging) component of an agent’s portfolio is given by

a portfolio risk premium, whose sign is determined by the co-movement

of agent’s wealth and risk tolerance with aggregate risk aversion and

discounted dividend volatility.

The most important general message from the above results is that the

volatility of the dividends by itself is not enough to determine equilibrium

properties. For example, bounds on the product of risk aversion and dividend

volatility may substantially under- (over-) estimate the true equilibrium risk

premium if the economy if growing (mean-reverting).

In the case of lognormal dividend, dividend volatility has been commonly

interpreted as the fundamental component of the stock price volatility (see,

e.g., Bhamra and Uppal (2009)). As follows from above, when dividend is

not a geometric Brownian motion, this may lead to under- or over-estimation

depending on the sign of the discount rate.

The above mentioned representations allow us to make predictions about

equilibrium behavior. Suppose that the product of aggregate risk aversion

and dividend volatility is countercyclical,2 dividend volatility is countercycli-

cal and the rate of discounting volatility is pro-cyclical. Then,

2For example, aggregate risk aversion is always countercyclical in a heterogeneous
economy with CRRA agents. See, Benninga and Mayshar (2000).
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(a) the market price of risk is counter-cyclical;

(b) excess volatility is positive;

(c) optimal portfolios are monotone decreasing in risk aversion;

(d) the non-myopic (hedging) component of an agent’s portfolio is positive

(negative) if the product of the agent’s prudence and risk tolerance is

below (above) two.

All signs are reversed for the reversed cyclicality conditions.

The fact that countercyclical risk aversion leads to countercyclical market

price of risk is very intuitive and agrees with analogous results in the liter-

ature on habit formation (see, Campbell and Cochrane (1999)). However,

our result implies that market price of risk may be countercyclical even if

risk aversion is procyclical, but countercyclicality of dividend volatility is

sufficiently strong.

Excess volatility is a well known stylized fact. See, e.g., Shiller (1981),

LeRoy and Porter (1981), Mankiw, Romer, and Shapiro (1985, 1991) and

West (1988). Therefore, the fact that in our setup counter-cyclical risk

aversion always leads to excess stock volatility gives credence to the model.

The intuition behind it is as follows. In good states with high expected future

dividends, aggregate risk aversion is low and so the agent is willing to hold

the stock even it the return is low (i.e., the price is high). This makes the

price go up very high in good states and, by the same arguments, go down

fast in bad states, and therefore drives price volatility up.

The result about monotonicity of optimal portfolios is also important.

Almost all papers on heterogeneous equilibria use this monotonicity property

as the basis for economic intuition. See, e.g., Dumas (1989), Wang (1996),

Basak and Cuoco (1998), Basak (2005), Bhamra and Uppal (2009). However,
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to the best of our knowledge, no proof of this property has ever been given

even in an economy with only two agents.

The relation between hedging portfolios and prudence is intriguing. It

is known that prudence is responsible for the precautionary savings effect

(see, Kimball (1991)). The above result shows that the sign of the hedging

portfolio is determined by the relative strength of two motives: precautionary

saving and risk aversion. When risk aversion is small relative to prudence, the

precautionary saving (risk aversion) motive dominates and hedging portfolio

becomes negative (positive).

We conclude the introduction with a discussion of related literature. Most

of the work which extends standard CAPM and CCAPM to heterogeneous

risk preferences is done in very special models with two CRRA agents only.

Dumas (1989) considers a production economy of such a type, performing a

numerical analysis. Similarly, Wang (1996) studies the term structure of in-

terest rates in an economy populated by two CRRA agents, maximizing time-

additive utility from intermediate consumption and the aggregate dividend

following a geometric Brownian motion. Bhamra and Uppal (2009) consider

the same economy, and derive conditions under which excess volatility is

positive.3 Basak and Cuoco (1998) study equilibria with two agents and

limited stock market participation.

Cvitanić and Malamud (2009a, 2009b) study asymptotic equilibrum dy-

namics with an arbitrary number of CRRA agents maximizing utility from

terminal consumption, as the horizon becomes large.

Only few papers study general properties of equilibria with non-CRRA

preferences and/or a general dividend process. Bick (1990) and Wang (1993)

3The main message of Bhamra and Uppal (2009) is that allowing the agents to trade in
an additional derivative security, making the market complete, may increase the market
volatility. Because of completeness, their equilibrium is an Arrow-Debreu equilibrium of
Wang (1996).
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allow for an arbitrary dividend process and describe the set of viable price

processes. That is, all price processes that can be attained by varying the

utility of the representative agent. Berrada, Hugonnier and Rindisbacher

(2007) provide necessary and sufficient conditions for zero equilibrium trad-

ing volume in a general continuous-time model with heterogeneous agents,

multiple goods, and multiple securities.

There are models in which heterogeneity comes from beliefs and asym-

metric information, as in Basak (2005), Jouini and Napp (2009) and Biais,

Bossaerts and Spatt (2009). Some papers study static, one period economies

with heterogeneous preferences. See, e.g., Benninga and Mayshar (2000),

Gollier (2001), Hara, Huang and Kuzmics (2007). Methodologically, our

paper is close to Detemple and Zapatero (1991), Detemple, Garcia and

Rindisbacher (2003) and Bharma and Uppal (2009), as we use Malliavin

calculus to derive the main results.

Our paper is also related to a recent work of Mele (2007). He stud-

ies monotonicity/concavity properties of equilibrium stock price and their

relation to equilibrium volatility dynamics. He introduces a new object,

the risk adjusted discount rate, and rewrites the equilibrium stock price

as the present value of risk adjusted future dividends, discounted at this

rate. Even though the idea of such a representation is similar to the one of

this paper, there is no direct connection between the risk adjusted discount

rate and the rate of discounting volatility. The former depends on the

endogenous equilibrium market price of risk, whereas the latter is an intrinsic

property of the exogenously given dividend process. Furthermore, we obtain

representations for the instantaneous moments of the price, and not of the

price itself.

The paper is organized as follows. In Section 2, we describe the setup
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and notation. In Section 3 we introduce the rate of discounting volatility and

derive representations for market price of risk, volatility, as well as drift and

volatility of the market price of risk, and study their behavior. Section 4 is

devoted to equilibrium optimal portfolios. Section 5 concludes.

