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Abstract

We study the implications of credit market frictions for the dynamics of corporate

capital structure and the risk of default of corporations. To do so, we develop a dynamic

capital structure model in which firms face uncertainty regarding their ability to raise

funds in credit markets and have to search for investors when seeking to adjust their

capital structure. We provide a general analysis of shareholders’ dynamic financing and

default decisions, show when rational expectations equilibria in financing and default

barrier strategies exist, and when uniqueness can be achieved. We then use the model

to generate a number of novel testable implications relating credit market frictions to

target leverage, the pace and size of capital structure changes, creditor turnover, and

the likelihood of default.
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1 Introduction

Since the famous irrelevance theorem of Modigliani and Miller (1958), financial economists

have devoted much effort to understanding the effects of frictions, such as corporate taxes

and bankruptcy costs, on corporate capital structure.1 Although we have learned much

from this work, virtually all existing models implicitly assume that a firm’s capital structure

is entirely determined by its demand for debt or equity. That is, the supply of capital is

perfectly elastic in these models so that corporate behavior and capital availability depend

solely on firm characteristics.

This demand-driven approach has recently been called into question by a number of large-

sample empirical studies.2 These studies show that firms often face uncertainty regarding

their future access to credit markets and that credit supply conditions are very important in

determining capital structure decisions. Using a different research approach, several surveys

of corporate managers from around the globe have confirmed the findings of these large-

sample studies. These surveys indicate that financing decisions are generally governed by

the preferences of the suppliers of capital rather than by the demands of the users of capital

and that capital supply has first order effects on firms’ financing decisions (see Graham and

Harvey, 2001, or Bancel and Mittoo, 2004).

Our purpose in this paper is therefore twofold. First, we want to examine the importance

of credit supply frictions in capital structure choice. Second, we seek to characterize their

effects on the dynamics of leverage ratios and the pricing of risky debt. To this end, we

build a dynamic model of financing decisions in which the Modigliani and Miller assumption

of infinitely elastic supply of credit is relaxed and firms may have to search for investors

when seeking to adjust their capital structure. As in Fisher, Heinkel, and Zechner (1989)

and Leland (1998), we consider a firm with assets in place that generate a continuous stream

of cash flows. The firm is levered because debt allows it to shield part of its profits from

taxation. Leverage, however, is limited because debt financing increases the likelihood of

1A partial list of such models includes Leland (1994a, 1998), Fisher, Heinkel, and Zechner (1989), Mello
and Parsons (1992), Collin-Dufresne and Goldstein (2001), Duffie and Lando (2001), Morellec (2001), Stre-
bulaev (2007), Tserlukevich (2008), Gomes and Schmid (2010), Gorbenko and Strebulaev (2010), Morellec
and Schürhoff (2010), or Hackbarth and Mauer (2012).

2See Faulkender and Petersen (2006), Becker (2007), Leary (2009), Massa and Zhang (2009), Lemmon
and Roberts (2010), Ivashina and Scharfstein (2010), Choi, Getmansky, Henderson, and Tookes (2010) or
Becker and Ivashina (2011).
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costly financial distress and is subject to credit supply frictions. In our model, these frictions

include not only issuance costs, as in prior contributions, but also search frictions.

In the model, management acts in the best interests of shareholders and makes three

types of decisions to maximize equity value. First, it selects the firm’s initial debt level.

Second, it selects the firm’s restructuring policy (i.e. the pace and size of capital structure

changes). Third, it selects its default policy. Because the default and restructuring policies

are selected after debt has been issued, management may have incentives to deviate from

the policies conjectured by creditors at the time of debt issuance. In the paper, we therefore

focus on rational expectations equilibria in which the policies selected ex post by management

coincide with those conjectured ex ante by creditors. We derive conditions under which such

equilibria exist in barrier strategies, show when uniqueness can be achieved, and provide a

full characterization of the associated financing and default decisions.

Our analysis emphasizes the role of credit supply frictions in affecting the time series of

leverage ratios. In the model, firms are always on their optimal capital structure path but,

due to refinancing costs and search frictions, they restructure infrequently and do not keep

their leverage at the target at all times. As a result, leverage is best described not just by

a number, the target, but by its entire distribution. The model also reflects the interaction

between credit supply uncertainty and firm characteristics, allowing us to produce a number

of new predictions relating capital supply in credit markets to target leverage, the frequency

of capital structure changes, creditor turnover, and the likelihood of default.

Specifically, in our framework, debt provides a tax benefit so that firms that perform

well may seek to re-leverage. Because the surplus from changing the firm’s capital structure

is uncertain and restructuring is costly, the optimal policy is to re-leverage only when the

firm’s taxable income exceeds an endogenously determined threshold. We show that with

search frictions, the firm balances the opportunity cost of restructuring early with the risk

of not finding creditors in the future. As search frictions increase, the opportunity cost

of waiting increases, leading to a decrease in the value-maximizing restructuring threshold.

We also show that even though credit supply uncertainty makes it more difficult for firms

to restructure, it may actually increase the frequency of capital structure changes. Another

result of the paper is that as credit supply weakens, firms issue more debt when restructuring

their capital structure. That is, because weaker credit supply makes it more difficult to re-

leverage if profitability improves, the firm takes on more debt whenever it refinances.
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After solving for optimal policy choices of shareholders in the presence of search frictions,

we allow the firm to bargain over the terms of new debt issues with current creditors. We

assume that mobilizing dispersed creditors is costly and analyze shareholders’ decision to

restructure with current creditors or search for new creditors. We show that in this more

general model shareholders follow a target capital structure policy and that the target does

not depend on whether the firm restructures with new or existing creditors. We also show

that the restructuring triggers and target leverage ratios implied by this bargaining process

differ significantly from those of standard dynamic trade-off models. Finally, we relate cred-

itor turnover to a number of firm and industry characteristics, such as cash flow volatility,

credit supply, or refinancing costs.

The present paper relates to several contributions in the literature. Fisher, Heinkel, and

Zechner (1989), Leland (1998), and Goldstein, Ju, and Leland (2001) are the first to develop

dynamic capital structure models with refinancing costs. They show that refinancing costs

imply that firms rebalance their capital structure infrequently and are most often away from

their target leverage. Strebulaev (2007) simulates artificial data from a dynamic trade-off

model to show that the financing behavior implied by this class of models is consistent with

the data on financing decisions. Hackbarth, Miao, and Morellec (2006) and Bhamra, Kuehn,

and Strebulaev (2010) extend these models to incorporate the effects of macroeconomic con-

ditions on financing and default decisions. Morellec, Nikolov, and Schürhoff (2012) examine

the effects of agency conflicts on dynamic capital structure choice. Glover (2012) uses a

dynamic capital structure model to derive estimates of bankruptcy costs.

A growing literature examines the financing decisions of firms in models with roll-over

debt structure. In these models, firms costlessly replace an exogenous fraction of their

debt with newly issued debt at each point in time (see e.g. Leland (1994b), Leland and

Toft (1996), Hilberink and Rogers (2002), Eom, Helwege, and Huang (2004), He and Xiong

(2011), Cheng and Milbradt (2011), or Schroth, Suarez, and Taylor (2012)). In a recent

contribution, Décamps and Villeneuve (2011) show that there exists a unique equilibrium in

default barrier strategies in these models when the liquidation value of assets is zero.

Our paper also relates to the recent literature that examines the effects of market liquidity

on the pricing of risky bonds (see e.g. Ericson and Renault (2006), He and Xiong (2012) or

He and Milbradt (2012)). These models generally focus on the analysis of secondary market

frictions on default risk and the pricing of risky bonds, given some exogenous financing
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and restructuring strategies. Our model considers instead the effects of funding liquidity,

i.e. the ease with which funds can be raised from creditors, on the choice of corporate

financing, restructuring, and default strategies. Finally, our paper relates to Manso (2011),

which shows that when the cost of debt depends on the rating of a firm, the rating affects

shareholders’ default decision, which in turn affects the rating. As shown by Manso, these

games of strategic complementarities generally have multiple equilibria.

Our paper advances the literature on dynamic capital structure choice in two important

dimensions. First, the paper provides the first analysis of the effects of credit supply un-

certainty on financing decisions. That is, although the Modigliani and Miller irrelevance is

assumed not to hold on the demand side of the market in prior models, it is assumed to hold

on the supply side. Second, our paper contributes to this literature by providing a general

analysis of shareholders’ dynamic optimization problem. In particular, while prior contribu-

tions always assumed the existence of an equilibrium, we provide the first formal analysis

of rational expectations equilibria in barrier strategies, show when equilibria in financing,

restructuring, and default strategies exist, and when uniqueness can be achieved.

The remainder of the paper is organized as follows. Section 2 presents the model. Section

3 analyzes firms’ financing and default policies in the presence of credit supply uncertainty.

Sections 4 extends the model to allow firms to bargain over the terms of new debt issues with

current debtholders. Section 5 develops the empirical implications of the model. Section 6

concludes. The proofs are gathered in the Appendix.

2 The Model

This section presents our model of dynamic capital structure choice with uncertain credit

supply. The model closely follows Fisher, Heinkel, and Zechner (1989) and Leland (1998).

Throughout the paper, assets are traded in complete and arbitrage-free markets. The default-

free term structure is flat with an after-tax risk-free rate r, at which investors may lend

and borrow freely. Time is continuous and uncertainty is modeled by a complete probabil-

ity space (Ω,F ,Q;F), where Q is the risk neutral probability measure and the filtration

F = {Ft : t ≥ 0} satisfies the usual conditions. Management acts in the best interest of

shareholders and maximizes shareholder wealth when making policy choices.
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We consider an infinitely lived firm with assets that generates a cash flow Xt at time t as

long as the firm is in operation. This operating cash flow is independent of financing choices

and governed by the process:

dXt = µXt dt+ σXt dBt , X0 > 0,

where µ < r and σ > 0 are constant parameters and (Bt)t≥0 is a standard Brownian motion

under Q. Operating cash flows are taxed at a constant rate τ < 1. As a result, firms

have an incentive to issue debt to shield profits from taxation. To stay in a simple time-

homogeneous setting, we consider debt contracts that are characterized by a perpetual flow

of coupon payments C and a principal P that shareholders have to repay in default (as in

Duffie and Lando, 2001, or Manso, 2008). Debt is issued at par and callable at market value.

The proceeds from the debt issue are distributed to shareholders at the time of issuance.

Firms whose conditions improve sufficiently may re-leverage by incurring a proportional

cost q.3 Firms whose conditions deteriorate sufficiently may default on their debt obligations.

In the model, default leads to the liquidation of the firm. At the chosen time of default, a

fraction ω ∈ (0, 1) of assets is lost as a frictional cost and the value of the remaining assets

is assigned to debtholders. Under these assumptions, the firm’s debt structure remains fixed

until the firm goes into default or calls its debt and restructures with newly issued debt.

We are interested in building a model in which capital structure choices depend not only

on firm characteristics but also on frictions in debt markets. Indeed, as documented by a

series of recent empirical studies, credit supply conditions are very important in determining

financing decisions. For example, Faulkender and Petersen (2006), Leary (2009), and Sufi

(2009) provide evidence suggesting an important role for the supply of credit in determining

leverage ratios. Lemmon and Roberts (2009) find that negative shocks to the supply of

credit lead to large declines in debt issuance. Massa and Zhang (2009) find that the relative

availability of bond and bank financing affect the firm’s ability to borrow. Choi, Gemantsky,

Henderson, and Tookes (2010) show that the issuance of convertible bonds is positively

related to a number of capital supply measures. Finally, a number of surveys indicate that

financing decisions are generally governed by the preferences of the suppliers of capital rather

than by the demands of the users of capital (see Graham and Harvey, 2001).

3While in principle management can both increase and decrease future debt levels, Gilson (1997) finds
that transaction costs discourage debt reductions outside of renegotiation.
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These studies suggest that credit supply is a key determinant of financing decisions and

that firms often face uncertainty regarding their access to credit markets. To capture this

important feature of credit markets, we consider that it takes time for firms to secure debt

financing and that credit supply is uncertain. In particular, we assume that if a firm decides

to issue debt, then it has to search for creditors.4 In the analysis below, we assume that

creditors appear to firms with Poisson arrival rate λ. That is, conditional on searching, the

probability of getting financing from new creditors over each time interval [t, t+ dt] is λdt

and the expected financing lag is 1/λ.5

In section 3, we start by formulating the dynamic capital structure problem of a firm that

needs to search for outside debt investors when seeking to re-leverage and can only issue debt

with these new investors. In section 4, we generalize the model to allow the firm to search

for new creditors or to bargain over the terms of new debt issues with current debtholders.

To highlight the effects of credit market frictions on debt dynamics, we follow previous

contributions by assuming that the firm’s shareholders are able to finance temporary cash

shortfalls so that the firm defaults when equity value is zero.

3 Capital structure and credit supply uncertainty

3.1 Shareholders’ optimization problem

When credit supply is uncertain, the firm raises new debt when two conditions are met.

First, it must be optimal to re-leverage. Second, the firm must find creditors. The second

constraint implies that the coupon payment Ct on the firm’s debt evolves according to

dCt = (at − 1)Ct−dNt

where a ≥ 1 is a predictable process that represents the relative change in the coupon at

the time of a restructuring, and N is a Poisson process with intensity λ > 0 whose jumps

represent the times at which the firm can restructure its debt.

4A growing body of literature argues that assets prices are more sensitive to supply shocks than standard
asset pricing theory predicts. Search theory plays a key role in the formulation of models capturing this idea
(see e.g. Duffie, Garleanu, and Perdersen, 2005, Duffie and Strulovici, 2011, or Vayanos and Weill, 2008).

5One possible interpretation for our assumption is that the firm cannot find a single creditor with deep
pockets and has to rely on a syndicate of banks or a group of debt investors as in He and Xiong (2011b).
The firm will then restructure once it has found sufficiently many creditors.
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Denote by D(X,C|(a, δ)) the value of the firm’s current debt under the assumptions that

the current coupon rate is C and that the firm follows the restructuring and default policies

(a, δ), where δ is stopping time representing the default time selected by shareholders. This

value can be written as:

D(X0, C|(a, δ)) = E0

[∫ ι∧δ

0

e−rsCds+ e−rι1{ι≤δ}D(Xι, C|(a, δ)) + e−rδ1{ι>δ}(1− ω)φ0Xδ

]
,

where ι denotes the first restructuring time, ι ∧ δ ≡ inf {ι, δ} is the first time that the firm

either defaults or restructures, and φ0 is defined by

Et

[∫ ∞
t

e−r(s−t)(1− τ)Xsds

]
= φ0Xt.

Since debt is callable at market value, its price is independent of the restructuring policy a

selected by shareholders and only depends on the default policy δ of the firm. As a result,

we can also write the value of debt as:

D(X0, C|(a, δ)) = D(X0, C|δ) =
C

r
(1− E0[e−rδ]) + φ0(1− ω)E0[e−rδXδ]. (1)

The first term on the right hand side of this equation captures the present value of the cash

flows accruing to debtholders up to the default time. The second term represents their cash

flow in default, i.e. the value of assets net of liquidation costs.

Because credit supply is uncertain, debtholders may be able to capture part of the re-

structuring surplus at refinancing dates. That is, we consider that once management and

debt investors meet, they bargain over the terms of the new debt issue to determine the cost

of debt or, equivalently, the proceeds from the debt issue. Specifically, denote firm value

under the policy (a, δ) by V (X,C|(a, δ)) and assume that shareholders may select a restruc-

turing strategy a′ that potentially differs from that anticipated by creditors at the time of

debt issuance. We can then define the restructuring surplus S(a′, X, C|(a, δ)) by:

S(a′, X, C|(a, δ)) = V (X, a′C|(a, δ))− V (X,C|(a, δ))− q1{a′>1}D(X, a′C|δ). (2)

where the last term on the right hand side represents the restructuring cost. Given a non-

negative surplus, we consider below that the allocation of this surplus between shareholders
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and new creditors results from Nash bargaining. Denoting the bargaining power of creditors

by η ∈ (0, 1), the amount π∗ that creditors can extract at the time of a restructuring satisfies

π∗ = argmax
π≥0

πη [S(a′, X, C|(a, δ))− π]
1−η

= ηS(a′, X, C|(a, δ)).

This Nash bargaining solution determines uniquely the cost of new debt issues and allows

us to write equity value under the restructuring and default policy (a, δ) as

E(X0, C0|(a, δ)) = E0

[∫ δ

0

e−rs [(1− τ)(Xs − Cs−)ds+H(as, Xs, Cs−|(a, δ))dNs]

]
,

where

H(a′, X, C|(a, δ)) = (1− q1{a′>1})D(X, a′C|δ)−D(X,C|δ)− ηS(a′, X, C|(a, δ)),

represents the cash flow to shareholders following a change in the firm’s coupon rate from C

to a′C. This cash flow corresponds to the proceeds from the debt issue net of the flotation

costs and of the surplus extraction by new debtholders at the time of debt issuance.

In our model, management maximizes equity value by choosing the firm’s initial capital

structure as well as its restructuring and default policies. Because the latter are selected

after debt has been issued, management may have incentives to deviate from the policies

(a, δ) conjectured by creditors when pricing corporate debt. Rational creditors anticipate

this strategic behavior and finance the firm only if they expect the strategy (a, δ) to be

implemented. An equilibrium for our dynamic capital structure model is therefore reached

if the restructuring and default policies selected by management are the same as those

conjectured ex ante by creditors. More formally, we will use the following definition.

Definition 1 A rational expectations equilibrium is a policy (a∗, δ∗) ∈ A× S such that

(a∗, δ∗) ∈ argmax
(a,δ)∈A(a∗,δ∗)

E0

[∫ δ

0

e−rs [(1− τ)(Xs − Cs−)ds+H(as, Xs, Cs−|(a∗, δ∗))dNs]

]
, (3)

where A(a∗, δ∗) denotes the set of default and restructuring strategies (a, δ) with a ≥ 1 and

E0

[∫ δ

0

e−rs(Cs− + λ|H(as, Xs, Cs−|(a∗, δ∗))|)ds
]
<∞,
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and S denotes the set of stopping times.

Solving for equilibria in general strategy spaces is a priori not obvious since shareholders’

optimal strategy may depend in very complicated ways on creditors beliefs. As a result, in all

the existing literature on dynamic capital structure choice, it is assumed that shareholders

follow a barrier default strategy whereby the firm defaults when the cash flow shock goes

down to a constant barrier Xd(C) and seek to restructure their capital structure towards

a constant target T = C/X whenever the current value cash flow shock exceeds a barrier

Xu(C) > Xd(C). In particular, these models characterize rational expectations equilibria in

restructuring and default barrier strategies, defined as follows:

Definition 2 A rational expectations equilibrium is in barrier strategies if

δ = inf{t ≥ 0 : Xt ≤ Xd(Ct−)},

at = 1{Xt<Xu(Ct−)} + 1{Xt≥Xu(Ct−)}(TXt/Ct−)

for linear functions Xu(C) ≥ Xd(C) with Xu(0) = Xd(0) = 0 and some nonnegative constant

target T ∈ [1/Xu(1), 1/Xd(1)].

In the Appendix, we establish necessary and sufficient conditions such that, even if

debtholders have very complicated beliefs about the firm’s default strategy, then the op-

timal response of shareholders to these beliefs is to default when the cash flow level falls

below a given barrier. We also show that in any rational expectations equilibrium in which

shareholders follow a default barrier strategy, the optimal restructuring policy is also always

of barrier type. In particular, we establish the following result.

Proposition 1 If creditors conjecture a default policy δ such that the function D(X,C|δ) is

homogeneous of degree one in (X,C) and the function G(X,C|δ), defined by

G(X,C|δ) ≡ (1− τ) (X − C) + λmax
a≥1
{(1− q1a>1)D(X, aC|δ)−D(X,C|δ)} ,

is decreasing in C, then the optimal default policy for problem (3) is of barrier type. If, in

addition, the conjectured default policy is of barrier type, then both the optimal default and

restructuring policies are of barrier type. In particular, all equilibria in which D(X,C|δ) is

homogeneous of degree one and G(X,C|δ) is decreasing in C are in barrier strategies.
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In our analysis below, we focus on rational expectations equilibria in barrier strategies

and verify that if creditors conjecture that the firm follows a barrier strategy, then G(X,C|δ)
is decreasing in C. To construct such equilibria, we first pick a default threshold Xd(C) ≡
Xd(1)C, where Xd(1) is a positive constant, and solve the following equilibrium problem:

Given that debt holders believe that the firm defaults when the cash flow shock reaches

the barrier Xd(C) and the firm has to follow this default policy, what is the equilibrium

restructuring strategy for shareholders? Having constructed the solution to this artificial

problem, we start varying the default threshold to find a value Xd(1) such that it is indeed

optimal for shareholders to default at Xd(C). By Proposition 1, this algorithm allows to

uncover all rational expectations equilibria in barrier strategies.

3.2 Equilibrium in barrier strategies

Fix a default threshold Xd(C) ≡ Xd(1)C and denote by δ(Xd(1)) the corresponding de-

fault time. Using equation (1) and standard derivations, it is immediate to show that the

corresponding debt value function D(X,C|δ(Xd(1))) is given by:

D(X,C|δ(Xd(1))) =

 C
r
−
[
C
r
− (1− ω)φ0Xd(C)

] (
X

Xd(C)

)β
, for X > Xd(C),

(1− ω)φ0X, for X ≤ Xd(C),

where α > 0 and β < 0 denote the roots of the characteristic equation

Q(x; r) = µx+
σ2

2
x(x− 1)− r = 0.

Thus, when X > Xd(C), the value of corporate debt is equal to the value of risk-free debt

minus the change in value that occurs at the time of default. When X ≤ Xd(C), it is equal

to the liquidation value of assets (even if the firm has not defaulted yet).

Because the firm’s default and restructuring strategies are interrelated, we need to know

when restructuring may be optimal for shareholders in order to characterize the optimal

default strategy. In the model, the value maximizing restructuring strategy results from

a trade-off between the additional tax benefits of debt that the firm can get by raising

its leverage ratio and the refinancing costs (including the potential surplus extraction by

creditors). Proposition 2 below shows that when refinancing costs exceed potential tax
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savings, i.e. when q ≥ τ , it is never optimal for the firm to restructure its debt.

Proposition 2 If q ≥ τ , then there exists a unique equilibrium in barrier strategies. In this

equilibrium, restructuring never happens, default occurs at the threshold XS
d (C) given by

XS
d (C) =

β

β − 1

r − µ
r

C ≡ XS
d (1)C,

and firm value satisfies for X ≥ XS
d (C)

V S(X,C) = φ0X +
τC

r

[
1−

(
X

XS
d (C)

)β]
− ω (1− τ)βC

r(1− β)

(
X

XS
d (C)

)β
.

If issuance costs satisfy q < τ , then there will always be restructuring in equilibrium.

Assume now that τ > q so that restructuring the firm’s capital structure may be optimal.

Given the default policy δ(Xd (1)), a rational expectation equilibrium with fixed default

threshold Xd(C) is a restructuring policy a∗ ∈ A such that

a∗ ∈ argmax
(a,δ(Xd(1)))∈A(a∗,δ(Xd(1)))

E0

[∫ δ(Xd(1))

0

e−rs(1− τ)(Xs − Cs−)ds

]
(4)

+ E0

[∫ δ(Xd(1))

0

e−rsH(as, Xs, Cs−|(a∗, δ(Xd (1))))dNs

]
.

We shall now use the above representation of shareholders’ optimization problem to derive

equity value. Consider first the equity value function E(X,C|(a, δ(Xd(1)))) associated with

the (possibly suboptimal) barrier strategy (a, δ(Xd(1))). In the region where the firm does

not default (i.e. for X > Xd (C)), shareholders receive a cash flow (1 − τ)(Xt − C)dt over

each time interval [t, t+ dt]. As a result, equity value satisfies:

rE(X,C|(a, δ(Xd(1)))) = µX
∂E(X,C|(a, δ(Xd(1))))

∂X
+
σ2

2
X2∂

2E(X,C|(a, δ(Xd(1))))

∂X2

+ (1− τ)(X − C) + 1{X>Xu(C)}λ(1− η)S (T,X,C|(a, δ(Xd(1))))

where S(T,X,C|(a, δ(Xd(1)))) is the restructuring surplus defined in equation (2) and the

last term on the right hand side reflects the effects of credit supply uncertainty on equity
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value. This equation is solved subject to the following boundary conditions

lim
X↓Xd(C)

E(X,C|(a, δ(Xd(1)))) = 0,

lim
X↑Xu(C)

E(X,C|(a, δ(Xd(1)))) = lim
X↓Xu(C)

E(X,C|(a, δ(Xd(1)))),

lim
X↑Xu(C)

∂

∂X
E(X,C|(a, δ(Xd(1)))) = lim

X↓Xu(C)

∂

∂X
E(X,C|(a, δ(Xd(1)))),

lim
X→∞

(E(X,C|(a, δ(Xd(1))))/X) = κ,

where κ > 0 is a constant. The first boundary condition shows that the value of assets

net of liquidation costs goes to debtholders in default. The second and third conditions are

continuity and smoothness conditions satisfied by equity value at the restructuring threshold.

The last condition is a standard no-bubbles condition.

To complete the characterization of equity value, we need to derive the optimality condi-

tions corresponding to the restructuring strategy that solves problem (4). In the Appendix,

we establish the following result.

Proposition 3 Assume that issuance costs are such that q < τ . Then for any constant

Xd(1) > 0 there exists a unique barrier restructuring strategy P = P(Xd(1)) = (a∗, δ(Xd(1))

that solves problem (4) and is characterized by

V (Xu (C) , C|P) = {E(X,TX|P) + (1− q)D(X,TX|P)}|X=Xu(C) ,

and

T = argmax
T>0

{E(X,TX|P) + (1− q)D(X,TX|P)} .

The first condition in Proposition 3 determines the value-maximizing threshold when

seeking to restructure with new creditors. The second condition determines the target lever-

age ratio T . This target leverage ratio does not depend on X due to the homogeneity of the

functions E(X,C|P) and D(X,C|P). Using Proposition 3, we can now solve for the equity

value function associated with a fix default threshold Xd(C) as

E(X,C|P) = 1{X>Xu(C)}Vs(X,C|P)+1{Xd(C)<X≤Xu(C)}Vns(X,C|P)−1{X>Xd(C)}D(X,C|P)
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where

Vs(X,C|P) =
1− τ + λ∗A1(P)

r − µ+ λ∗
X +

τC

r + λ∗
+ A2(P)C

(
X

Xu(C)

)ψ
,

Vns(X,C|P) = φ0X +
τC

r
+ A3(P)C

(
X

Xd(C)

)β
+ A4(P)C

(
X

Xu(C)

)α
where λ∗ = λ(1 − η), the constant ψ is the negative root of the equation Q(x; r + λ∗) = 0

and the four constants Ai(P), the target T , and the restructuring threshold Xu(1) solve

A3(P) = Vns(1, T |P)− qD(1, T |P),

Vns(Xd(C), C|P) = (1− ω)φ0Xd(C),

Vns(Xu(C), C|P) = Vs(Xu(C), C|P),

Vs(Xu(C), C|P) = Vns(Xu(C), TXu(C)|P)− qD(Xu(C), TXu(C)|P)

∂

∂X
Vns(X,C|P)

∣∣∣∣
X=Xu(C)

=
∂

∂X
Vs(X,C|P)

∣∣∣∣
X=Xu(C)

∂

∂C
Vns(X,C|P)

∣∣∣∣
X=1,C=T

= −q ∂

∂C
D(X,C|P)

∣∣∣∣
X=1,C=T

.

These equations show that equity value can be written as the difference between firm value

and the value of outstanding debt. The value of the firm depends on whether the cash flow

shock is in the restructuring region (Vs(X,C|P) for X > Xu(C)) or in the inaction region

(Vns(X,C|P) for X < Xu(C)). Firm value in the inaction region (X < Xu(C)) is given by

the sum of the present value of cash flows from assets in place (first term) and tax savings

(second term), plus the change in firm value occurring when the firm defaults (third term),

plus the change in firm value occurring when the cash flow shock reaches the restructuring

threshold (last term). Firm value in the restructuring region (X > Xu(C)) can be interpreted

similarly. Finally, we also establish the following result in the Appendix:

Proposition 4 For all Xd(1) > XS
d (1), the equity value satisfies

∂

∂X
E(X,C|P(Xd(1)))

∣∣∣∣
X=Xd(C)

> 0, (5)

so that defaulting slightly later leads to a local increase in equity value.
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Proposition 4 shows that under the value-maximizing restructuring strategy, the contin-

uation value of equity is larger when the firm has the option to change its capital structure

in the future. This in turn implies that shareholders will always default later than in the

static model in which no restructuring is allowed.

3.3 Existence of equilibria in barrier strategies

Having constructed equity value for a given default boundary, we now have to find a constant

Xd(1) that maximizes equity value. We expect such an Xd(1) to satisfy

∂

∂X
E(X,C|P(Xd(1)))

∣∣∣∣
X=Xd(C)

= 0. (6)

This smooth pasting condition is clearly necessary. Indeed, if the derivative was positive

(negative), shareholder could increase equity value in a small neighborhood of Xd(C) by

slightly decreasing (increasing) Xd(C). Proposition 5 below shows that this condition is also

sufficient and thus provides a complete characterization of equilibria in barrier strategies.

Proposition 5 The policy P(Xd(1)) = (a∗, δ(Xd(1))) is a rational expectations equilibrium

if and only if condition (6) is satisfied.

Proposition 5 shows that the existence/uniqueness of an equilibrium in barrier strategies

is equivalent to the existence/uniqueness of a solution Xd(1) to the smooth-pasting condition

(6). As we show below, this equation does not always have a solution. In order to charac-

terize rational expectations equilibria in barrier strategies, we therefore start by analyzing

the special case in which it is costless to refinance and derive conditions under which an

equilibrium in barrier strategies exists when q = 0. We then turn to the analysis of positive

issuance costs and provide a general characterization of the firm’s policy choices.

Assume first that issuing debt is costless, in that q = 0. In this case, it is optimal for

shareholders to start searching for investors whenever the cash flow shock X reaches a new

maximum and the restructuring threshold satisfies Xu(1) = 1/T. Define the constants κ1 (λ)

and κ2 (λ) by

κ1 (λ) ≡ (1− ψ)αλ(1− η)µ− r(r − µ+ λ(1− η))(α− ψ)

(r − µ)(r + λ(1− η))(1− ψ) (α− β)
,

κ2 (λ) ≡ 1

α− 1
[1 + (1− β)κ1 (λ)] .
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A direct calculation shows that αµ < r and therefore κ1 (λ) < 0 < κ2 (λ). Hence, there

exists a unique solution J0 to the equation f(y) = 0 where

f(y) ≡ 1 + κ1 (λ) y−β + κ2 (λ) y−α. (7)

Denote by J > J0 the unique solution to the equation g(y) = 0 where

g(y) ≡ βω − βω

τ
+ (1− β)

[
1 + κ1 (λ) y−β

]
+ [(β − α)ω + 1− β)]κ2 (λ) y−α. (8)

We then have the following result.

Proposition 6 When q = 0, an equilibrium in barrier strategies exists if and only if the

corporate tax rate τ is below the critical tax rate τ ∗ defined by

τ ∗ =
β

β − κ2 (λ) (α− β) J−α0

∈ (0, 1) .