2 Setup and Notation

2.1 The Model

We consider a standard setting similar to that of Wang (1996). The econ-

omy has a finite horizon and evolves in continuous time. Uncertainty is

described by a one-dimensional, standard Brownian motion Bt, t ∈ [0 , T ] on

a complete probability space (Ω,FT , P ), where F is the augmented filtration

generated by Bt. There is a single share of a risky asset in the economy, the

stock, which pays a terminal dividend DT such that

D−1
t dDt = µD(Dt) dt + σD(Dt) dBt.

This diffusion process lives on (0,+∞).

We assume that σD(Dt) > 0, and that µD and σD are such that a unique

strong solution exists. Moreover, we assume µD ∈ C1(R+), σD ∈ C2(R+). 4

We also assume that a zero coupon bond with instantaneous constant

risk-free rate r is available in zero net supply.5

There are K competitive agents behaving rationally, and agent k is ini-

tially endowed with ψk > 0 shares of stock, an the total supply of the stock

is normalized to one,
K∑

k=1

ψk = 1.

4In general, whenever we use a derivative of a function, we implicitly assume it exists.
5The assumption of constant r is introduced only for simplicity of exposition.
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Agent k chooses portfolio strategy πk t, the portfolio weight at time t in the

risky asset, as to maximize the expected utility

E [uk(Wk T )]

of its final wealth WkT , where the wealth Wkt of agent k evolves as

dWkt = Wkt(rdt + πk t (S−1
t dSt − rdt)).

Here, St is the stock price at time t. The instantaneous drift and volatility

of the stock price St are denoted by µS
t and σS

t respectively,

S−1
t dSt = µS

t dt + σS
t dBt.

We assume that uk is C2(R+), and for the results involving prudence, we

assume uk is C3(R+).

2.2 Equilibrium

Definition 2.1. We say that the market is in equilibrium if the agents behave

optimally and both the risky asset market and the risk-free market clear.

It is well known that the above financial market is complete, if the

volatility process σS
t of the stock price is almost everywhere strictly positive.

When the market is complete, there exists a unique stochastic discount factor

(SDF) M = MT such that the stock price is given by

St = er(t−T ) Et[MT DT ]

Et[MT ]
.

Equivalently, MT

E[MT ]
is the density of the equivalent martingale measure Q

and

St = er(t−T )EQ
t [DT ] .
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Because of the market completeness, any equilibrium allocation is Pareto-

efficient and can be characterized as an Arrow-Debreu equilibrium. See, e.g.

Duffie and Huang (1986), Wang (1996).6

Introduce the inverse of the marginal utility

Ik(x) := (u′k)
−1(x) (1)

It is well known that in this complete market setting the optimal terminal

wealth is of the form

Wk T = Ik(yk MT )

where yk is determined via the budget constraint7

E[Ik(yk MT )MT ] = Wk 0 = ψk S0 = ψk E[MT DT ].

We formalize this in

Proposition 2.1. Equilibrium SDF M and parameters yk solve the equations

K∑
k=1

Ik(yk MT ) = DT (2)

E[Ik(yk MT )MT ] = ψk E[MT DT ] , i = 1, . . . , K . (3)

6Because the endowments are co-linear (all agents hold shares of the same single stock),
it can be shown that, under some conditions on agents’ utilities, the equilibrium is in fact
unique up to a multiplicative factor, and unique if we fix the risk-free rate. See, e.g.,
Dana (1995), Dana (2001). If the endowment is neither bounded away from zero nor from
infinity, some additional care is needed to verify the existence of equilibrium. See, e.g.,
Dana (2001) and Malamud (2008). We implicitly assume throughout the paper that an
equilibrium exists.

7We assume a unique such yk exists.
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3 The Rate of Discounting Volatility and the

Equilibrium Stock Price

Since the market is complete, it is well known that the prices in our hetero-

geneous economy coincide with those in an artificial economy, populated by

a single, representative agent with a utility function U , and the equilibrium

stochastic discount factor equals the marginal utility of the representative

agent, evaluated at the aggregate endowment,

MT = U ′(DT ). (4)

That is, the function U ′(x) satisfies the equation

∑
k

Ik(yk U
′(x)) = x. (5)

Let

γU(x) = −xU
′′(x)

U ′(x)

be the relative risk aversion of the representative agent.

Definition 3.1. Introduce the function

c(x) = cD(x)
def
= −x (µD)′(x) + x (σD)′(x)σD(x)−1 µD(x)

+ (σD)′(x)σD(x)x + 0.5 (σD)′′(x)x2 σD(x) (6)

We call the process c(Dt) the rate of discounting volatility.8

The name “rate of discounting volatility” is justified by the following

8The quantity c(x) appears also in the paper Detemple, Garcia and Rindisbacher
(2003) in a partial equilibrium setting, as an auxiliary process that helps improve the
computational efficiency, without having a direct economic interpretation.
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Theorem 3.1. The equilibrium market price of risk

λt =
µS

t − r

σS
t

is given by

λt = EQ
t

[
γU(DT )σD(DT ) e−

R T
t c(Ds) ds

]
.

Theorem 3.1 shows that the dividend volatility is priced at a discount,

with the rate of discounting being equal to c(Ds). The following result is a

direct consequence of Theorem 3.1:

Corollary 3.1. Under the equilibrium risk neutral measure, the drift of the

equilibrium market price of risk is always equal to c(Dt).

The result of Corollary 3.1 is somewhat surprising. It means that, even

with arbitrary dividend process, the drift (under risk-neutral measure) of the

equilibrium market price of risk is independent of the representative agent’s

utility and is determined solely by c(x), an intrinsic characteristic of the

dividend process. Thus, it is important to understand the nature of the

function c(x). We first note that the following is true.

Lemma 3.1. The rate of discounting volatility is invariant under transfor-

mations: if Dt = g(D̃t) for a one-to-one function g ∈ C3(R+), then

cD(g(x)) = cD̃(x).

This invariance property has important consequences. It means that

structural properties of c(x) (such as, e.g., monotonicity in x) are determined

solely by the dynamical properties of the diffusion process Dt. In particular,

since any diffusion process can be reduced to a constant volatility process by a

functional transformation, we get that the following is true, as a consequence

of Lemma 3.1.
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Corollary 3.2. The rate of volatility discounting c(Dt) is constant if there

exists a one-to-one function g ∈ C3(R+) such that Dt = g(At) where

dAt = (a− bAt) dt + σAdBt.

In that case, c = b. Conversely, c = b implies Dt = F−1(At) for some values

of a and σA, where F (x) =
∫ x

x0

1
y σD(y)

dy.9

Thus, the rate c of discounting volatility can also be interpreted as the

speed of mean-reversion or mean growth rate of the log-dividend process

logDt, possibly after a transformation. If c = b > 0, there is mean reversion

and the volatility is priced at discount. On the other hand, if b < 0, there

is growth in the dividend process and the volatility is priced at premium,

appreciated at growth rate |b|.

We will now need the following

Definition 3.2. We denote by

σD(t, T )
def
= e−

R T
t c(Ds) ds σD(DT )

the disounted volatility. The market price Vt of discounted volatility (MPDV)

is given by

Vt = EQ
t

[
σD(t , T )

]
.

Let

γinf
k , γsup

k

denote the infinum and supremum of the relative risk aversion of agent k, and

γU
inf , γ

U
sup be the infinum and supremum of the relative risk aversion of the

representative agent. It is known (see, Wilson (1968) and Hara, Huang and

9Since, by assumption σD(y) is positive and C2, F (x) is strictly increasing and
therefore, by the implicit function theorem, F−1 ∈ C3 and is also strictly increasing.
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Kuzmics (2007)) that the representative agent’s risk aversion is a weighted

average of individual risk aversions. In particular, the following is true

Lemma 3.2. We have

min
k

γinf
k ≤ γU

inf ≤ γU
sup ≤ max

k
γsup

k .

The following result is a direct consequence of Lemma 3.2 and Theorem

3.1.

Proposition 3.1. The equilibrium market price of risk satisfies

Vt min
k

γinf
k ≤ λt ≤ Vt max

k
γsup

k .

In particular,

λt = γ Vt

if γk = γU is constant and independent of k.

That is, the size of the equilibrium market price of risk is determined

by the size of relative risk aversion and MPDV. Thus, even if the volatility

σD is constant, equilibrium market price of risk may happen to be larger or

smaller than γ σD if c < 0 or c > 0 respectively. This is intuitive, as c < 0

corresponds to a growing economy, and c > 0 to a mean-reverting economy.

The representation in Theorem 3.1 can also be used to get dynamic

properties of the equilibrium market price of risk . We will need the following

auxiliary10

Lemma 3.3. Suppose that f and g are both increasing (decreasing). Then,

the following is true

(1) the function

E
[
f(DT ) e

R T
t g(Ds) ds |Dt = x

]
is also monotone increasing (decreasing);

10Item (1) of Lemma 3.3 is contained in Mele (2007).
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(2) we have

Covt

(
h(DT ) , f(DT ) e

R T
t g(Ds) ds

)
≥ 0

if h has the same direction of monotonicity as f and g, and the in-

equality reverses if h has the opposite direction of monotonicity.

Since Dt is the only state variable driving the state of the economy, its

fluctuations determine the business cycle of the economy. We make a formal

Definition 3.3. Economic quantity ft = f(t,Dt) is pro-(counter-)cyclical

if f is non-decreasing (non-increasing) in Dt for any fixed t.

The following result is a direct consequence of Lemma 3.3

Corollary 3.3. We have

(1) if γU(x)σD(x) is decreasing and c(Dt) is procyclical, then λt is coun-

tercyclical;

(2) if γU(x)σD(x) is increasing and c(Dt) is countercyclical, then λt

procyclical.

Note that there is a strong empirical evidence that the market price of

risk λt is countercyclical (see, Fama and French (1989), Ferson and Harvey

(1991)). Therefore, we would like to understand how plausible the assump-

tions of item (1) are.

Arrow (1965) argues that a utility of an individual investor should exhibit

increasing relative risk aversion. However, the aggregate risk aversion γU of

the representative agent may have a very different behavior. In fact, in the

benchmark case, when the economy is populated by heterogeneous CRRA

agents, γU is decreasing. See, Benninga and Mayshar (2000) and Cvitanić

and Malamud (2009b). In fact, it is possible to show that γU is decreasing
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even if γk is increasing for some agents, but heterogeneity is sufficiently large.

Furthermore, there is some empirical evidence that dividend volatility is

counter-cyclical (see, e.g., French and Sichel (1993)). Under these conditions,

our model can generate countercyclical market price of risk as long as the

rate of discounting volatility is procyclical (e.g., when c =const; see Example

3.1). If rate c is strictly increasing, we can interpret this as a slowly growing

economy, if c is negative, or a rapidly mean-reverting economy, if c is positive.

Note that it is possible generate counter-cyclical risk aversion (and, as a

consequence, countercyclical risk premium) though state-dependent prefer-

ences such as, e.g., habit formation. See, Campbell and Cochrane (1999).

It turns out that monotonicity properties of σD(x) and c(x) are crucial

for determining various static and dynamic properties of the equilibrium

quantities. Let

CovQ
t (X, Y ) = EQ

t [X Y ] − EQ
t [X ]EQ

t [Y ]

be the conditional covariance of random variables X and Y under the risk-

neutral measure Q. We have the following is result.

Theorem 3.2. The equilibrium stock price volatility is given by

σS
t = Vt − 1

EQ
t [DT ]

CovQ
t

( (
γU(DT ) − 1

)
σD(t , T ) , DT

)
. (7)

Furthermore, St is always procyclical and σS
t > 0 almost surely.

The market price Vt of discounted volatility is the fundamental volatility

component, determined by solely by the size of the underlying dividend

volatility. Theorem 3.2 implies that the equilibrium volatility is given by

fundamental volatility plus a volatility risk premium. Even though, in con-
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trast to standard CAPM (or, CCAPM) risk premium, the covariance in (7)

is under the risk-neutral measure Q, the interpretation of the volatility risk

premium is similar: the spread σS
t − Vt between the stock volatility and the

fundamental volatility is determined by the co-movement of aggregate risk

aversion and discounted volatility with the dividend.

It is well known (see, Shiller (1981), LeRoy and Porter (1981), Mankiw,

Romer, and Shapiro (1985, 1991) and West (1988)) that the stock volatility

cannot be explained by the volatility of future dividends. Usually (see, e.g.,

Bhamra and Uppal (2009)), stock volatility is decomposed into the funda-

mental and excess volatility, with the latter being responsible for the large

discrepancy between σS
t and σD

t . Expression (7) shows that the fundamental

volatility Vt by itself may already substantially exceed dividend volatility if

the economy is growing (that is, the rate of discounting volatility is negative).