In this case, there exists a unique equilibrium in barrier strategies and the corresponding

default and restructuring thresholds satisfy

X∗u,0(1) =
1

T ∗0
=

1

JX∗d,0(1)
=

rωφ0

ρJ |f(J)|

Having characterized optimal policy choices when q = 0, we now turn to the analysis

of equilibria in barrier strategies with positive issuance costs. It follows from the proof of

Proposition 6 that, when τ < τ ∗, equity value satisfies

∂

∂X
E(X,C|P(Xd(1)))

∣∣∣∣
q=0,X=Xd(C)

< 0,

for any constant Xd(1) < X∗d,0(1). Thus, for any Xd(1) < X∗d,0(1), equity value is negative

for in a right neighborhood of Xd(C) when q = 0. Since equity value is monotone decreasing

in the issuance cost q, it follows that

E(X,C|P(Xd(1))) ≤ 0
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for any q > 0 in a right neighborhood of Xd(C). This in turn implies that for any Xd(1) <

X∗d,0(1) and q > 0, we have

∂

∂X
E(X,C|P(Xd(1)))

∣∣∣∣
X=Xd(C)

< 0.

This fact, together with condition (5) and the intermediate value theorem, implies that the

smooth pasting condition (6) has a solution in
(
X∗d,0(C), XS

d (C)
)

for any q > 0 when τ < τ ∗.

Furthermore, standard implicit function type arguments imply that this solution is unique

when q is sufficiently small. This leads to the main result of this section.

Theorem 1 Assume that issuance costs are positive in that q > 0. If the corporate tax rate

satisfies τ < τ ∗, then there exists a rational expectations equilibrium in barrier strategies,

which is unique when q is sufficiently small.

Theorem 1 provides sufficient conditions for a rational expectations equilibrium in barrier

strategies to exist. In such equilibria, shareholders default the first time that the cash flow

shock decreases to an endogenous threshold X∗d(C) ≡ X∗d(1)C. In addition, they issue new

debt the first time that the cash flow shock is above X∗u(C) and shareholders meet new

debt investors. Even though Theorem 1 does not establish uniqueness of the equilibrium

for large q, our extensive numerical simulations suggest that uniqueness does hold. If there

were multiple equilibria, the equilibrium with the minimal default threshold Xd(1) would

be the most desirable outcome from the social welfare perspective. Indeed, when the cost q

is sufficiently small, firm value with a fixed default policy, V (X,C|P(Xd(1))), is monotone

decreasing in Xd(1) and hence the minimal threshold equilibrium maximizes firm value.

In the Appendix, we also show that rational expectations equilibria in barrier strategies

may fail to exist when tax benefits are very large. That is, we show that when τ > τ ∗, there

exists a cutoff level q∗ for issuance costs satisfying

q∗ ≡ inf

{
q > 0 : inf

Xd(1)>0

∂

∂X
E(X,C|P(Xd(1)))

∣∣∣
X=Xd(C)

< 0

}
,

such that a rational expectations in barrier strategies exists if and only if q > q∗. To aid in

the intuition of this result, suppose that q is sufficiently small that issuing new debt is almost

costless. Suppose also that debtholders believe that the firm will default very late, that is

assume that Xd(1) is very small. Let X̃d(1) be the default policy selected by shareholders
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(which is of barrier type by Proposition 1). Suppose now that we start decreasing Xd(1)

and make it small so that debtholders are willing to invest in bonds as if they were almost

riskless. Then, because issuing debt is cheap, the firm will find it optimal to issue very large

amounts of debt. This will increase the expected surplus from restructuring and significantly

increase equity value when the tax benefits of debt are sufficiently high. This is turn will

make it optimal to default even later, so that X̃d(1) < Xd(1). Thus, an equilibrium (that is,

beliefs Xd(1) for which X̃d(1) = Xd(1)) will fail to exist. In section 5, we show that for the

typical U.S. firm, τ ∗ is generally above 99% (that is, well beyond the statutory corporate

tax rate). In the following, we thus focus on the case described in Theorem 1.

To conclude this section, note that when the firm needs to search for creditors, restruc-

turing generally occurs at an inefficient time compared to an environment in which capital

supply is infinite. A number of questions naturally arise in such a context. First, can the

firm contact current debtholders to restructure its capital structure instead of looking for

new investors? Second, what are the terms of the new debt contract if the firm restructures

with current creditors? The next section answers these and other related questions.

4 Restructuring with existing creditors

In this section, we generalize our dynamic capital structure model to allow the firm to bargain

over the terms of new debt issues with current debtholders. Because bonds are generally

held dispersedly and many of the loans issued by large firms are syndicated, mobilizing

current creditors to issue new debt may be costly, with the cost increasing in the amount of

outstanding debt.6 In the following, we model this market imperfection by assuming that

contacting existing debt holders is costly and let ε Ct− denote the cost of mobilizing these

creditors, where ε > 0 and Ct− is the total outstanding coupon when the firm contacts

existing creditors.7

If shareholders can contact existing creditors every time they want to restructure, then

the set of restructuring times is no longer restricted to the set N of jump times of the

6As documented by Rauh and Sufi (2010), debt heterogeneity is a common feature of the real world in that
firms simultaneously use different types, sources, and priorities of debt. While our model does not capture
this richness in capital structures, it reflects the potential costs associated with complex debt structures.

7The assumption of linear cost is made purely for convenience. The proof presented in the Appendix
shows that our results hold for a large class of cost functions.
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Poisson process N . In particular, the set of strategies available to shareholders now consists

in pairs (b, γ), where γ is the default time and b ≥ 1 is a process such that

bt = 1 +
∞∑
k=1

1{τk=t}ξk

for some increasing sequence of restructuring times τk ∈ S and some sequence of nonnegative

random variables ξk ∈ Fτk that represent the relative increase in the firm’s coupon payment.

The corresponding dynamics of the firm’s coupon payment Ct are then given by

dCt = (bt − 1)Ct− =
∞∑
k=1

1{τk=t}ξkCt−,

where ξk corresponds to restructuring with new creditors when τk ∈ N .

Assume that debt holders anticipate that shareholders will use a strategy (b, γ) as above.

Let θ ∈ [0, 1] denote the bargaining power of existing creditors. As in the search model,

Nash bargaining implies that the part of the restructuring surplus that accrues to creditors

at restructuring dates is

π∗ = (η1{τk∈N } + θ1{τk /∈N })
[
S(b,X,C|(b, γ))− εC1{τk /∈N }

]
.

where S is defined as in equation (2) with Vb replacing V . For a given strategy (b, γ) the

value of the firm’s equity, denoted by Eb(X,C|(b, γ)), is then defined by

Eb(X,C|(b, γ)) = E0

[∫ γ

0

e−rt(1− τ)(Xt − Ct−)dt+
∞∑
k=1

1{τk≤γ}e
−rτkHb(bτk , Xτk , Cτk−|(b, γ))

]
,

where

Hb(b′, X, C|(b, γ)) = (1− q1{b′>1})D(X, b′C|(b, γ))−D(X,C|(b, γ))

− ηS(b′, X, C|(b, γ))1τk∈N − [θS(b′, X, C|(b, γ)) + (1− θ)εC] 1τk /∈N .

When θ = 0 and ε = 0, there is no surplus extraction by current creditors and no cost

of collective action. In this case, our model reduces to the models of Fisher, Heinkel, and
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Zechner (1989) and Leland (1998), in which the supply of credit is infinitely elastic at the

correct price and the firm’s capital structure is entirely determined by demand factors.

A rational expectation equilibrium for the model in which the firm can restructure with

current creditors can be defined as follows:

Definition 3 A strategy (b∗, γ∗) is a rational expectations equilibrium if

(b∗, γ∗) ∈ argmax
(b,γ)∈B(b∗,γ∗)

E0

[ ∫ γ

0

e−rt(1− τ)(Xt − Ct−)dt

]
+ E0

[
∞∑
k=1

1{τk≤γ}e
−rτkHb(bτk , Xτk , Cτk−|(b∗, γ∗))

]
,

where B(b∗, γ∗) denotes the set of strategies (b, γ) such that

E0

[∫ γ

0

e−rtCt−dt+
∞∑
k=1

1{τk≤γ}e
−rτk |Hb(bτk , Xτk , Cτk−|(b∗, γ∗))|

]
<∞.

In the current model, the firm can either search for new investors or renegotiate outstand-

ing debt with existing creditors when seeking to adjust its capital structure. Each strategy

is associated with a different cost, i.e. a monetary cost when negotiating with current cred-

itors and a waiting cost when searching for new creditors. Therefore, we expect the equity

value-maximizing restructuring strategy to be characterized by two thresholds, Xbu(C) and

X̄bu(C) ≥ Xbu(C), such that the optimal policy is (i) to search for new creditors (and

restructure with them if they are found) when X ≥ Xbu(C); (ii) to immediately contact

current creditors if X ≥ X̄bu(C). In the latter case, restructuring occurs exactly at X̄bu(C).

In the former case, restructuring may not occur at Xbu(C) since the firm needs to find debt

investors before changing its capital structure. More formally, barrier strategies are defined

as follows when the firm can restructure with existing creditors:

Definition 4 A rational expectations equilibrium is in barrier strategies if

γ = inf{t ≥ 0 : Xt ≤ Xbd(Ct−)},

bt = 1{Xt<Xbu(Ct−)} + 1{Xt≥Xbu(Ct−),t∈N }∪{Xt≥X̄bu(Ct−)}(TbXt/Ct−)

for linear functions X̄bu(C) ≥ Xbu(C) ≥ Xbd(C) with X̄bu(0) = Xbu(0) = Xbd = 0 and

some nonnegative constant target Tb ∈ [1/X̄bu(1), 1/Xbd(1)].
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To characterize rational expectations equilibria in barrier strategies, we proceed as in

the model with search. We first fix a default policy Xbd(C) ≡ Xbd(1)C for some constant

Xbd(1) > 0 and then find the associated equilibrium restructuring policy b. Because the

optimal stopping/impulse control problem of shareholders is much more complex than before,

none of the standard techniques can be directly applied to solve for optimal policies. To do

so, we thus develop a new approach that can be described as follows. We first assume that

shareholders can only contact current creditors at the jump times of a Poisson process with

some fixed intensity and solve for the corresponding policy. We then let the intensity tend

to infinity. Going through these steps allows us to establish the following result.

Proposition 7 For any Xbd(1) > 0 there exists a rational expectations equilibrium with

fixed default policy that is given by some barrier strategy P = P(Xbd(1)). The strategy

P(Xbd(1)) is a rational expectations equilibrium if and only if it satisfies

∂

∂X
Eb(X,C|P(Xbd(1)))

∣∣∣∣
X=Xbd(C)

= 0 . (9)

Using Proposition 7, we can now derive equity value under the value-maximizing default

and restructuring strategy. In the region (Xbd (C)), X̄bu(C)), shareholders receive a cash flow

(1 − τ)(Xt − C)dt over each time interval [t, t + dt]. As a result, the equity value function

associated with the barrier strategy P = P(Xbd(1)) satisfies:

rEb(X,C|P) = µX
∂

∂X
Eb(X,C|P) +

σ2

2
X2 ∂2

∂X2
Eb(X,C|P) + (1− τ)(X − C)

+ 1{X≥Xbu(C)}λ
∗ [Vb(X,TbX|P)− Vb(X,C|P)− qD(X,TbX|P)]

where Vb(X,C|P) = Eb(X,C|P) + D(X,C|P) denotes firm value and the last term on the

right hand side reflects the effects of credit supply uncertainty on equity value. This equation

is solved subject to the following conditions at the default and restructuring thresholds:

Eb(Xbd (C) , C|P) = 0,

Vb(X̄bu (C) , C|P) = {Vb(X,TbX|P)− qD(X,TbX|P)− εC}|X=X̄bu(C) ,

∂

∂X
Vb(X,C|P)

∣∣∣∣
X=X̄bu(C)

=
∂

∂X
{Vb(X,TbX|P)− qD(X,TbX|P)− εC}

∣∣∣∣
X=X̄bu(C)

.
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The first and second boundary conditions are the value-matching and smooth-pasting con-

ditions that apply to equity value at the default threshold. The third and fourth boundary

conditions are value-matching and smooth-pasting conditions that apply when restructuring

with existing creditors at X̄bu. The value-matching condition at X̄bu implies that there is

no surplus at the time of a restructuring. This in turn implies that the bargaining power of

existing creditors θ has no bearing on the equilibrium.

In addition to these boundary conditions, equity value satisfies:

Vb(Xbu (C) , C|P) = (Vb(X,TbX|P)− qD(X,TbX|P))|X=Xbu(C)

lim
X↑Xbu(C)

Eb(X,C|P) = lim
X↓Xbu(C)

Eb(X,C|P),

lim
X↑Xbu(C)

∂

∂X
Eb(X,C|P) = lim

X↓Xbu(C)

∂

∂X
Eb(X,C|P),

at the search threshold. The first condition determines the value-maximizing threshold

when seeking to restructure with new creditors. The last two conditions are continuity and

smoothness conditions. In these conditions, the target leverage ratio Tb satisfies

Tb = argmax
Tb>0

{Eb(X,TbX|P) + (1− q)D(X,TbX|P)} .

and the default threshold satisfies the smooth pasting condition (9).

As in the model with search, we need to solve the smooth pasting condition (9) for Xbd(1)

to prove existence/uniqueness of a rational expectations equilibrium. To this end, we will

use monotonicity arguments, similar to those used in the proof of Theorem 1. In the model,

equity value is monotone decreasing in q and ε. Therefore, an equilibrium exists as soon as

it exists when q = 0 and ε = 0. Since the latter case corresponds to the search model with

an infinite intensity, we define

κ1 (∞) ≡ lim
λ→∞

κ1 (λ) =
αµ− r

(r − µ) (α− β)
,

κ2 (∞) ≡ lim
λ→∞

κ2 (λ) =
1 + (1− β)κ1 (∞)

α− 1
.

We can now define the unique solution J0 to the equation

1 + κ1 (∞) J
−β
0 + κ2 (∞) J

−α
0 = 0,
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and the critical tax rate τ ∗ (∞) < τ ∗ by

τ ∗ (∞) =
−β

−β + (α− β)κ2 (∞) J
−α
0

∈ (0, 1).

We then have the following result:

Theorem 2 Assume that q > 0 and that shareholders can raise new debt from existing

creditors by paying a cost of collective action ε Ct−. If the corporate tax rate satisfies τ <

τ ∗ (∞), then there exists a rational expectations equilibrium in barrier strategies. For generic

parameter values, this equilibrium is unique if ε and q are sufficiently small.

Theorem 2 provides sufficient conditions for a rational expectations equilibrium in barrier

strategies to exist when the firm can restructure with existing creditors. As in the search

model, the level of the corporate tax rate is key in determining whether an equilibrium exists.

While in our base case environment, the corporate tax rate does satisfy the restriction

τ < τ ∗ (∞) of Theorem 2, it is also interesting to characterize firm behavior when this

restriction is not satisfied. In the Appendix, we show that if the corporate tax rate satisfies

τ > τ ∗ (∞), then there exists a threshold q∗b satisfying

q∗b ≡ inf

{
q > 0 : inf

Xbd(1)>0

∂

∂X
Eb(X,C|P(Xbd(1)))

∣∣∣
X=Xbd(C)

< 0

}
,

such that a rational expectations equilibrium in barrier strategies exists if and only if q > q∗b.

This threshold is monotone increasing in the meeting intensity λ, decreasing in the bargaining

in the bargaining power η, and satisfies q∗b ≥ q∗. This implies again that there may not exist

a rational expectations equilibrium for the model when tax benefits of debt are very large.

5 Corporate financing with credit supply frictions

5.1 Calibration of parameter values

This section examines the empirical predictions of the model for financing policies, creditor

turnover, and the decision to default. To do so, we need to select parameter values for the

initial value of the firm’s cash flow X0, the risk free interest rate r, the tax advantage of debt
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τ , liquidation costs ω, the physical and risk neutral growth rates of the firm’s income m and

µ, the volatility of the cash flow shock σ, refinancing costs q, the cost of collective action ε,

and the bargaining power of outside creditors η. In what follows, we select parameter values

that roughly reflect a typical U.S. firm. These parameter values are reported in Table 1.