Using Lemma 3.3, it is possible to determine the sign of excess volatility.

Corollary 3.4. The following is true:

(1) if the relative risk aversion γU is decreasing and γU(x) ≥ 1, the

volatility σD(DT ) is countercyclical and the rate c(Ds) of discounting

volatility risk is procyclical, then

σS
t ≥ Vt ;

(2) if the relative risk aversion γU is increasing and and γU(x) ≥ 1, the

volatility is procyclical and the rate c(Ds) of discounting volatility risk

is counter-cyclical, then

σS
t ≤ Vt .

The main message of Corollary 3.4 is that, to achieve a high stock price

volatility, we need a negative, procyclical discount rate, that is, a slowly grow-

ing economy, as well as countercyclical risk aversion and dividend volatility.
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Note that the conditions of item (1) are almost the same as those in

Corollary 3.3, needed for the counter-cyclicality of the market price of risk .

The intuition for this is as follows. By Theorem 3.2 stock price St is always

procyclical. Thus, if the market price of risk is countercyclical, the stock

is cheap in bad states (those with low Dt) and offers a high instantaneous

return, that will force agents to buy more shares in those states and make

the equilibrium price move faster and make it more volatile. The same

argument applies in good states. On the contrary, if the market price of

risk is procyclical, the high market price of risk offered by the the stock in

good states ( with high Dt) is offset by the high price St in those states. This

drives down the trading volume and reduces the equilibrium volatility.

We would now like to have a closer look at the dynamics of the risk

premum λt.

Proposition 3.2. Assume that the representative agent’s utility function U

is C3(R+). We have

λ−1
t dλt =

(
c(Dt) + σλ

t λt

)
dt + σλ

t dBt

with

λt σ
λ
t =− VarQ

t [γU(DT )σD(t, T )]

+ EQ
t [e−

R T
t 2 c(Ds)ds

(
γU σD(DT )

)′
(DT )DT σ

D(DT ) ]

− EQ
t

[∫ T

t

e−
R θ

t 2 c(Dr)dr c′(Dθ)λθ Dθ σ
D(Dθ) dθ

]
.

(8)

It is known that, in the benchmark model when Dt is a geometric Brown-

ian motion and γU is constant, market price of risk is also constant and hence

σλ
t = 0. The reason is that, in that case, c, σD and γU are all constant.

Identity (8) shows that stochastic volatility of the equilibrium market
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price of risk is generated by the the structure of representative risk aversion

and discounted volatility. To understand the effect of various components, we

must separately consider the cases of pro- and counter-cyclical risk premia.

By Corollary 3.3, if γU , σD and −c are all decreasing, market price of

risk is countercyclical and, consequently, σλ
t < 0. In this case, all three com-

ponents are negative and hence, strong cyclicality of γU σD and c generates

large volatility of the market price of risk.

The situation is different if γU , σD and −c are increasing.. In that case,

the variance term in (8) reduces the volatility σλ
t > 0. Thus, increasing

cyclicality of γU σD increases the second term, but also increases the variance

of γU σD and may therefore lead to a decrease in σλ
t . A similar effect takes

place if we increase the cyclicality of c.

The term

EQ
t

[∫ T

t

e−
R θ

t 2 c(Dr)dr c′(Dθ)λθ Dθ σ
D(Dθ) dθ

]
is the most complex. 11 Clearly, it is non-zero if and only if c′(x) is non-zero.

Thus, we can interpret it as the market price of discounted changes in the

rate of discounting volatility.

We illustrate our results by the following

Example 3.1. Suppose we have

1

Dt

dDt = (a − b logDt)dt + σ dBt.

In this case, the log-dividend process A := logD is a mean-reverting Gaussian

process:

dAt = (a− 0.5σ2 − bAt)dt + σ dBt.

11It coincides with the the price of an artificial security paying the dividend rate
c′(DT ) λ DT σD(DT ), but discounted at the rate 2 c(DT ).
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In that case, σD = σ, c = b, and all the formulae substantially simplify and

all the static and dynamic properties of equilibrium are determined solely by

the properties of the aggregate risk aversion γU . In particular, we have the

following

Proposition 3.3. Suppose that γU is decreasing. Then,

(1) market price of risk is counter-cyclical and satisfies

min
k

γinf
k ≤ λt

eb(t−T ) σ
≤ max

k
γsup

k ;

(2) price volatility is larger than the discounted (or, appreciated, if b < 0)

volatility,

σS
t > eb (t−T ) σD.

All statements of Proposition 3.3 follow directly from the results above.

The results of Proposition 3.3 are easily extended to the case when

g(logDt) = At

for some monotone increasing function g, because, by Lemma 3.1, the rate c

of discounting volatility remains constant in this setting. By Ito’s formula,

σD(Dt) = (g′(Dt))
−1 σ and the results will depend on whether g is concave

or convex.

4 Optimal Portfolios

We start with the following

Proposition 4.1. The optimal portfolio πk t is positive and is given by

σS
t πk t =

EQ
t

[
γU(DT )σD(t , T )Wk T

(
γ−1

k (Wk T ) − 1
)]

EQ
t [WkT ]

+ λt (9)
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One important consequence of Proposition 4.1 is that there is no short-

selling in equilibrium. The reason is that, because markets are complete,

optimal wealths WkT of all agents are increasing in DT . Hence, there is no

incentive for an agent to short the stock. In particular, this explains why

market price of risk is always positive in equilibrium (see, Theorem 3.1). If

the market price of risk were negative, it would be optimal for all agents

to short the stock and markets would not clear. The same intuition implies

that equity premium must be increasing in risk aversion: highly risk averse

agents will only buy stock if it offers a sufficiently large equity premium.

In this section we will use Proposition 4.1 to derive various properties of

equilibrium optimal portfolios. Denote by πlog t the optimal portfolio of the

log investor. It is well known that

πlog t =
λt

σS
t

.

An immediate consequence of Proposition 4.1 is

Proposition 4.2. If γk(x) ≥ 1 for all x, then

πkt ≤ πlog t

and the inequality reverses if, for all x, γk(x) ≤ 1.

The result of Proposition 4.2 is intuitive. One would expect that more

risk averse agents should buy less stock. This is indeed true in a static,

one period optimization problem, as was shown by Arrow (1965). However,

showing monotonicity of optimal portfolios with respect to risk aversion in a

multi-period model is a highly non-trivial problem. We will need the following

Definition 4.1 (Ross (1981)). Agent k is more risk averse than agent j

in the sense of Ross if

inf
x
γk(x) ≥ sup

x
γj(x).
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In this case we write γk ≥R γj.

This definition was introduced by Ross (1981) in the context of a static,

one period problem with two risky assets. Ross showed that the above

mentioned monotonicity result of Arrow does not hold if we only require

a weak, pointwise inequality in risk aversion. The reason is that optimal

portfolio choice becomes a non-local problem and local properties of risk

aversion are not sufficient for the analysis. A similar phenomenon arises

in our dynamic, multi-period optimization: even though one of the assets

is locally riskless, the amount of money invested into it changes over time

and thus, effectively, we get a problem with two risky assets, and Definition

4.1 becomes the right concept to consider. In fact, we have the following

monotonicity of optimal portfolios relative to risk aversion:

Proposition 4.3. The following is true:

(1) suppose that the product γU(x)σD(x) is decreasing and c is procyclical.

Then, γk ≥R γj ≥ 1 implies

πkt ≤ πjt ;

(2) suppose that the product γU(x)σD(x) is increasing and c is counter-

cyclical. Then, 1 ≥ γk ≥R γj implies

πkt ≤ πjt .

Note however that we do not know whether the results of item (1) ((2))

hold for risk aversions below (above) one.

In the benchmark case when all agents in the economy have constant

relative risk aversion, γU is decreasing (see, Benninga and Mayshar (2000))

and we arrive at
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Corollary 4.1. Suppose that the economy is populated by heterogeneous

CRRA agents. Then,

(1) if σD(x) is countercyclical and c is procyclical, then optimal portfolio is

decreasing in risk aversion for risk aversion above one;

(2) if σD(x) is procyclical and c is countercyclical, then optimal portfolio is

decreasing in risk aversion for risk aversion below one.

We will now study the structure of optimal portfolios in greater detail.

Let

Uk t(x) = sup
π

Et [uk(WkT ) |Wkt = x ]

be the value function of agent k12 and

γk t(x) = − xU ′′
k t(x)

U ′
k t(x)

.

the effective relative risk aversion of agent k at time t. Also denote

γk t = γk t(Wkt).

It is known (see, Merton (1971)), that, when the market price of risk is

constant, the optimal portfolio is myopic, instantaneously mean-variance

efficient and is given by

πmyopic
k t

def
=

λt

γk t σS
t

.

The following is true

Proposition 4.4. In equilibrium,

γk t =
EQ

t [Wk T ]

EQ
t [γ−1

kT Wk T ]
(10)

12Note that Uk t depends on Dt but we suppress this dependence.
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and therefore myopic optimal portfolio is given by

πmyopic
k t =

λt

σS
t

EQ
t [γ−1

kT Wk T ]

EQ
t [Wk T ]

.

Representation (10) shows that the effective relative risk tolerance γ−1
k t

(i.e., the risk tolerance of the value function) is given by the wealth-weighted

market price of relative risk tolerance γ−1
k T . That is, effectively, the attitude

of agent k towards risk is much more affected by his risk tolerance in good

states (where his wealth is large), than by that in bad states (with small

wealth).

We will denote

πhedging
k t = πk t − πmyopic

k t

and refer to it as the hedging portfolio. This is the non-myopic component

of the optimal portfolio that the agent uses to hedge against (or, take ad-

vantage of) future fluctuations in the stochastic opportunity set. Combining

Propositions 4.1 and 4.4, we arrive at

Theorem 4.1. We have

πhedging
k t = − 1

σS
t E

Q
t [Wk T ]

CovQ
t

(
γU(DT )σD(t , T ) , WkT

(
1 − γ−1

k (WkT )
) )
.

(11)

There is a similarity between formula (11) and the expression (7) for the

volatility risk premium . The reason is that πk tσ
S
t is simply the volatility

of the wealth process Wk t . The role of MPDV is played here by the myopic

component πmyopic
k t , which is determined by the level of risk aversion and

volatility. Similarly, in complete analogy with the volatility risk premium,

πhedging
k t is determined by the co-movement of the stochastic volatility and

risk aversion.
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The covariance representation for the hedging portfolio allows us to apply

Lemma 3.3 and determine its sign. Let

Pk(x) = −x u
′′′(x)

u′′(x)
, rk(x) = γ−1

k (x)

be the relative prudence and relative risk tolerance of agent k.

Theorem 4.2. The following is true

(1) If γU(x)σD(x) is decreasing and c is procyclical, then

πhedging
kt ≥ 0 if sup

x
(Pk(x) rk(x)) ≤ 2

πhedging
kt ≤ 0 if inf

x
(Pk(x) rk(x)) ≥ 2

(12)

(2) If γU(x)σD(x) is increasing and c is countercyclical, then

πhedging
kt ≥ 0 if inf

x
(Pk(x) rk(x)) ≥ 2

πhedging
kt ≤ 0 if sup

x
(Pk(x) rk(x)) ≤ 2 .

(13)

The above result is somewhat unexpected at first glance. Since the

optimal portfolio of a log investor is always myopic, one would expect that

the sign of the hedging component only depends on whether risk aversion is

above or below one. However, Theorem 4.2 shows that the hedging motives

depend on the properties of three derivatives of the utility and, consequently,

on the derivative of the relative risk aversion. The intuition behind this is

as follows: when relative risk aversion is not constant, the agent anticipates

future stochastic fluctuations in his risk aversion and uses the non-myopic

part of the portfolio to hedge against these fluctuations.

This phenomenon is also related to precautionary savings. As Kimball

(1990) showed in a static, one period model, the strength of the precautionary
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savings motive for an agent anticipating stochastic fluctuations in his future

income is determined by the relative prudence Pk. Here, Pk plays a similar

role, determining the strength of savings/investment motive for an agent,

anticipating future changes in the stochastic investment opportunity set.

Note also that under the conditions of item (1) in the above proposi-

tion, in a slowly growing economy, or in a rapidly mean-reverting economy,

the hedging component of the portfolio is positive for investors whose risk

aversion is large relative to prudence, and negative for investors whose risk

aversion is small relative to prudence.