Insert Table 1 Here

Consider first the parameters governing operating cash flows. We set the initial value

of cash flows to X0 = 1. This is without loss of generality since the homogeneity of our

model implies that the quantities of interest do not depend on X0. The main parameters

describing the cash flow dynamics are (m,µ, σ). Morellec, Nikolov, and Schuerhoff (2012)

construct estimates for these variables using data from Compustat, CRSP, and the Institu-

tional Brokers’ Estimate System (IBES). They find that for the average firm in their sample,

the risk-neutral growth rate, the physical growth rate, and the volatility of the cash flow

process are respectively given by µ = 0.67%, m = 8.24%, and σ = 28.86%.

The risk-free rate r = 4.2% is calibrated to the one-year treasury rate. The tax advantage

of debt captures corporate and personal taxes and is set equal to τ = 15%. This corresponds

to a tax environment in which the corporate tax rate is set at the highest possible marginal

tax rate of 35% and the tax rates on dividends and interest income are set to 11.6% and

29.3%, consistent with the estimates in Graham (1996). Liquidation costs are defined as the

firm’s going concern value minus its liquidation value, divided by its going concern value.

We base the calibration of liquidation costs on Glover (2012) and set ω = 45%.

Several empirical studies provide estimates of issuance costs as a function of the amount

of debt being issued. The model, however, is written in terms of debt issuance cost q as a

fraction of total debt outstanding. We set the cost of debt issuance to q = 1%. This produces

a cost of debt issuance representing 2% of the issue size at the search threshold, consistent

with the values found in the empirical literature (see Altinkilic and Hansen, 2000, and Kim,

Palia, and Saunders, 2008). We also assume that ε = 2.5%, which implies that the cost of

collective action represents 25% of the total restructuring cost when the firm restructures

with current creditors. Finally, we set the bargaining power of new creditors to η = 50%

and check robustness by varying η. These input parameter values imply that τ ∗ = 99.34%

and τ ∗ (∞) = 81.16%.
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5.2 Optimal restructuring strategies

We start by analyzing the effects of credit supply uncertainty on shareholders’ restructuring

strategy and creditor turnover. In the model, restructuring is endogenous and occurs the

first time the cash flow process reaches the region [Xbu (C) ,∞) and the firm finds new debt

investors or upon reaching X̄bu(C), in which case the firm restructures with existing cred-

itors. Credit supply uncertainty therefore affects dynamic capital structure choice through

its effects on Xbu (C) and X̄bu(C). Credit supply uncertainty also implies that, in contrast

with standard dynamic capital structure models, there exists some time series variation in

the size of capital structure changes in our model.

To illustrate these effects, Figure 1 plots the value-maximizing restructuring triggers as

functions of the arrival rate of creditors λ, the share η of the restructuring surplus captured by

new debtholders, the volatility of the cash flow shock σ, the corporate tax rate τ , liquidation

costs ω, and refinancing costs q. In the figure, the dashed line represents the model with credit

supply uncertainty and without bargaining with current creditors, i.e. Xu (C), the solid line

represents the search threshold in the model with credit supply uncertainty and bargaining

with current creditors, i.e. Xbu (C), and the dotted line represents the restructuring threshold

with current creditors, i.e. X̄bu(C). Finally, the dot-dashed line represents the probability of

restructuring with current creditors when ε = 0, i.e. in models like those of Fisher, Heinkel

and Zechner (1989) or Leland (1998).

Insert Figure 1 Here

Figure 1 shows that the search (and restructuring) threshold in the model with bargain-

ing, Xbu (C), is always above the search threshold in the model without bargaining, Xu (C).

This is due to the fact that when the firm can contact current creditors to restructure, the

value of the option to look for new creditors is lower, so that shareholders exercise this option

later. The figure also shows that the search threshold in the model with bargaining is lower

than the restructuring threshold X̄bu(C) since shareholders need to pay a cost of collective

action when restructuring with current creditors. Accordingly, the wedge between these two

thresholds increases as ε increases. As shown by the figure, this wedge also increases as λ

increases since the option value of restructuring with existing creditors decreases with the

strength of credit supply.
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Another result illustrated by the figure is that the search and restructuring thresholds

increase with credit supply λ and decrease with the share of the restructuring surplus that

new creditors can capture η. In particular, as the arrival rate of investors decreases, the

opportunity cost of waiting to restructure increases (as the likelihood of finding investors

decreases), so that the selected search threshold decreases. That is, when the firm has to find

investors to restructure its debt, it balances the opportunity cost of early restructuring with

the opportunity cost of waiting (the risk of not finding creditors to refinance). In addition, as

η increases, the selected restructuring threshold decreases, reflecting shareholders’s incentives

to reduce the potential cash flow transfers towards new creditors at restructuring dates.

To illustrate the effects of credit market frictions on the frequency of capital structure

changes, Figure 2 plots the probability of a restructuring over a 3-year horizon (panel A) as

well as the unconditional probability of a restructuring (panel B) as functions of the arrival

rate of creditors λ, the cost of collective action ε, and issuance costs q. In the figure, the

dotted line represents the probability of restructuring with current creditors, the dashed line

represents the probability of restructuring with new creditors, and the solid line represents

the probability of restructuring with new or existing creditors. Finally, the dot-dashed line

represents the probability of restructuring with current creditors when ε = 0. The Appendix

shows how to compute these probabilities.

Insert Figure 2 Here

In the model, credit supply uncertainty has two opposing effects on the likelihood of

capital structure changes. First, for any given restructuring threshold, an increase in λ

makes it easier for the firm to find creditors and to restructure. Second, an increase in λ

leads to an increase in the selected restructuring threshold. Figure 2 shows that in our base

case environment the first effect dominates so that the frequency of restructurings increases

with λ. The figure also shows that as the cost of collective action increases, the overall

probability of restructuring over a finite horizon first decreases and then increases. This is

due to two opposing effects. On the one hand, an increase in ε leads to a decrease in the

likelihood of a restructuring with existing creditors. On the other hand, an increase in ε leads

to a decrease in the search threshold Xbu (C) and, hence, to an increase in the likelihood of a

restructuring with new creditors. Another result illustrated by Figure 2 is that the frequency

of capital structure changes decreases with issuance costs q.
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Figure 2, Panel B, also shows that the frequency of creditor changes – i.e. the creditor

turnover – depends on the various frictions faced by firms when seeking to restructure. In

particular, the figure shows that the creditor turnover increases with the cost of collective

action ε and with credit supply λ. It also shows that the cost of financing q increases the

unconditional probability of refinancing with existing creditors since the cost of collective

action becomes a smaller fraction of the total cost of financing as issuance costs increase.

The quantitative effects of ε and λ on creditor turnover are large. Notably, the unconditional

creditor turnover increases from 30.66% to 81.77% when ε is raised from 1% to 5%, while it

increases from 26.63% to 78.07% when λ increases from 1 to 5.

5.3 Optimal capital structure and default decisions

We now turn to the analysis of leverage and default decisions. In the following, we focus on

financing decisions made by shareholders at refinancing points (i.e. optimal leverage). When

making such decisions, the objective of shareholders is to maximize the value of equity after

the issuance of corporate debt (i.e. E(X,XT |P)) plus the proceeds from the debt issue.

Figure 3 Panel A plots the value-maximizing leverage ratio as a function of the arrival rate

of investors λ, issuance costs q, and the cost of collective action ε. Input parameter values

for Figure 3 are set as in our base case and the leverage ratio is defined by:

L∗ =
D(1, T |P)

D(1, T |P) + E(1, T |P)
,

The figure shows that, as credit supply weakens, firms issue more debt when restructuring

their capital structure. This result is consistent with the idea that, with weaker credit supply,

it will be more difficult to restructure if economic conditions improve so that the firm needs

to take on more debt ex ante. It implies that the reduction in search costs due to the

higher debt level outweights the additional default costs borne by the firm. Another result

illustrated by Figure 3 is that the optimal leverage ratio increases with the cost of collective

action ε. However, the quantitative effect is very small. Finally, as in prior studies (see

Strebulaev, 2007, or Morellec, Nikolov, and Schuerhoff, 2012), the leverage ratio decreases

with bankruptcy costs and cash flow volatility (not shown in the figure).

Interestingly, the target leverage ratio first increases and then decreases with restructuring

costs. That is, firms with low and high refinancing costs prefer lower leverage than those
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with intermediate costs. This non-monotonicity is due to two opposing effects. First, as

restructuring costs increase, shareholders find it optimal to delay changes in capital structure,

making it optimal to issue more debt at restructuring dates. Second, as restructuring costs

increase, the cost of issuing new debt increases, making it optimal to issue less debt at

restructuring dates. The figure shows that the first effect dominates for low values of q while

the second effect dominates for large values of q.

Insert Figure 3 Here

The leverage levels reported in the figure are consistent with those of prior studies. In

our base case environment, the optimal leverage at refinancing points in the model with

search is 27.36%. This value lies between the optimal leverage ratio in a dynamic model

with perfectly liquid bond markets (in which firms issue debt conservatively as the supply of

credit is certain) and the optimal leverage ratio in a static model (in which firms issue debt

aggressively as they will not be able to issue additional debt in the future).

Panel A of Figure 3 investigates the effects of credit market frictions on shareholders’

default decision. In the model, the default policy that maximizes equity value balances

the present value of the cash flows that shareholders receive in continuation with the cash

flow that they receive in liquidation. By reducing the value of shareholder’s restructuring

options (and therefore the continuation value of equity), credit supply uncertainty leads

shareholders to default earlier. The quantitative effect is however very small as the value of

the restructuring options is small when the firm is close to default.8

6 Conclusion

Following Modigliani and Miller (1958), extant theoretical research in corporate finance

generally assumes that capital markets are frictionless so that corporate behavior and capital

availability depend solely on firm characteristics. This demand-driven approach has recently

been called into question by a large number of empirical studies. These studies document

the central role of supply conditions in credit markets in explaining corporate policy choices

8By contrast, He and Xiong (2012) and He and Milbradt (2012) develop models in which liquidity shocks
in the secondary market for corporate bonds affect shareholders’ default decision by increasing the cost of
debt but have no bearing on restructuring strategies and optimal leverage, which are fixed exogenously.
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and highlight the need for an improved understanding of the precise role of supply in firms’

financing decisions.

This paper takes a first step in constructing a dynamic model of financing decisions

with capital supply effects by considering a setup in which firms face uncertainty regarding

their future access to credit markets. The model provides an explicit characterization of the

optimal default and financing policies for a firm acting in the best interests of incumbent

shareholders and shows that credit market frictions have first-order effects on corporate

policy choices. The analysis in the paper yields a wide range of empirical implications

relating supply conditions in the credit markets to firms’ default risk, dynamic financing

policies, the timing of security issues, creditor turnover, and the role of firm characteristics

in shaping corporate policies. Overall, the analysis demonstrates that accounting for both

demand and supply factors is critical to understanding firms’ capital structure decisions.
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A Equilibria with a fixed default threshold

Fix a default threshold Xd(1) = 1/Zd and denote by τd the corresponding default time. The

scale invariance of the geometric Brownian motion and the linearity of the payoffs to the

firm’s stakeholders imply that the equilibrium value functions are homogeneous of degree

one with respect to the firm’s current coupon and cash flows. That is, there are functions

d(Z|Zd), e(Z|Zd), v(Z|Zd) such that

D(X,C|P) = Xd(Z|Zd),
E(X,C|P) = Xe(Z|Zd),

and

V (X,C|P) = E(X,C|P) +D(X,C|P) = Xv(Z|Zd)

where Z = C/X. A direct calculation using well-known properties of geometric Brownian

motion shows that the reduced form debt value is given by

d(Z|Zd) = (Z/r)− (Zd/r)(1− rφ/Zd)(Zd/Z)β.

With a fixed default policy, maximizing the equity value is equivalent to maximizing firm

value. It turns out that, for technical reasons, firm value maximization problem is easier

to deal with. For this reason, whenever the fixed default policy case is considered in the

Appendix, we will always study the latter problem. By definition, the equilibrium firm value

is the solution to the stochastic control problem defined by

V (X,C|P) = sup
a∈A

E

[∫ τd

0

e−rs((1− τ)Xs + τCs−)ds+ H̃(as, Xs, Cs−|P)dNs) + e−rτdφXτd

]
(10)

where we have set

H̃(a,X,C|P) = Xh̃(a, Z|Zd) = −η(V (X, aC|P)− V (X,C|P))− (1− η)qD(X, aC|P).

The following result follows by direct calculation and allows to recast the equilibrium problem

in terms of a single state variable.

Lemma 1 The process Zt = Ct/Xt evolves according to

dZt = −µZt−dt− σZt−dB̂t + Zt−(at − 1)dNt (11)

where the process B̂t is a standard one dimensional Brownian motion under the equivalent
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probability measure defined by

P̂ (A) = E

[
e−µt

Xt

X0

1{A}

]
, ∀A ⊆ Ft

Consequently, (10) is equivalent to

v(Z|Zd) = sup
a∈A

Ê

[∫ τd

0

e−(r−µ)s((1− τ + τZs−)ds+ h(as, Zs−|Zd)dNs) + e−(r−µ)τdφ

]
and any solution to this equation satisfies the inequalities

0 ≤ v(Z|Zd) ≤
1− τ(1− Zd)

r − µ
.

Now, standard dynamic programming arguments imply

Lemma 2 Let τN denote the first jump of the Poisson process and define

P(v)(Z) = max
a≥1

(1− η)(v(aZ)− qd(aZ|Zd)) + ηv(Z).

Then the function v(Z|Zd) is the unique Borel-measurable, bounded function satisfying

v(Z|Zd) = Ê

[∫ τd∧τN

0

e−(r−µ)t (1− τ + τZt) dt+ 1{τd≤τN}e
−(r−µ)τdφ (12)

+ 1{τd>τN}e
−(r−µ)τNP(v(·|Zd))(ZτN−)

]
We then have the following result.

Lemma 3 The transformation that maps a function v into the right-hand side of equation

(12) is a contraction in the space L∞[0, Zd] of essentially bounded measurable functions and

has a unique fixed point that belongs to the space C[0, Zd] of continuous functions on [0, Zd].

Consequently, v(Z|Zd) is this unique fixed point.

Proof. Let A(v) denote the operator in the statement. Using the fact that τN is independent

of the Brownian motion and exponentially distributed with parameter λ we obtain

A(v)(Z) = Ê

[∫ τd

0

e−(r−µ+λ)t
(
1− τ + τZ0

t + λP(v)(Z0
s )
)
dt+ e−(r−µ+λ)τdφ

]
.

where the nonnegative process Z0
t evolves according to equation (11) with a ≡ 1. For any

pair of continuous functions (v1, v2) and any z ∈ [0, Zd), let

ai = arg max
a≥1

(
vi(az)− qd(az)1{a>1}

)
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and assume for simplicity that ai > 1. Then, we have

P(v1)(z)−P(v2)(z) = (1− η)(v1(a1z)− qd(a1z))

− (1− η)(v2(a2z)− qd(a2z)) + η(v1(z)− v2(z))

≤ (1− η)(v1(a1z)− qd(a1z))

− (1− η)(v2(a1z)− qd(a1z)) + η‖v1 − v2‖C[0,zd]

= (1− η)(v1(a1z)− v2(a1z)) + η‖v1 − v2‖C[0,zd]

≤ ‖v1 − v2‖C[0,zd].

and interchanging the roles of v1 and v2 we get that

|P(v1)(z)−P(v2)(z)| ≤ ‖v1 − v2‖C[0,Zd].

This immediately implies that

‖A(v1)− A(v2)‖C[0,Zd] ≤
λ‖v1 − v2‖C[0,Zd]

r − µ+ λ
.

and the desired result now follows from the fact that r − µ > 0 by assumption. �

Lemma 4 The map A(v) is monotone increasing in v, and monotone decreasing in r, η, ω

and q for any nonnegative function v.

Proof. To prove monotonicity in v it suffices to show that P is increasing in v. This is

obvious because η ∈ (0, 1). Monotonicity in r and q is also clear. To prove monotonicity

in η, it suffices to show that the operator P is monotone decreasing in η. Fix z ≥ 0 and

consider

G(η) = max
a≥1

{
ηv(z) + (1− η)(v(az)− qd(az)1{a>1})

}
If the maximum is attained for some a > 1 then we clearly must have v(az)− qd(az) > v(z).

This in turn implies that we have

G(η) = max{v(z), k(η)}

with

k(η) = max
a>1

{
ηv(z) + (1− η)(v(az)− qd(az))1{v(az)−qd(az)>v(z)}

}
and the desired result follows by noting that k(η) is monotone decreasing. �

Lemma 5 The firm value function v(Z) is monotone increasing in λ, µ and monotone de-

creasing in q, η, r and ω.
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Proof. Pick an arbitrary bounded function v0 ∈ C[0, Zd] and denote by An the n-th iteration

of A so that v = limnA
n(v0). Let α be a parameter with respect to which the operator A is

increasing in the sense that

A(v0;α1) < A(v0;α2), ∀α1 < α2 , ∀v0 ∈ C[0, Zd]

Since A is increasing in v, a simple induction argument implies that we have

An(v0;α1) < An(v0;α2), ∀α1 < α2, n ≥ 1.

Sending n → ∞ shows that v is increasing in α and monotonicity in all parameters except

λ now follows from Lemma 4. Finally, monotonicity in λ follows from that in η because the

firm value function depends on λ only through λ(1− η). �

Lemma 3 constructs the value function as a continuous fixed point of a non-linear map. We

will now show that it is in fact in C2[0, Zd] and solves the corresponding HJB equation. To

this end, we will first need the following lemma. Let

L f(Z) ≡ −µZf ′(Z) +
1

2
σ2Z2f ′′(Z)

be the continuous part of the P̂−generator of the state variable and denote by ψ < 0 < 1 < ψ1

the solutions to the quadratic equation Q(x; r + λ(1− η)) = 0

Lemma 6 Let f(Z) be a bounded and Borel measurable function. The unique bounded

solution to

(r − µ+ λ)Y (Z) = L Y (Z) + f(Z), Z ∈ [0, Zd),

such that Y (Zd) = φ is explicitly given by

Y (Z) = y1 Z
1−ψ − Z1−ψ1

σ2/2

∫ Z

0

f(x)

ψ1 − ψ
xψ1−2dx− Z1−ψ

σ2/2

∫ Zd

Z

f(x)

ψ1 − ψ
xψ−2 dx

with

y1 = Zψ−1
d

(
Z1−ψ1

d

σ2/2

∫ Zd

0

f(x)

ψ1 − ψ
xψ1−2dx− φ

)

In particular, the derivative Y ′(Zd) depends continuously on Zd and f(Z) in the L∞[0, Zd]−topology.

This existence and uniqueness result immediately allows us to establish the required regu-

larity of the firm value function.
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Lemma 7 Let

O(v)(Z) = max
a≥1

(
v(aZ)− qd(aZ)1{a>1} − v(Z)

)
(13)

For a fixed default threshold the equilibrium firm value function v(Z|Zd) is the unique C2[0, Zd]

solution to the HJB equation

(r − µ)v(Z) = L v(Z) + 1− τ + τZ + λ (1− η)O(v)(Z) (14)

with boundary condition v(Zd|Zd) = φ.

Proof. Let Y ∈ C2[0, Zd] be the unique bounded solution to

(r − µ+ λ)Y (Z) = L Y (Z) + 1− τ + τZ + λP(v(·|Zd))(Z), (15)

such that Y (Zd) = φ whose existence is provided by Lemma 6. Then, standard arguments

based on Itô’s lemma imply that

Y (Z) = E0

[∫ τd

0

e−(r−µ+λ)t
(
1− τ + τZ0

t + λP(v)(Z0
t−)
)
dt+ e−(r−µ+λ)τdφ

]
and it now follows from Lemma 2 that Y (Z) = v(Z|Zd). Given this identity a direct calcu-

lation implies that (15) is equivalent to (14). �

Lemma 8 Suppose that A : C[0, Zd] → C[0, Zd] is a contraction mapping which is mono-

tone in the sense that v1 ≤ v2 implies A v1 ≤ A v2, and denote by v ∈ C[0, Zd] its unique

fixed point. If w ∈ C[0, Zd] is such that w ≤ A w then w ≤ v. Similarly, if w ≥ A w then

w ≥ v.

Proof. Monotonicity of A together with w ≥ Aw implies w ≥ Anw for any n ≥ 1. Therefore,

w ≥ limn→∞A
nw = v and the claim follows. �

The following lemma directly implies the results of Propositions 2 and 4 and will be of

repeated use in what follows.

Let

Znr
d ≡

β − 1

β

r

r − µ
.

Lemma 9 Let v̂(Z|Zd) be the value of a firm that never restructures its debt and defaults

at the stopping time τd. Then v(Z|Zd) ≥ v̂(Z|Zd) > φ for all Z ∈ [0, Zd) and we have

1. If q ≥ τ then v(Z|Zd) ≡ v̂(Z|Zd), the unique equilibrium threshold is given by Znr
d and

the equity value function satisfies eZ(Zd|Zd) > 0 for all Zd > Znr
d ;

33



2. If q < τ then v(Z|Znr
d ) 6≡ v̂(Z|Znr

d ) and the equity value function satisfies eZ(Zd|Zd) < 0

for all Zd < Znr
d . In particular, we have Zd ≥ Znr

d > 1 in any equilibrium.

Proof. Since v(Z|Zd) is the value function of a firm following an optimal policy, it dominates

the sub-optimal policy of never restructuring. The value of such a firm is

v̂(Z|Zd) = φ0 +
τZ

r
− (φ0ω + τZd/r) (Z/Zd)

1−β (16)

and satisfies

v̂(Z|Zd)− φ = ωφ0

[
1− (Z/Zd)

1−β]+
τ

r
Z
[
1− (Z/Zd)

−β] > 0 . (17)

for all Z < Zd since β < 0. Let ṽ(Z|Zd) ≡ v̂(Z|Zd)− qd(Z|Zd) so that

ṽ′(Z|Zd) =
τ − q
r

[
1− (1− β)(Zd/Z)β

]
− φ0(ω + q(1− ω))(1− β)Z−1

d (Zd/Z)β. (18)

and assume first that q ≥ τ. To prove that v(Z|Zd) ≡ v̂(Z|Zd) we need to show that

O(v̂(·|Zd)) ≡ 0. (19)

We have ṽ′(0|Zd) = (τ − q)/r ≤ 0 and since

ṽ′′(Z|Zd) = β(β − 1)Zβ−1
d Z−β−1

(
q − τ
r

Zd − φ0(ω + q(1− ω))

)
does not change sign we have that the function ṽ(Z|Zd) is either convex, or concave and

decreasing. If ṽ(Z|Zd) is decreasing then (19) clearly holds. On the other hand, if ṽ(Z|Zd)
is convex then (17) implies that we have

max
y∈(Z,Zd]

ṽ(y|Zd) = max{ṽ(Z|Zd) , ṽ(Zd|Zd)} = max{ṽ(Z|Zd) , (1− q)φ} < v̂(Z|Zd)

and (19) follows. To complete the proof of the first part, set q = 1 in (18) to obtain

eZ(Zd|Zd) =
τ − 1

r
β − (1− β)Z−1

d φ0.

This shows that eZ(Zd|Zd) is positive for Zd > Znr
d and negative for Zd < Znr

d and implies

that the desired result. Consequently, e(Z|Znr
d ) is C1 and satisfies the HJB equation

max{−(r−µ)e(Z|Znr
d )+L e(Z|Znr

d )+(1−τ)(1−Z)+λ (1−η)O(e(Z|Znr
d )+d(Z|Znr

d )),−e(Z|Znr
d )} = 0 .

Standard verification results for optimal stopping problems (see, e.g., Dayanik and Karatzas
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(2003)) combined with Lemma 7 implies that Znr
d is indeed the optimal default boundary.

Let now q < τ and suppose on the contrary that v(Z|Zd) ≡ v̂(Z|Zd). To reach a contra-

diction, it suffices to show that O(v̂) 6≡ 0. By (16) we have that

ṽ(Z|Zd) = φ0 +
τ − q
r
− ãZ1−β , (20)

where

ã = −a− (q/r)(1− rφ/Zd)Zβ
d =

τ − q
r

Zβ
d + φ0(ω + q(1− ω))Zβ−1

d > 0.

It follows that the function ṽ(Z|Zd) is concave and therefore attains a global maximum at

the unique point Zo such that

ṽZ(Zo|Zd) = 0⇐⇒ (τ − q)Zo
r

= ã (1− β)Z1−β
o .

Substituting this identity into (20) gives

max
y≥0

ṽ(y|Zd) = ṽ(Zo|Zd) = φ0 +
(τ − q)Zo

r
− (τ − q)Zo

r(1− β)
> φ0 = v̂(0|Zd)

and it follows that O(v̂)(0) > 0 which is a contradiction. To prove the remaining claims in

the statement we will use the fact that by definition e(Z|Zd) ≥ ê(Z|Zd). By the first part of

the statement we have êZ(Z|Zd) < 0 for all Zd < Znr
d and it follows that

e(Z|Zd) > ê(Z|Zd) > ε(Zd − Z)

for some ε > 0 in a left neighborhood of Zd < Znr
d since e(Zd|Zd) = 0. This immediately

implies that eZ(Zd|Zd) < 0 for all Zd < Znr
d which is what had to be proved. �

In order to prove existence of rational expectations equilibria, we will need an auxiliary

construction. Let ẽ(Z|Z̄d) be the equity value for a firm whose debt-holders price the debt

using d̃(Z), whereas the firm actually defaults when Z = Z̄d.

We will prove several properties of this function. The first is provided in the following

lemma.

Lemma 10 ẽ(Z|Z̄d) is C2 in Z on [0, Z̄d] and eZ(Z̄d|Z̄d) is continuous in Zd, Z̄d.

Proof. The claim follows from Lemma 6 is complete analogy with the proof of Lemma 7.

�

Lemma 11 We have ẽZ(Z̄d|Z̄d) < 0 for Z̄d ≤ Znr
d .
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Proof. Since the optimal equity value function dominates the equity value value of a firm

that never restructures, we have that ẽ(Z|Z̄d) > is positive for all Z ≤ Z̄d ≤ Znr
d and therefore

ẽZ(Zd|Zd) < 0 for all Zd < Znr
d . �

Lemma 12 If Z̄1
d > Z̄2

d and ẽ(Z̄2
d |Z̄1

d) ≥ 0. Then, ẽ(Z|Z̄1
d) ≥ ẽ(Z|Z̄2

d) for all Z ≤ Z̄2
d .

Proof. Let d̃(Z) be the function that the debt-holders use to value debt. Denote by τd,i the

first time that the process Zt hits Z̄i
d and observe that τd,1 > τd,2. Then, it follows directly

by standard dynamic programming arguments that

e(Z|Z1
d) = Ê

[∫ τd,2∧τN

0

e−ρt(1− τ)(1− Zt)dt+ 1{τd,2≤τN}e
−ρτd,2 ẽ(Z̄2

d |Z̄1
d)

+ 1{τd,2>τN} max
a∈[1,Z̄1

d/ZτN−]
e−ρτN

[
(1− η)

(
ṽ(aZτN−|Z1

d)− q1{a>1}d̃(aZτN−)− d̃(ZτN−)
)

+ ηe(ZτN−|Z1
d)
)]

≥ Ê

[∫ τd,2∧τN

0

e−ρt(1− τ)(1− Zt)dt (21)

+ 1{τd,2>τN} max
a∈[1,Z̄2

d/ZτN−]
e−ρτN

(
(1− η)

(
ṽ(aZτN−|Z1

d)− q1{a>1}d̃(aZτN−)− d̃(ZτN−)
)

+ ηe(ZτN−|Z1
d)
)]

for all Z ∈ [0, Z̄2
d ] where ρ = r− µ and ṽ(z|Zd) = ẽ(z, |Zd)− d̃(z) denotes the corresponding

firm value function. Note that we only take the maximum over a ∈ [1, Z̄1
d/ZτN−] because, by

assumption, the firm always defaults when Z ≥ Z̄1
d . Denote the map on the right-hand side

of (21) by A . The same arguments as in the proof of Lemma 3 imply that the operator A
is a monotone contraction and the required assertion now follows from Lemma 8 since we

have ẽ(Z|Z̄1
d) ≥ A ẽ(Z|Z̄1

d), and ẽ(Z|Z̄2
d) = A ẽ(Z|Z̄2

d) by the above. �

Lemma 13 Fix an arbitrary Z̄d > 0 and suppose that ẽZ(Z̄d|Z̄d) < 0. Then, ẽ(Z|Z̄d) is

monotone increasing in Z̄d for Z̄d in a left neighborhood of Z̄d. Similarly, if ẽZ(Z̄d|Z̄d) > 0

then ẽ(Z|Z̄d) is monotone decreasing in Z̄d for Z̄d in a left neighborhood of Z̄d.

Proof. The first claim follows directly from Lemma 12 because, by assumption ẽ(Z2
d |Z1

d) >

ẽ(Z1
d |Z1

d) = 0 for any Z1
d > Z2

d that are sufficiently close to Z̄d. The proof of the second claim

is analogous. �

The following result is a direct consequence of Lemma 13.
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Lemma 14 If ẽZ(Z̄d|Z̄d) < 0 for all Z̄d > 0 let Z∗d =∞. Otherwise, set

Z∗d ≡ min {Zd > Znr
d : ẽZ(Zd|Zd) = 0}

Then, ẽ(Z|Z∗d) > 0 for all Z ≤ Z∗d .

Proof. By Lemma 10, ẽZ(Z̄d|Z̄d) is continuous and therefore, by Lemma 11, ẽZ(Z̄d|Z̄d) < 0

for all Z̄d < Z∗d . By Lemma 13, ẽ(Z|Z̄d) is monotone increasing in Z̄d ∈ [0, Z∗d) and therefore

ẽ(Z|Z∗d) > 0 for all Z < Z∗d and eZ(Z∗d |Z∗d) = 0. �

Lemma 15 We have

(1− τ)(1− Z) + max
a≥1

((1− q1a>1)d̃(aZ)− d̃(Z)) < 0

for all Z > Z∗d .

Proof. We have

0.5σ2ẽZZ(Z∗d |Z∗d) = (r − µ+ λ(1− η))ẽ(Z∗d |Z∗d) + µZ∗d ẽZ(Z∗d |Z∗d)− (1− τ)(1− Z∗d)

−max
a≥1

(ẽ(aZ∗d |Z∗d) + (1− q1a>1)d̃(aZ∗d)− d̃(Z∗d))

= −((1− τ)(1− Z∗d) + max
a≥1

((1− q1a>1)d̃(aZ∗d)− d̃(Z∗d)))

(22)

because ẽ(aZ∗d |Z∗d) = 0 for all a ≥ 1. Since ẽ(Z|Z∗d) > 0 for all Z ∈ [0, Z∗d) and ẽ(Z∗d |Z∗d) =

ẽZ(Z∗d |Z∗d) = 0, we get that ẽZZ(Z∗d |Z∗d) ≥ 0. Consequently,

(1− τ)(1− Z∗d) + max
a≥1

((1− q1a>1)d̃(aZ∗d)− d̃(Z∗d)) ≤ 0

and the claim follows from the fact that, by assumption, (1 − τ)(1 − Z) + maxa≥1 ((1 −
q1a>1)d̃(aZ)− d̃(Z)) is monotone decreasing in Z. �

Proof of Proposition 1. To prove the result, it suffices to show that ẽ = ẽ(Z|Z∗d) is the

value function of thee firm. Standard verification results for optimal stopping (see, e.g.,

Dayanik and Karatzas (2003)) combined with the arguments from the proof of Lemma 7

imply that it suffices to verify that ẽ(Z|Z∗d) satisfies the HJB equation

max{−(r − µ+ λ(1− η))ẽ(Z) + L ẽ(Z) + (1− τ)(1− Z)

+ λ (1− η) max
a≥1

(ẽ(aZ) + (1− q1a>1)d̃(aZ)− d̃(Z)),−ẽ(Z)} = 0 .