If we adopt Arrow (1965) hypothesis that γk(x) is increasing, a direct

calculation shows that this holds if and only if Pk(x) ≤ γk(x) + 1 and

therefore, if γk(x) ≥ 1, Pk rk ≤ 2 and we arrive at

Corollary 4.2. Suppose that γk(x) ≥ 1 and is increasing. Then,

(1) if γU(x)σD(x) is decreasing and c is procyclical, then

πhedging
kt ≥ 0 ; (14)

(2) if γU(x)σD(x) is increasing and c is countercyclical, then

πhedging
kt ≤ 0 . (15)

For the benchmark, power utility case, Pk rk = 1 + γ−1
k and the results

take a simpler form

Corollary 4.3. Suppose that γk = const. The following is true

(1) if γU(x)σD(x) is decreasing and c is procyclical, then

πhedging
kt ≥ 0 if γk ≥ 1

πhedging
kt ≤ 0 if γk ≤ 1 ;

(16)
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(2) if γU(x)σD(x) is increasing and c is countercyclical, then

πhedging
kt ≥ 0 if γk ≤ 1

πhedging
kt ≤ 0 if γk ≥ 1 .

(17)

The intuition behind Corollary 4.3 is as follows. Under the conditions of

item (1), Corollary 3.3 implies that the market price of risk is countercyclical.

An agent with high risk aversion γk > 1 has a high marginal utility u′k(x) =

x−γk in bad states with low Dt and has a high valuation of any additional

unit of consumption in those states. Since the market price of risk in bad

states is high, stock is a highly attractive instrument for agent k to hedge

against those states. On the other hand, an agent with low risk aversion

γk < 1 is not ”afraid” of the bad states and bets on the realization of good

states with high Dt. However, since the market price of risk is low in those

states, he sells some of his stock holdings to hedge against low market price

of risk risk. The arguments reverse for item (2).

Example 4.1. We consider the setting of Example 3.1, when the log-dividend

is a Gaussian mean-reverting process. We have, then, from the above results,

Proposition 4.5. Suppose that γU is decreasing. Then,

(1) optimal portfolios are increasing in risk aversion (in the sense of Ross)

for risk aversion above one;

(2) the hedging portfolio of an agent k is positive (negative) if Pk(x) rk(x) ≤
2 (≥ 2).

Again, the results can be extended to the case when g(logDt) is Gaussian

mean-reverting for some monotone increasing function g.
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5 Conclusions

We consider equilibrium in a continuous time economy, populated by hetero-

geneous agents maximizing expected utility from terminal wealth. We obtain

representations of the equilibrium market price of risk , drift and volatility, as

well as of the optimal portfolios, in terms of expected values under the risk-

neutral measure. The equilibrium values depend on the aggregate relative

risk aversion and dividend volatility, discounted by a specific discount factor,

called the rate of discounted volatility. In special cases, this rate is equal

either to the mean-reversion rate, or to the growth rate of the log-dividend

process. Using the obtained representations, we derive results on the size

of the risk premia and stock volatility, as well as on the size of optimal

portfolios relative to the associated risk aversion. It would be of interest to

extend these results to agents who consume throughout the period, and/or

to agents who also differ in their beliefs regarding the dividend process. We

leave such extensions for future research. In a different direction, it would

be interesting to test empirically the following predictions from our model:

in a slowly growing economy, or in a rapidly mean-reverting economy, the

market price of risk is counter-cyclical, the risky asset volatility is high, and

the hedging component of the portfolio is positive for investors whose risk

aversion is large relative to prudence, and negative for investors whose risk

aversion is small relative to prudence.

Appendix
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A Proofs: Equilibrium Price Dynamics

Denote by Dt the Malliavin derivative operator. 13 The following is the main

technical result of the paper.

Proposition A.1. The drift and volatility of the stock price are given by

µS
t = r + σS

t

Et[(γ
U(DT )MTDtDT )/DT ]

Et[MT ]

σS
t =

1

Et[MT DT ]
Et[(1− γU(DT )MTDtDT )]− 1

Et[MT ]
Et[DtMT ]

(18)

and the optimal portfolio of agent k is given by

πk t =
1

σS
t

Et [DtM (ykMI ′k(yk MT ) + Ik(yk MT ))]

Et[MIk(yk MT )]
− 1

σS
t

Et[DtMT ]

Et[MT ]

where

DtDT = Dtσ
D(Dt)e

δT−δt (19)

with

δt =

∫ t

0

[Ds(µ
D)′(Ds)− 0.5(Ds(σ

D)′(Ds))
2 −Ds(σ

D)′(Ds)σ
D(Ds)]ds

+

∫ t

0

Ds(σ
D)′(Ds)dBs (20)

and

DtMT = − 1

D
γU(DT )MTDtDT .

Proof of Proposition A.1. Recall that price St and the wealth of agent k

satisfy

logSt = r(t− T ) + logEt[MT DT ]− logEt[MT ]

logWk t = logEt [MIk(yk MT )]− logEt[MT ] .

We get the volatility σS
t as the Malliavin derivative Dt logSt and we get σS

t πk t

13For an expedient introduction to Malliavin derivatives see Detemple, Garcia and
Rindisbacher (2003).

29



as the Malliavin derivative Dt logWk t. Thus, we have

πk t =
Dt logWk t

Dt logSt

. (21)

We will now calculate the Malliavin derivatives. For process D, it is well

known that the Malliavin derivative

Yt := DtDu , u ≥ t

satisfies the linear SDE

dYu = (Du(µ
D)′(Du)+µ

D(Du))Yudu+(Du(σ
D)′(Du)+σ

D(Du))YudBu , u ≥ t

Yt = Dtσ
D(Dt)

and (19) follows. Using this and (4), we can compute

DtMT = U ′′(DT )DtD . (22)

Using the identity

DtEt[X] = Et[DtX]

we can compute

Dt logWγ t

=
1

Et[MT Ik(yk MT )]
Et [ykMT I

′
k(yk MT )DtMT + Ik(yk MT )DtMT ]− Et[MT ]

Et[DtMT ]

(23)

and

Dt logSt =
1

Et[MT DT ]
Et[DDtMT + MTDtD] − 1

Et[MT ]
Et[DtMT ] . (24)

It remains to show the expression for the drift. By the martingale property,
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we can write,

dEt[MT DT ]

Et[MT DT ]
= UtdWt ,

dEt[MT ]

Et[MT ]
= VtdWt

where, by Clarke-Ocone formula and (22),

Ut =
DtEt[MT DT ]

Et[MT DT ]
=

1

Et[MT DT ]
E[MT (1− γU(DT ))DtDT ]

and

Vt =
DtEt[MT ]

Et[MT ]
= − Et[(γ

U(DT )MTDtDT )/DT ]

Et[MT ]
.