The arguments from the proof of Lemma 7 imply that

−(r−µ+λ(1−η))ẽ(Z)+L ẽ(Z)+(1−τ)(1−Z)+λ (1−η) max
a≥1

(ẽ(aZ)+(1−q1a>1)d̃(aZ)−d̃(Z)) = 0
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for all Z ∈ [0, Z∗d ] and, by Lemma 14, ẽ ≥ 0. For Z > Z∗d , ẽ(Z) = 0 and hence, by Lemma

15,

− (r − µ+ λ(1− η))ẽ(Z) + L ẽ(Z) + (1− τ)(1− Z)

+ λ (1− η) max
a≥1

(ẽ(aZ) + (1− q1a>1)d̃(aZ)− d̃(Z))

= (1− τ)(1− Z) + λ (1− η) max
a≥1

(ẽ(aZ) + (1− q1a>1)d̃(aZ)− d̃(Z)) < 0 .

The proof is complete. �

Lemma 16 We have ẽZ(Z̄d|Z̄d) < 0 for all Z̄d > Z∗d . Hence, Z∗d is the unique solution Z̄d
to ẽZ(Z̄d|Z̄d) = 0.

Proof. Suppose the contrary. Then, there exists a Z̄d > Z∗d such that ẽZ(Z̄d|Z̄d) = 0. By

Lemma 15 and (22), we have

0.5σ2ẽZZ(Z̄d|Z̄d) = −((1− τ)(1− Z̄d) + max
a≥1

((1− q1a>1)d̃(aZ̄d)− d(Z̄d))) > 0 .

Therefore, ẽ(Z|Z̄d) > 0 = ẽ(Z|Z∗d) for Z sufficiently close to Z̄d. But this is impossible

because, by Proposition 1, defaulting at Z∗d is optimal. �

Finally, the next result shows that the debt function for a barrier default policy does

satisfy the required monotonicity condition.

Lemma 17 The function

(1− τ)(1− Z) + max
a≥1

((1− q1a>1)d(aZ|Zd)− d(Z|Zd))

is strictly monotone decreasing in Z.

Proof. Clearly, it suffices to show that maxa≥1 ((1 − q1a>1)d(aZ|Zd) − d(Z|Zd)) is non-

increasing in Z. A direct calculation shows that d(Z|Zd) is either increasing in Z or is

convex and attains a maximum at some Zm < Zd. In the first case,

max
a≥1

((1− q1a>1)d(aZ|Zd)− d(Z|Zd)) = max{0, (1− q)d(Zd|Zd)− d(Z|Zd)}

is obviously non-increasing. In the second case,

max
a≥1

((1− q1a>1)d(aZ|Zd)− d(Z|Zd)) = max{0, (1− q)d(Zm|Zd)− d(Z|Zd)}

is also non-increasing. �
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The next result proves Proposition 3. Namely, it shows that, given a fixed barrier default

policy, the optimal restructuring policy is of barrier type.

Lemma 18 Either restructuring is not optimal or there exist 0 < Zu ≤ Zo < Zd such that

Zo = argmax
Z∈[Zu,Zd]

{v(Z|Zd)− q d(Z|Zd)}

and

O(v(·|Zd))(Z) = 1{Z<Zu} {v(Zo|Zd)− qd(Zo|Zd)− v(Z|Zd)} .

Proof. Assume that restructuring is optimal and let q > 0. The case q = 0 can be treated

similarly. To simplify the notation we fix the default threshold Zd and write v(Z) = v(Z|Zd)
and d(Z) = d(Z|Zd). Since it is optimal for the firm to restructure its capital structure at

some point we know that the operator O(v) is not zero and it follows that

Zu ≡ max{Z ≥ 0 : O(v)(Z) > 0}

is well-defined and smaller or equal to Zd. Furthermore, by continuity we have

O(v)(Zu) = 0⇐⇒ v(Zu) = max
y≥Zu
{v(y)− qd(y)} > 0.

Now consider the higher threshold defined by

Zo = min{y ≥ Zu : v(Zu) = v(y)− qd(y)}. (23)

By Lemma 9 we have v(Zd) = φ < v(Zu) = v(Zo)− qd(Zo) < v(Zo) and therefore Zu < Zo <

Zd since issuance costs are strictly positive. This in turn implies that the point Zo is a local

maximum of the function v̄(Z) = v(Z)− qd(Z) and since v(Zu) ≤ v(Z) for Z ∈ [Zu, Zo] by

definition of the threshold Zu we necessarily have that v′(Zu) ≥ 0.

Before carrying on with the rest of the proof we start by proving that v̄(Z) does not

have admit any local maximum such that v̄(Z) > v(Zu) on the interval [0, Zo]. Suppose the

contrary and let Z̄n < Zo denote the location of the largest such local maximum. Since the

point Zo is a local maximum of v̄(Z) this implies, as illustrated by the left panel of Figure

A, that the function v̄(Z) achieves a local minimum at some point Z̄m ∈ [Z̄n, Zo] such that

v̄(Z̄m) < v̄(Zo) = v(Zu) < v̄(Z̄n). (24)

This in turn implies that we have O(v)(Z̄n) = 0 and combining this with the fact that the
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functions d and v solve

(r − µ)d(Z) = L d(Z) + Z

(r − µ)v(Z) = L v(Z) + 1− τ(1− Z) + λ(1− η)O(v)(Z)

we finally obtain

(r − µ)v̄(Zo) > (r − µ)v̄(Z̄m)

= L v(Z̄m) + 1− τ + (τ − q)Z̄m + λ(1− η)O(v)(Z̄m)

≥ L v(Z̄m) + 1− τ + (τ − q)Z̄m
≥ 1− τ + (τ − q)Z̄m > 1− τ + (τ − q)Z̄n
≥ L v(Z̄n) + 1− τ + (τ − q)Z̄n
= L v(Z̄n) + 1− τ + (τ − q)Z̄n + λ(1− η)O(v)(Z̄n) = (r − µ)v̄(Zn)

where the second inequality follows from the nonnegativity of O, and the third and fifth

inequalities follow from the fact that v′(Z) = 0 and v′′(Z) ≤ 0 (resp. ≥ 0) at a local

maximum (resp. local minimum). This contradicts equation (24) and therefore establishes

our claim regarding the local maxima of the function v̄(Z). To complete the proof we now

need to establish that v(Z) ≤ v(Zu) on [0, Zu]. Suppose that this is not the case, let

Zv = max{Z ≤ Zu : v(Z) = v(Zu) = v(Zo)− qd(Zo)}

and assume for simplicity that Zv < Zu so that the function v(Z) reaches a local minimum

Figure A: Shape of the functions v̄(Z) and v(Z) in the proof of Lemma 18
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at some point Zm ∈ [Zv, Zu].
9 As a first step towards a contradiction we claim that the

function v(Z) is monotone decreasing on [0, Zv]. If not then as illustrated by the right panel

of Figure A there is a point Zn ∈ [0, Zv] at which the function v(Z) achieves a local maximum

such that

v(Zn) > v(Zv) = v(Zu) = v(Zo)− qd(Zo) = max
y≥Zn

v̄(y)

where the last equality follows from the first part of the proof. This immediately implies

that we have O(v)(Zn) = 0 and combining this property with the same arguments as in the

first part of the proof then gives

(r − µ)v(Zm) = L v(Zm) + 1− τ(1− Zm) + λ(1− η)O(v)(Zm)

≥ L v(Zm) + 1− τ(1− Zm)

≥ 1− τ(1− Zm)

> 1− τ(1− Zn)

≥ L v(Zn) + 1− τ(1− Zn)

= L v(Zn) + 1− τ(1− Zn) + λ(1− η)O(v)(Zn) = (r − µ)v(Zn)

which contradicts equation (??) and therefore establishes our claim regarding the mono-

tonicity of v(Z) on the interval [0, Zv]. Combining this property with the fact that v(0) = φ0

we immediately get that φ0 > v(Z) on (0, Zo) but this is impossible since v(Z) ≥ v̂(Z) ≥ φ0

in a right neighborhood of zero by Lemma 9. �

Proof of Proposition 5. Proposition 5 follows directly from Lemmas 18 and 16. �

B The case q = 0 and the general existence result

Proof of Proposition 6. Let λ∗ = λ(1− η). It follows from equation (14) and Lemma 18

that there are constants a1, a3, a4 such that

v(Z|Zd) = vs(Z,Zo, a1, a3, a4; q) ≡ 1− τ + λ∗(v(Zo|Zd)− qd(Zo|Zd))
r − µ+ λ∗

+
τZ

r + λ∗
+a1Z

1−ψ

for all Z ∈ [0, Zu], and

v(Z|Zd) = vns(Z, a3, a4) ≡ φ0 +
τZ

r
+ a3Z

1−β + a4Z
1−α

9When the point Zu is a local minimum of the function v(Z) we have Zv = Zu. This case is completely
analogous, up to small modifications.
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for all Z ∈ [Zu, Zd). Since q = 0 it follows immediately from (23) that we have Zo = Zu.

Evaluating the first of the above identities at the point Z = Zo gives

v(Zo|Zd) =
1− τ + λ∗v(Zo)

r − µ+ λ∗
+

τZo
r + λ∗

+ a1Z
1−ψ
o

and solving this equation for v(Zo) we obtain

v(Zo|Zd) =
r − µ+ λ∗

r − µ

(
1− τ

r − µ+ λ∗
+

τZo
r + λ∗

+ a1Z
1−ψ
o

)
.

Therefore, the value matching condition at the point Zo can be written as

φ0 +
τZo
r

+ a3Z
1−β
o + a4Z

1−α
o =

r − µ+ λ∗

r − µ

(
1− τ

r − µ+ λ∗
+

τZo
r + λ∗

+ a1Z
1−ψ
o

)
.

which is equivalent to

r − µ+ λ∗

r − µ

(
τµλ∗Zo

r(r + λ∗)(r − µ+ λ∗)
+ a1Z

1−ψ
o

)
= a3Z

1−β
o + a4Z

1−α
o .

The facts that Zo = Zu and that v(Z|Zd) is continuously differentiable with v(Zd) − φ =

v′(Zo) = 0 jointly imply the remaining free constants are determined by

τZo
r + λ∗

+ a1(1− ψ)Z1−ψ
o = 0,

τZo
r

+ a3(1− β)Z1−β
o + a4(1− α)Z1−α

o = 0,

ωφ0 +
τZd
r

+ a3Z
1−β
d + a4Z

1−α
d = 0.

Combining these equations shows that we have

τ/r =
a3Z

−β
o

κ1(λ)
=
a4Z

−α
o

κ2(λ)
(25)

f(J) = 1 + κ1(λ)J−β + κ2(λ)J−α = −(rωφ0/τ)Z−1
d (26)

where the function f is defined as in the text and we have set J = Zd/Zo. Note that since

κ1(λ) < 0 < κ2(λ) we have that a3 ≤ 0 and a4 ≥ 0. In order to calculate the equilibrium, it

remains to impose the smooth pasting condition which now takes the form

τ + τ(1− β)κ1(λ)J−β + τ(1− α)κ2(λ)J−α = β + r(1− β)(1− ω)φ0/Zd.

Substituting the value for Zd we get the required equation (8) for J . Thus, if an equilib-

rium exists, it is given by the expressions from Proposition 3. It remains to show that the
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corresponding equation has a solution if and only if τ < τ ∗ and that this solution is unique.

Since κ1(λ) < 0 < κ2(λ) we have that f is decreasing. Therefore, the default threshold

in (27) is positive if and only if we have J > J0 where J0 is the unique solution to (7). Let g

be as in the text. A direct calculation shows that the function g diverges to −∞ at ∞ and

that

g(J0)− β/r > 0⇐⇒ τ < τ ∗

Thus, existence follows from the intermediate value theorem. To prove uniqueness, it suffices

to show that g is decreasing for J ≥ J0. This is obvious if 1−β+ω(β−α) > 0. Otherwise, g

increases up to the point J∗ where its derivative vanishes and decreases afterwards. Therefore,

it suffices to show that we have g(J∗) > 0 but this follows from the fact that

g(J∗) = 1 +

(
1 +

α(1− β − αω)(α− β)

β(β − 1)

)
κ2(λ)J−α∗ > 0

since αω + β < α + β = 1− 2µ/σ2 < 1. �

In order to prove the general existence result of Theorem 1 for the model with search we will

also need the following standard lemma.

Lemma 19 Suppose that the function f(Z, x) is continuous, monotone decreasing in x and

satisfies f(Z1, x) > 0 > f(Z2, x). Then, the minimal solution Z0(x) ∈ [Z1, Z2] to the equation

f(Z, x) = 0 is monotone decreasing in x.

Proof. Let A(x) ≡ {Z ∈ [Z1, Z2] : f(Z, x) ≤ 0}. Then, the set A(x) is a compact set and

it is monotone increasing in x in the inclusion order. Therefore, Z0(x) = min{A(x)} is

monotone decreasing. �

Now, to prove uniqueness we will need the following generic non-degeneracy result. Let

C = (ω, λ, η, µ, r − µ, τ, θ) ∈ R6
+

denote the vector of model parameters and say that the vector C is admissible if its compo-

nents are such that τ < τ ∗ and r > µ.

Lemma 20 Consider the system

F1(Zu, Zo, Zd, a1, a3, a4; q) ≡ vs(Zu, Zo, a1, a3, a4; q)− vns(Zu, a3, a4) = 0,

F2(Zu, Zo, Zd, a1, a3, a4; q) ≡ v′s(Zu, Zo, a1, a3, a4; q)− v′ns(Zu, a3, a4) = 0,

F3(Zu, Zo, Zd, a1, a3, a4; q) ≡ v′ns(Zo, a3, a4)− q d′(Zo|Zd) = 0,

F4(Zu, Zo, Zd, a1, a3, a4; q) ≡ vs(Zu, Zo, a1, a3, a4; q)− vns(Zo, a3, a4) + qd(Zo|Zd) = 0,

F5(Zu, Zo, Zd, a1, a3, a4; q) ≡ vns(Zd, a3, a4)− d(Zd|Zd) = 0,

F6(Zu, Zo, Zd, a1, a3, a4; q) ≡ v′ns(Zd, a3, a4)− d′(Zd|Zd) = 0.
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Denote by J(C ) the unique solution to (8), define zo(C ) and zd(C ) by (26), (27) and let

ã1(C ) = −τzo(C )/((r + λ∗)(1− ψ)),

ã3(C ) = (τ/r)κ1(λ)zo(C )β,

ã4(C ) = (τ/r)κ2(λ)zo(C )α.

Suppose that there exists an admissible C such that

J F (zo(C ), zo(C ), zd(C ), ã1(C ), ã3(C ), ã4(C ); 0) 6= 0 .

where J denotes the Jacobian operator. Then, for Lebesque almost every admissible C there

exists an open neighborhood

B ⊇ (zo(C ), zo(C ), zd(C ), ã1(C ), ã3(C ), ã4(C ))

and an ε > 0 such that, for all q ∈ [0, ε), there exists a unique rational expectations equilib-

rium in barrier strategies whose parameters satisfy (Zu, Zo, Zd, a1, a3, a4; q) ∈ B.

Proof. The function J F (zo(C ), zo(C ), zd(C ), ã1(C ), ã3(C ), ã4(C ); 0) is clearly real ana-

lytic in C . Therefore, if it is not identically zero, it is non-zero for almost every C . The last

claim follows then from the implicit function theorem. �

Proof of Theorem 1. Uniqueness of equilibrium in a small neighborhood of the q = 0

equilibrium for the case when q is small follows from Lemma 20. Continuous dependence of

the equity value and its derivative on all model parameters follow from Lemma 6.

Suppose that τ < τ ∗. In this case it follows from Proposition 6 and its proof that the

exists a unique equilibrium default barrier Z∗d,0 such that

eZ(Z∗d,0|Z∗d,0)
∣∣∣
q=0

= 0 < eZ(Zd|Zd)
∣∣∣
q=0

, ∀Zd > Z∗d,0.

Consequently, e(Z|Zd) is negative for Z < Zd in a left neighborhood of Zd when q = 0 and

since equity value decreases with the issuance cost parameter we conclude that e(Z|Zd) is

negative for Z < Zd in a left neighborhood of Zd and all q > 0. Since e(Zd|Zd) = 0 this in

turn implies

eZ(Zd|Zd) > 0, ∀Z > Z∗d,0.

On the other hand, Lemma 9 shows that

eZ(Zd|Zd) < 0, ∀Zd < Znr
d ,

and it now follows from the intermediate value theorem that there exists at least one

44



Z∗d ∈ [Znr
d , Z

∗
d,0] for which eZ(Zd|Zd) = 0. The proof of Proposition 5 implies that Z∗d is

an equilibrium default strategy.

Since the required monotonicity follows from Lemmas 5 and 19 it now only remains

to show that when τ < τ ∗ there exists an ε > 0 such that for all q < ε there exists a

unique equilibrium in barrier strategies. Suppose the contrary. Then, there exists a sequence

qn ↓ 0 such that for each n there exist at least two equilibria Z1
d(n) < Z2

d(n). By Lemma

20, we cannot have that both Z1
d(n) and Z2

d(n) converge to Z∗d,0 and the above argument

show that Z1
d(n), Z2

d(n) ≤ Z∗d,0. Therefore, there exists a subsequence of equilibrium default

thresholds that converges to some constant Zc
d < Z∗d,0 and by continuity (see Lemma 6) we

have eZ(Zc
d|Zc

d)|q=0 = 0 which is impossible because there exists a unique equilibrium when

q = 0. �

Existence for the case τ > τ ∗. In this case we have eZ(Zd|Zd)|q=0 < 0 for all Zd > 0 by

the proof of Proposition 6. On the other hand, Lemma 9 guarantees that

eZ(Zd|Zd)
∣∣∣
q=τ

> 0, ∀Zd > Znr
d ,

and by continuity the same is true for q sufficiently close to τ . Therefore, the cutoff level of

the issuance costs parameter defined by

q∗ ≡ inf

{
q > 0 : sup

Zd>0
eZ(Zd|Zd) > 0

}
satisfies q∗ < τ and the fact that an equilibrium exists if and only if q > q∗ now follows by

the same argument as in the proof of Theorem 1. �

C Restructuring with existing creditors

In this appendix we study the model in which the firm can raise funds by contacting either

outside or inside creditors. Instead of assuming as in the main text that the cost of collective

action is proportional to the firm’s coupon level prior to restructuring we allow here for

more general costs given by X ν(C/X) for some function ν(Z) that satisfies the following

condition:

Assumption 1 The function

L ν(Z)− (r − µ+ λ∗)ν(Z)− τZ

is monotone decreasing in Z.

As we show below, this assumption guarantees that barrier restructuring strategies are op-

timal. This assumption trivially holds if ν(Z) = εZ as in the text but many other cases can
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also be considered. In particular, we note that no monotonicity conditions on the function

ν(Z) itself need to be imposed for the validity of this assumption.

Fix an arbitrary default threshold Xbd(1) = 1/Zd and denote by P = P(Xbd(1)) the asso-

ciated equilibrium strategy. With this notation we have that the corresponding equilibrium

firm value is given by

Vb(X,C|P) = sup
b∈B(P)

E

[∫ τd

0

e−rt((1− τ)Xt + τCt−)dt+ e−(r−µ)τdφXτd

]
+ E

[
∞∑
k=1

1{τk≤τd}e
−rτkHb(τk, bτk , Xτk , Cτk−|P)

]

where

H̄b(τ, b′, X, C|P) = −qD(X, b′C|P)− 1{τ∈N }ηS(b′, X, C|P)

− 1{τ /∈N }[(1− θ)Xν(X/C) + θS(b′, X, C|P)]

represents the cash flow from restructuring and N is the set of jump times of the Poisson

process that governs meetings between the firm and outside investors. Let also

I (v)(Z) = max
a≥1
{v(aZ)− qd(aZ|Zd)− v(Z)}

E (v)(Z) = max
a≥1
{v(aZ)− qd(aZ|Zd)− v(Z)− ν(Z)}

Our first result in this section follows from standard dynamic programming arguments.

Lemma 21 If vb(Z|Zd) is a bounded and Borel measurable function such that

vb(Z|Zd) = sup
τ∈S

Ê

[∫ τ∧τN∧τd

0

e−(r−µ)s(1− τ + τZs−)ds+ 1{τd≤τ∧τN}e
−(r−µ)τdφ

+ 1{τ<τN∧τd} e
−(r−µ)τ ((1− θ)E (vb(·|Zd))(aZτ−) + θvb(Zτ−))

+ 1{τN<τ∧τd} e
−(r−µ)τN ((1− η)I (vb(·|Zd))(aZτN−) + ηvb(ZτN−))

]
.

then Vb(X,C|Zd) = Xvb(C/X|Zd).

As a result of Lemma 21, our problem reduces to that of finding a bounded solution to the

dynamic programming equation. Note that it is a priori not obvious that such a solution

exists. In particular, the contraction mapping techniques that we used in the model with

search cannot be directly applied here due to the possibility of contacting creditors at all

times, and so new methods need to be developed. We start with a standard lemma for
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solving optimal stopping problems.

Lemma 22 Let ϕ(Z) ∈ C[0, Zd] be a bounded function and ξ(Z) a bounded, Borel measur-

able function. Suppose that a bounded function y(Z) on [0, Zd] with y(Zd) = φ is such that

there exists a threshold Z̄bu < Zd with the following properties

1. The function y(Z) is C1 and piecewise C2 on [0, Zd).

2. On [Z̄bu, Zd] the function y(Z) satisfies

(r − µ+ λ∗)y(Z) = L y(Z) + ξ(Z).

3. On [0, Zd) the function y(Z) satisfies y(Z) ≥ ϕ(Z).

4. On [0, Z̄bu] the function y(Z) satisfies y(Z) = ϕ(Z) and

(r − µ+ λ∗)y(Z) ≥ L y(Z) + ξ(Z).

Then the function y(Z) is given by

y(Z) = sup
τ∈S

Ê

[∫ τ∧τd

0

e−(r−µ+λ∗)sξ(Z0
s )ds+ e−(r−µ+λ∗)τ∧τd

(
1{τd≤τ}φ+ 1{τ<τd}ϕ(Z0

τ )
)]

where the process Z0
t evolves according to (11) with a ≡ 1.

To find a solution to our problem, we will approximate the optimal stopping problem by

a problem in which the firm can only contact existing creditors at the jump times of an

independent Poisson process with intensity Λ > 0 and then let this intensity increase to

infinity. The following proposition describes this auxiliary problem.

Proposition 8 Fix a default threshold Zd > Znr
d and let ρ(Λ) ≡ r − µ + λ + Λ. Then the

dynamic programming equation:

vΛ(Z) = Ê

[∫ τd

0

e−ρ(Λ)t
(
(1− τ + τZ0

t ) (27)

+ Λ((1− θ)E (vΛ)(aZ0
t ) + θvΛ(Z0

t ))

+ λ((1− η)I (vΛ)(aZ0
t ) + ηvΛ(Z0

t )
)
dt+ e−ρ(Λ)τdφ

]
.

admits a unique solution that belongs to C2[0, Zd] and the corresponding optimal restructuring

policy is a barrier policy that is characterized by thresholds Z̄bu(Λ) < Zbu(Λ) < Zbo(Λ) < Zd.

The proof of the above proposition will be based on a sequence of lemmas. The same

argument as in the model with search implies that the following is true.
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Lemma 23 The unique solution to (28) is C2[0, Zd] and satisfies

(r − µ)vΛ(Z) = L vΛ(Z) + 1− τ + τZ + λ(1− η)O(vΛ)(Z) + Λ(1− θ)Ob(vΛ)(Z)

where the operators on the right are defined by

Ob(v)(Z) ≡ max
a≥1

(
v(aZ)− q1{a>1}d(aZ|Zd)− ν(Z)− v(Z)

)+

and equation (13).

Lemma 24 There are thresholds Zbu(Λ) < Zbo(Λ) < Zd such that

O(vΛ)(Z) = 1{Z≤Zbu}
(
vΛ(Zbo)− qd(Zbo|Zd)− vΛ(Z)

)
Proof. Assume for simplicity that restructuring with new creditors is optimal and that

q > 0. It follows that

Zbu ≡ max{Z : O(vΛ) > 0} < Zd .

is well-defined and is smaller than or equal to Zd. Furthermore, by continuity, we have

O(vΛ)(Zbu) = 0 ⇔ vΛ(Zbu) = max
y≥Zbu

(vΛ(y)− qd(y)) .

Now consider the higher threshold defined by

Zbo ≡ min{y ≥ Zbu : vΛ(Zbu) = vΛ(y)− qd(y)} .

By the same argument as in the proof of Lemma 9, we have vΛ(φ) < vΛ(Zbu) = vΛ(Zbo) −
qd(Zbo|Zd) < vΛ(Zbo) and therefore Zbu < Zbo < Zd since issuance costs are strictly positive.

This in turn implies that the point Zbo is a local maximum of the function vΛ(y)− qd(y).

To complete the proof, we need to show that for Z ≤ Zbu, we have vΛ(Z) ≤ vΛ(Zbu).

Indeed, in that case,

max
y≥Z

(vΛ(y)− qd(y)) ≤ max
y≥Z

vΛ(y) ≤ vΛ(Zbu) = vΛ(Zbo)− qd(Zbo)

and, consequently,

O(vΛ)(Z) = 1{Z≤Zbu}
(
vΛ(Zbo)− qd(Zbo|Zd)− vΛ(Z)

)
.

Suppose that this is not the case. Let

Zv = max{Z ≤ Zbu : vΛ(Z) = vΛ(Zbu) = v(Zbo)− qd(Zbo)}
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and assume for simplicity that Zv < Zbu so that the function vΛ(Z) reaches a local minimum

at some point Zm ∈ [Zv, Zbu].
10 As a first step towards a contradiction we claim that the

function vΛ(Z) is monotone decreasing on [0, Zv]. If not then as illustrated by the right

panel of Figure A there is a point Zn ∈ [0, Zv] at which the function vΛ(Z) achieves a local

maximum such that

vΛ(Zn) > vΛ(Zv) = vΛ(Zbu) = vΛ(Zbo)− qd(Zbo) = max
y≥Zv

(vΛ(y)− qd(y)) . (28)

Furthermore, by the definition of Zn, v
Λ(Zn) is monotone decreasing on [Zn, Zv] and hence,

for all y ∈ [Zn, Zv], we have

vΛ(Zn) ≥ vΛ(y) ≥ vΛ(y)− qd(y) . (29)

Combining (29) and (30), we get

vΛ(Zn) ≥ max
y≥Zn

(vΛ(y)− qd(y)) .

This immediately implies that we have O(vΛ)(Zn) = 0 . Furthermore, by definition,

0 ≤ OΛ(vΛ) ≤ O(vΛ)

and hence OΛ(vΛ)(Zn) = 0. Therefore,

(r − µ)vΛ(Zm) = L vΛ(Zm) + 1− τ(1− Zm) + λ(1− η)O(v)(Zm) + Λ(1− θ)O(vΛ)(Zm)

≥ L vΛ(Zm) + 1− τ(1− Zm)

≥ 1− τ(1− Zm)

> 1− τ(1− Zn)

≥ L vΛ(Zn) + 1− τ(1− Zn)

= L vΛ(Zn) + 1− τ(1− Zn) = (r − µ)vΛ(Zn)

which contradicts equation (29) and therefore establishes our claim regarding the monotonic-

ity of the function vΛ(Z) in the interval [0, Zv]. Therefore, (29) and the same argument as in

(30) implies that this property with the fact that O(v)(Z) = 0 for all Z ≤ Zv. Consequently,

(r − µ)vΛ(Z) = L vΛ(Z) + 1− τ(1− Z)

10When the point Zbu is a local minimum of the function vΛ(Z) we have Zv = Zbu. This case is completely
analogous, up to small modifications.
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on [0, Zv] and therefore

vΛ(Z) =
1− τ
r − µ

+
τZ

r
+ a1Z

1−β + a2Z
1−α

for some a1, a2 ∈ R. Since vΛ is bounded, we have a2 = 0 and therefore vΛ(0) = φ0. Since

vΛ(Z) is decreasing on [0, Zv], we immediately get that φ0 > vΛ(Z) on that interval. But

this is impossible since

vΛ(Z) ≥ v̂Λ(Z) ≥ φ0

in a right neighborhood of zero by Lemma 9. �

Lemma 25 There is a threshold Z̄bu(Λ) < Zbu(Λ) such that

Ob(vΛ)(Z) = 1{Z≤Z̄bu}
(
vΛ(Zbo)− qd(Zbo|Zd)− vΛ(Z)− ν(Z)

)
Proof. Since Ob(vΛ)(Z) < O(vΛ)(Z), we have that the threshold

Z̄bu ≡ sup{Z > 0 : Ob(vΛ)(Z) > 0}

is well defined and satisfies Z̄bu < Zbu . By continuity, we have

vΛ(Z̄bu) + ν(Z̄bu) = vΛ(Zbo)− qd(Zbo|Zd) .

Suppose that the claim of the statement is not true. Then, there exists a Zv < Z̄bu such

that vΛ(Zv) + ν(Zv) = vΛ(Zbo) − qd(Zbo|Zd). Let us show that W (Z) ≡ vΛ(Z) + ν(Z) is

monotone decreasing on [0, Zv]. Indeed, suppose the contrary. Let Zn be the largest local

maximum of W (Z) on [0, Zv]. Let also

λ∗ ≡ λ(1− η),Λ∗ ≡ Λ(1− θ) .

Then, defining

ζ(Z) ≡ L ν(Z)− (r − µ+ λ∗)ν(Z),

we have

(r − µ+ λ∗)W (Z) = −ζ(Z) + LW (Z) + 1− τ + τZ + λ∗(O(vΛ) + vΛ) + Λ∗Ob(vΛ).

Since W (Zv) = W (Z̄bu) > W (Z) for all Z ∈ (Zv, Z̄bu), W (Z) also has the largest local

minimum at some Zm ∈ (Zv, Z̄bu). Therefore, using the fact that, by assumption, τZ− ζ(Z)
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is monotone increasing, we get

(r − µ+ λ∗)W (Zm) = LW (Zm)− ζ(Zm) + 1− τ(1− Zm)

+ λ∗(vΛ(Zbo)− qd(Zbo|Zd)) + Λ∗OΛ(vΛ)(Zm)

≥ −ζ(Zm) + 1− τ(1− Zm) + λ∗(vΛ(Zbo)− qd(Zbo|Zd)) + Λ∗OΛ(vΛ)(Zm)

≥ −ζ(Zm) + 1− τ(1− Zm) + λ∗(vΛ(Zbo)− qd(Zbo|Zd))
> −ζ(Zn) + 1− τ(1− Zn) + λ∗(vΛ(Zbo)− qd(Zbo|Zd))
≥ LW (Zn)− ζ(Zn) + 1− τ(1− Zn) + λ∗(vΛ(Zbo)− qd(Zbo|Zd))

= (r − µ+ λ∗)W (Zn)

which is a contradiction. Thus, it has to be that W (Z) is monotone decreasing on [0, Zv]

and still has a local minimum at Zm, so that

W (0) ≥ W (Zm) ≥ −ζ(Zm) + (1− τ + τZm) + λ∗ (vΛ(Zbo)− qd(Zbo|Zd))
r − µ+ λ∗

.