Applying Ito’s formula, we get

d logSt = rdt + d log
Et[MT DT ]

Et[MT ]
=

1

2
(2r + V 2

t −U2
t )dt + (Ut−Vt)dWt.

Therefore,

µS
t = r +

1

2
(V 2

t − U2
t + (Ut − Vt)

2) = r + Vt (Vt − Ut)

and thus

µS
t = r +

Et[(γ
U(DT )MTDtDT )/DT ]

Et[MT ]
×(

Et[(γ
U(DT )MTDtDT )/DT ]

Et[MT ]
+
E[MT (1− γU(DT ))DtDT ]

Et[MT DT ]

)
(25)

Q.E.D.

The following result allows us to rewrite the Malliavin derivative DtD

without involving stochastic integrals. It has also been proved by Detemple,

Garcia and Rindisbacher (2003) in a slightly different form, but we present

a derivation here for the reader’s convenience.

Lemma A.1. We have

DtDT = DT σ
D(DT ) e−

R T
t c(Ds) ds . (26)
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Proof. By Ito’s formula,

log(DT σ
D(DT )) − log(Dt σ

D(Dt)) =

∫ T

t

(σD(Ds) +Ds (σD)′(Ds)) dBs

+

∫ T

t

(
(σD(Ds) +Ds (σD)′(Ds))σ

D(Ds)
−1 µD(Ds)

)
ds

+
1

2

∫ T

t

(
(2(σD)′(Ds) +Ds(σ

D)′′(Ds))σ
D(Ds)

− (σD(Ds) + (Ds (σD)′(Ds))
2)
)
ds (27)

and the claim follows. Q.E.D.

Proof of Theorem 3.1. The proof follows directly by substituting (26) into

(18). Q.E.D.

Proof of Lemma 3.1. By (26),

Dt(f(DT )) = f ′(DT )DT σ
D(DT ) e−

R T
t cD(Ds)ds

On the other hand, from

Dt = g(D̃t),

and (26), applied to the process D̃t, we get

Dt(f(DT )) = Dt(f(g(D̃T )))

= f ′(DT ) g′(D̃T )DtD̃T = f ′(DT ) g′(D̃T ) D̃T σ
D̃(D̃T ) e−

R T
t cD̃(D̃s) ds. (28)

By Ito’s formula, comparing the diffusion terms, we get

DT σ
D(DT ) = g′(D̃T ) D̃T σ

D̃(D̃T )

and therefore

cD(Ds) = cD̃(D̃s),

which is what had to be proved. Q.E.D.
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Proof of Corollary 3.2. Pick any x0 > 0. Let

F (x) =

∫ x

x0

1

y σ(y)
dy.

It is easily verified that the diffusion F (Dt) has the dynamics of the form

d(F (Dt)) = µF (Dt) dt + dBt

and, therefore, Xt = eF (Dt) has the dynamics

X−1
t dXt = µX(Xt) dt + dBt

By Lemma 3.1, cD =const if and only if

cX = −x (µX)′(x) = const .

That is, µX(x) = ã − b log x, and At = logXt = F (Dt) has the dynamics

dAt = (ã − 0.5 − b Yt) dt + dBt,

and the claim follows. Q.E.D.

We will need the following known

Lemma A.2. For any one-dimensonal diffusion, the function

G(t , x) = E[g(DT ) |Dt = x]

is monotone increasing (decreasing) in x for all t ∈ [0, T ] if and only if so

does g(x).

Furthermore, if both g(x) and h(x) are increasing (or both decreasing),

then

Et[g(DT )]Et[h(DT )] ≤ Et[g(DT )h(DT )].

If both g, h are strictly increasing (or both strictly decreasing), then the in-

equality is also strict unless DT is constant almost surely. If one function is

increasing and the other is decreasing, then the inequality reverses.
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See, Herbst and Pitt (1991).

Lemma A.3. Suppose that F and G1, · · · , GN are monotone increasing

functions. Then, for any N ∈ N and any {t1 ≤ · · · tN} ⊂ [t, T ],

E[F (XT )G1(Xt1) · · · GN(XtN ) |Xt = x]

is monotone increasing in x and

Et[F (XT )G1(Xt1) · · · GN(XtN )] ≥ Et [F (XT ) ] Et [G1(Xt1) · · · GN(XtN ) ] .

Proof. The proof is by induction. For N = 1, we have

Et[F (XT )Gt1(Xt1)] = Et[Et1 [F (XT )]Gt1(Xt1)].

By Lemma A.2, the function inside the expectation is increasing in Xt1 and

another application of Lemma A.2 provides monotonicity of Et[F (XT )Gt1(Xt1)].

Now, by Lemma A.2,

Et[Et1 [F (XT )]G1(Xt1)] ≥ Et[Et1 [F (XT )] ]Et[Gt1(Xt1)]

= Et[F (XT )]]Et[Gt1(Xt1)] (29)

and we are done. Suppose now that the claim has been proved for N. Then,

Et[F (XT )G1(Xt1) · · · GN(XtN )]

= Et[G1(Xt1)Et1 [F (XT )G2(Xt2) · · · GN(XtN )] ]

≥ Et[Et1 [F (XT ) ]Et1 [G1(Xt1)G2(Xt2) · · · GN(XtN )] ] (30)

and the claim follows from Lemma A.2 and the induction hypothesis. Q.E.D.

Proof of Lemma 3.3.. The claim follows from Lemma A.3, approximating the

integral
∫ T

t
by discrete integral sums. Q.E.D.

Proof of Theorem 3.2. The proof follows directly from Proposition A.1 and

(26). Cyclicality of St = S(t , Dt) follows from Lemma 3.3 and the identity
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St = er (t−T )EQ
t [DT ] . The fact that σS

t > 0 follows from

σS
t =

∂

∂Dt

S(t , Dt)σ
D(Dt) .

Alternatively, by Clarke-Ocone formula, Stσ
S
t can be obtained as the con-

ditional expectation (under Q) of the Malliavin derivative of DT , which is

positive. Q.E.D.

Proof of Proposition 3.2. We have

λt = e
R t
0 c(Ds)ds Et[−U ′′(DT )σD(DT ) e−

R T
0 c(Ds)ds]

Et[U ′(DT )]
.

By the Clarke-Ocone formula,

dEt[U
′(DT )] = dEt[MT ] = Et[DtMT ] dBt

and

dEt[U
′′(DT )σD(DT ) e−

R T
0 c(Ds)ds]

=

(
Et

[
U ′′′(DT )σD(DT ) + U ′′(DT ) (σD)′(DT )DtDT e

−
R T
0 c(Ds)ds

]
− Et

[∫ T

t

c′(Ds) (DtDs) dsU
′′(DT )σD(DT ) e−

R T
0 c(Ds)ds

])
dBt (31)

The claim follows from Lemma A.1 and Ito’s formula and the following

identity

EQ
t

[∫ T

t

e−
R θ

t 2 c(Dr)dr c′(Dθ)λθ Dθ σ
D(Dθ) dθ

]
= EQ

t

[∫ T

t

e−
R θ

t 2 c(Dr)dr c′(Dθ)E
Q
θ [γU(DT )σD(θ , T )]Dθ σ

D(Dθ) dθ

]
=

= EQ
t

[
γU(DT )σD(t , T )

∫ T

t

c′(Dθ)Dθ σ
D(t , θ) dθ

]
. (32)

Q.E.D.
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B Proofs: Optimal Portfolios

Proof of Proposition 4.1. The claim follows directly from Proposition A.1

and (26). Since, by Ito’s formula,

πk t =
∂

∂Dt

Wk t(Dt)σ
D(Dt),

we need to show that Wk t is monotone increasing in Dt . But,

Wk t = e−r(T−t)EQ
t [Ik(yk MT )]

and the claim follows from Lemma 3.3. Q.E.D.

Proof of Proposition 4.3. By (9), we need to show that

EQ
t

[
γU(DT )σD(DT ) e−

R T
t c(Ds)dsWkT

(
1− γ−1

k (Wk T )
)]

EQ
t [WkT ]

≥
EQ

t

[
γU(DT )σD(DT ) e−

R T
t c(Ds) dsWjT

(
1− γ−1

j (Wj T )
)]

EQ
t [Wj T ]

. (33)

We only prove case (1). Case (2) is analogous. Since, by assumption,

inf (1 − γ−1
k T ) ≥ sup (1 − γ−1

j T ),

it suffices to show that

EQ
t

[
γU(DT )σD(DT ) e−

R T
t c(Ds)dsWkT

]
EQ

t [WkT ]
≥

EQ
t

[
γU(DT )σD(DT ) e−

R T
t c(Ds)dsWj T

]
EQ

t [WjT ]
.

Introduce a new probability measure

dQk =
Wk T

EQ[Wk T ]
dQ

and let

f(x) =
Ij(yjx)

Ik(yk x)
.
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and zi = Ii(λi x) , i ∈ {j , k} . Then,

f ′(x) =
Ij(yj x)

x Ik(yk x)

(
yj x

I ′j(yj x)

Ij(yj x)
− yk x

I ′k(yj x)

Ik(yk x)

)
=

Ij(yj x)

x Ik(yk x)

(
u′j(z1)

z1 u′′j (z1)
− u′k(z2)

z2 u′′k(z2)

)
=

z1

x z2

(γ−1
k (z2) − γ−1

j (z1)) ≤ 0, (34)

that is, f is decreasing. Therefore, f(U ′(DT )) is increasing and, by Lemma

3.3,

EQ
t

[
γU(DT )σD(DT ) e−

R T
t c(Ds)dsWj T

]
EQ

t [WjT ]

=
EQk

t

[
γU(DT )σD(DT ) e−

R T
t c(Ds)ds f(U ′(DT ))

]
EQk

t [f(U ′(DT ))]

≤ EQk
t

[
γU(DT )σD(DT ) e−

R T
t c(Ds)ds

]
=

EQ
t

[
γU(DT )σD(DT ) e−

R T
t c(Ds)dsWkT

]
EQ

t [WkT ]

(35)

Q.E.D.

Proof of Proposition 4.4. Let for simplicity t = 0. By definition, the value

function is

Uk(x) = E[uk(Ik(MT yk)) ]

where yk = yk(x) solves

x = E[MT Ik(MT yk)].

Differentiating this identity, we get

y′k = E[M2
T I

′
k(MT yk)]

−1
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and therefore

U ′
k(x) = E [u′k(Ik(MT yk)) I

′
k(MT yk)MT ]λ′)k = E [MT yk I

′
k(MT yk)MT ] y′k = yk.

Consequently,

U ′′
k (x) = y′k =

1

E[M2
T I

′
k(MTyk)]

and

γk0(x) = = − x

yk E[M2
T I

′
k(MTyk)]

= − E[MT Ik(MTyk)]

E[M2
T yk I ′k(MTyk)]

Differentiating the identity

u′k(Ik(x)) = x

we get

I ′k(x) = (u′′k(x))
−1

and therefore

ykMT I
′
k(ykMT ) = − γ−1

kTWk T .

The second claim follows from Theorem 3.1. Q.E.D.

Proof of Theorem 4.1. By Propositions 4.1 and 4.4,

σS
t π

hedging
k t = σS

t

(
πk t − πmyopic

k t

)
=

EQ
t

[
γU(DT )σD(t , T )Wk T

(
γ−1

kT − 1
)]

EQ
t [WkT ]

+ EQ
t [γU(DT )σD(t , T )]

− EQ
t [γU(DT )σD(t , T )]

EQ
t [γ−1

kT Wk T ]

EQ
t [Wk T ]

=
1

EQ
t [Wk T ]

(
EQ

t

[
γU(DT )σD(t , T )Wk T

(
γ−1

kT − 1
)]

− EQ
t [γU(DT )σD(t , T )]EQ

t [(γ−1
kT − 1) Wk T ]

)
(36)

which is what had to be proved. Q.E.D.

Proof of Theorem 4.2. The claim follows from Theorem 4.1 and Lemma 3.3
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since

f(x) = x − rk(x)

is increasing if and only if

f ′(x) = 1 +
(u′′k)

2 − u′k(x)u
′′′
k (x)

(u′′k(x))
2

=
1

(u′′k(x))
2

(2 − Pk(x) rk(x)) ≥ 0

and is decreasing otherwise. Q.E.D.
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