Since Ob(vΛ) = 0 for Z ≤ Zv, we have

1

2
σ2Z2 vΛ

ZZ(Z)−µZnvΛ
Z(Z)+(1−τ+τZ)+λ∗ (vΛ(Zbo)−qd(Zbo|Zd)) = (r−µ+λ∗)vΛ(Z)

in that interval. A direct calculation implies that

vΛ(0) =
1− τ + λ∗(vΛ(Zbo)− qd(Zbo|Zd))

r − µ+ λ∗

Therefore,

W (0) = ν(0) +
1− τ + λ∗(vΛ(Zbo)− qd(Zbo|Zd))

r − µ+ λ∗

≤ −ζ(Zm) + (1− τ + τZm) + λ∗ (vΛ(Zbo)− qd(Zbo|Zd))
r − µ+ λ∗

≤ W (Zm)

because

(r − µ+ λ∗) ν(0) = τ · 0− ζ(0) ≤ τZm − ζ(Zm)

since, by assumption, τZ−ζ(Z) is increasing. This is a contradiction, and the claim follows.

�

Lemma 26 As Λ → ∞ the thresholds Z̄bu, Zbu, Zbo converge to some finite limits and
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vΛ(Z) converges uniformly to a function vb(Z|Zd) which satisfies (21). In particular, the

optimal stopping time is the first time that the state variable is enter the interval [0, Z̄bu].

Proof. To prove this result we will show that vΛ(Z) converges to a function vb(Z) that

satisfies the conditions of Lemma 22. Let us first discuss convergence. Since the interval of

interest [0, Zd] is compact, we can always pick a subsequence Λn such that

(Z̄bu(Λn), Zbu(Λn), Zbo(Λn)) −→ (Z̄bu, Zbu, Zbo)

for some constants

Z̄bu ≤ Zbu ≤ Zbo ≤ Zd.

The same arguments as in the proof of Lemma 5 imply that vΛ(Z) is increasing as a function

of Λ. In particular, maxy≥0(vΛ(y)− qd(y|Zd)) is increasing in Λ and it follows that Zbo(Λn)

cannot converge to the exogenously fixed default threshold Zd.

The fact that the function vΛ(Z) converges on the interval [Z̄bu, Zd] to a limit vb(Z|Zd)
that solves the same equation as the function v(Z|Zd) follows directly from Lemma 6 and the

fact that the function vΛ(Z) is increasing in Λ and bounded from above. A direct calculation

based on Lemma 6 implies that only the function but also its derivative converges. On the

interval [0, Z̄bu] we define the limiting function by

vb(Z) = lim
n→∞

(vΛn(Zbo(Λn))− qd(Zbo(Λn)|Zd))− ν(Z) .

By definition of the threshold Z̄bu we have that vb(Z) is continuous at the point Z̄bu and to

complete the proof we will now sequentially verify that the limiting functions satisfies the

conditions of Lemma 22 with

ξ(Z) = 1− τ(1− Z) + λ∗(vb(Z) + O(vb)(Z))

and

ϕ(Z) = max
a≥1

(vb(aZ)− qd(aZ|Zd)1{a>1} − ν(Z)) = vb(Z) + Ob(vb)(Z)

To prove that the limiting function is C1 consider the function

W (Z) = WΛ(Z) ≡ vΛ(Z) + ν(Z)

and observe that since the derivative of vΛ(Z) converges to that of vb(Z) for Z ≥ Z̄bu by

the above it suffices to prove that

lim
Λ→∞

WΛ
Z (Z̄bu(Λ)) = 0. (30)
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By definition of the restructuring threshold Z̄bu(Λ) we have

Ob(vΛ)(Z) = O(vΛ)(Z)− ν(Z) = v(Zbo)− qd(Zbo|Zd)− vΛ(Z)− ν(Z)

= W (Z̄bu(Λ))−W (Z)

for all Z ≤ Z̄bu(Λ) and it now follows from Lemma 23 that over this region the function

solves the ordinary differential equation

(r − µ+ Λ∗)W (Z) = LW (Z)− ϑ(Z) + 1− τ + Λ∗W (Z̄bu(Λ))

where

ϑ(Z) = L ν(Z)− (r − µ+ λ∗)ν(Z)− τZ

is a decreasing function by Assumption 1 and Λ∗ = λ∗ + Λ(1− θ). Define γ < 0 < 1 < γ1 to

be the solutions to Q(x, r+ Λ∗) = 0. With this notation it follows from a slight modification

of Lemma 6 that the solution is explicitly given by

W (Z) = W (0) + y1Z
1−γ + y2Z

1−γ1 +
2

σ2Z

∫ Z̄bu(Λ)

Z

[( x
Z

)γ−2

−
( x
Z

)γ1−2
]
ϑ(x)dx

γ1 − γ

for some constants y1 and y2 where

W (0) =
1− τ − ϑ(0) + Λ∗W (Z̄bu(Λ))

r − µ+ Λ∗
.

Let us first determine the constant y2 using the fact the function is bounded at the origin.

Since the function ϑ(Z) is decreasing we have∣∣∣∣∣ 2

σ2Z

∫ Z̄bu(Λ)

Z

( x
Z

)γ−2 ϑ(x)dx

γ1 − γ

∣∣∣∣∣ ≤ K0

Z

∫ Z̄bu(Λ)

Z

( x
Z

)γ−2

dx ≤ K1

for some constants K0 and K1 > 0. Thus, we only need to take care of the terms with

negative exponent and it follows that

y2 =
2

σ2

∫ Z̄bu(Λ)

0

xγ1−2ϑ(x)dx

γ1 − γ

where the integral does not explode at x = 0 because by definition γ1 > 1. Using this

constant we can rewrite the solution as

W (Z) = W (0) +y1Z
1−γ +

2

σ2Z

[∫ Z

0

( x
Z

)γ1−2 ϑ(x)dx

γ1 − γ
+

∫ Z̄bu(Λ)

Z

( x
Z

)γ−2 ϑ(x)dx

γ1 − γ

]
. (31)
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and the remaining constant is now determined by requiring that the solution be continuous

at the upper boundary point:

W (Z̄bu(Λ)) = W (0) + y1Z̄bu(Λ)1−γ +
2

σ2Z̄bu(Λ)

∫ Z̄bu(Λ)

0

(
x

Z̄bu(Λ)

)γ1−2
ϑ(x)dx

γ1 − γ
.

Solving this equation, substituting the solution into (32) and differentiating the resulting

expression at the upper boundary point gives

WZ(Z̄bu(Λ)) = (1−γ)
W (Z̄bu(Λ))−W (0)

Z̄bu(Λ)
− 2

(σZ̄bu(Λ))2

∫ Z̄bu(Λ)

0

(
x

Z̄bu(Λ)

)γ1−2

ϑ(x)dx.

A direct calculation shows that the constants (1 − γ)/(r − µ + Λ∗) converge to zero as Λ∗

goes to infinity, Therefore, since W (Z) = WΛ(Z) is bounded as a function of Λ and the

restructuring threshold converges to a finite number we obtain

lim
Λ→∞

(1− γ)
W (Z̄bu(Λ))−W (0)

Z̄bu(Λ)
= lim

Λ→∞

(1− γ)(τ − 1 + ϑ(0) + (r − µ)W (Z̄bu(Λ)))

(r − µ+ Λ∗)Z̄bu(Λ)
= 0.

On the other hand, since γ1 diverges to infinity as Λ increases we have that (x/Z)γ1−2

converges to zero for all x < Z and it now follows from the dominated convergence theorem

that

lim
Λ→∞

2

(σZ̄bu(Λ))2

∫ Z̄bu(Λ)

0

(
x

Z̄bu(Λ)

)γ1−2

ϑ(x)dx = 0.

This shows that (31) holds and completes the verification of condition 1. The validity of

conditions 2 and 3 follows directly from the above arguments. To establish the validity of

condition 4 we need to show that the quantity

C(Z) = Lϕ(Z)− (r − µ+ λ∗)ϕ(Z) + ξ(Z) = 1− τ − ϑ(Z)− (r − µ)W (Z̄bu)

is non positive for all Z ≤ Z̄bu and since ϑ(Z) is decreasing it suffices to check that this

property holds at the upper boundary point. The above result implies that W ′(Z̄bu) = 0

and since the function W (Z) cannot be decreasing to the left of Z̄bu we have

LW (Z̄bu) =
1

2
(Z̄bu)

2W ′′(Z̄bu) ≥ 0

Combining this with the definition of the function W (Z) and the fact that

(r − µ)vb(Z̄bu) = L vb(Z̄bu) + 1− τ(1− Z̄bu) + λ∗O(vb)(Z̄bu)
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then gives

C(Z̄bu) = 1− τ(1− Z̄bu)− ϑ(Z̄bu)− (r − µ)W (Z̄bu)

≤ 1− τ(1− Z̄bu)− ϑ(Z̄bu)− (r − µ)W (Z̄bu) + LW (Z̄bu) = 0

and completes the proof. �

Recall that the functions vns and vs are defined by

vns(Z) = vns(Z, a3, a4) ≡ a3Z
1−β + a4Z

1−α + φ0 +
τZ

r
vs(Z) = vs(Z,Zbo, a1, a2, a3, a4; q)

≡ a1Z
1−ψ + a2Z

1−ψ1 +
τZ

r
+

1− τ + λ∗(vns(Zbo)− qd(Zbo|Zd))
r − µ+ λ∗

.

Solving

vs(Zbu)− vns(Zbu) = v′s(Zbu)− v′ns(Zbu) = 0

for a1, a2 gives

a1 = A1(Zbu, a3, a4; q) , a2 = A2(Zbu, a3, a4; q) .

The following lemma establishes the local uniqueness of the rational expectations equilibrium

in barrier strategies and constitutes the direct counterpart of Lemma 20 for the model in

which the firm can issue debt to inside creditors.

Lemma 27 Let ν(Z) = εZ. Consider the following system

F1b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ vns(Zd)− d(Zd|Zd) = 0

F2b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ v′ns(Zd)− d′(Zd|Zd) = 0

F3b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ v′ns(Zbo)− qd′(Zbo|Zd) = 0

F4b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ vns(Zbo)− qd(Zbo|Zd)− vns(Zbu) = 0

F7b(Z̄bu, Zbu, Zbo, Zbd, a3, a4; q) ≡ vs(Z̄bu) + ν(Z̄bu)− (vns(Zbo)− qd(Zbo|Zd)) = 0

F8b(Z̄bu, Zbu, Zbo, Zbd, a1, a2, a3, a4; q) ≡ v′s(Z̄bu) + ν ′(Z̄bu) = 0.

Denote by J(C ) the unique solution to (8), define zo(C ) and zd(C ) by (26), (27) and let

ã3(C ) = (τ/r)κ1(∞)zo(C )β,

ã4(C ) = (τ/r)κ2(∞)zo(C )α.
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Suppose that there exists an admissible C such that

J Fb(zo(C ), zo(C ), zo(C ), zd(C ), ã3(C ), ã4(C ); 0) 6= 0 .

where J denotes the Jacobian operator. Then, for Lebesque almost every admissible C there

exists an open neighborhood

Bb ⊇ (zo(C ), zo(C ), zo(C ), zd(C ), ã1(C ), ã2(C ), ã3(C ), ã4(C ))

and a δ > 0 such that, for all q, ε ∈ [0, δ), there exists a unique rational expectations equilib-

rium in barrier strategies whose parameters satisfy (Z̄bu, Zbu, Zbo, Zbd, a3, a4) ∈ Bb.

Proof of Theorem 2. The proof of Theorem 2 is analogous to that of Theorem 1 and

follows directly from Proposition 7 and Lemma 27. We omit the details. �

D Restructuring probabilities

In order to compute the restructuring probabilities associated with the rational expectations

equilibria in the three models let

τ(y) ≡ inf{t ≥ 0 : Xt = y}

denote the first time that the cash flow process reaches y ≥ 0 and define a nonnegative

bounded function by setting

F (x, T ; y, z) ≡ P [τ(z) ≤ T ∧ τ(y)|X0 = x]

The probability of restructuring before time T is therefore given by F (x, T ;Xd0(1), Xu0(1))

for the frictionless model, and by F (x, T ;Xdb(1), Xub(1)) for the model in which the firm

bargains with current creditors. The following lemma provides an expression for the function

F which can be easily approximated numerically.

Lemma 28 For 0 < y < z and x ∈ (y, z) we have that

F (x, T ; z, y) =
∞∑
n=0

[
Φ

(
bn − νT√

T

)
− e2νbnΦ

(
−bn − νT√

T

)]
−

∞∑
n=0

[
Φ

(
an − νT√

T

)
− e2νanΦ

(
−an − νT√

T

)]
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where the sequence (an, bn)n≥1 is defined by

an = an(x, y, z) ≡ log(z/x)
1
σ + log(z/y)

2n
σ ,

bn = bn(x, y, z) ≡ an + log(x/y)
2
σ = log(zx/y2)

1
σ + log(z/y)

2n
σ ,

the function Φ : R → (0, 1) is the cumulative distribution function of a standard Gaussian

random variable, and we have set ν ≡ m/σ − σ/2.

Proof. See Borodin and Salminen (2002). �

In the search model, restructuring occurs the first time that the firm meets creditors while

the cash flow shock is above the search boundary X∗u(1) . Therefore, it follows from standard

results on Poisson point processes (see e.g. Brémaud (1981)) that the associated probability

of restructuring can be computed as

1−G(x, T ;X∗d(1), X∗u(1))

where

G(x, T ; y, z) ≡ E
[
e−λ

∫ T∧τ(y)
0 1{Xs≥z}ds

∣∣∣X0 = x
]
.

In order to derive a numerical approximation for this function we start by computing its

Laplace transform with respect to the time parameter. To facilitate the presentation let

Θ = Θ(q) < 0, and Ψ = Ψ(q) ≥ 0 denote the roots of Q(x; q) = 0 where the function Q is

defined as in the main text.

Lemma 29 For 0 < y < z and x ≥ y we have that the Laplace transform

Ĝ(x, φ; y, z) ≡
∫ ∞

0

e−φtG(x, t; y, z)dt.

is explicitly given by

Ĝ(x, φ; y, z) = 1{y≤x≤z}Ĝb(x, φ; y, z) + 1{x≥z}Ĝa(x, φ; y, z)

where the functions Ĝa and Ĝb are defined by

Ĝa(x, φ; y, z) ≡ 1

φ+ λ

[
1 + (x/z)Θ(φ+λ) λ

φ

A(φ; y, z)

B(φ; y, z)

]
,

Ĝb(x, φ; y, z) ≡ 1

φ

[
1 +

λ

φ+ λ

Θ(φ+ λ)

B(φ; y, z)

(
xΨ(φ)yΘ(φ) − xΘ(φ)yΨ(φ)

)]
,
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with

A(φ; y, z)prop : volume ≡ zΨ(φ)yΘ(φ)Ψ(φ)− zΘ(φ)yΨ(φ)Θ(φ),

B(φ; y, z) ≡ zΘ(φ)yΨ(φ) (Θ(φ+ λ)−Θ(φ)) + zΨ(φ)yΘ(φ) (Ψ(φ)−Θ(φ+ λ)) .

Proof. Using the boundedness of the function G(x, t; y, z) together with an application of

Fubini’s theorem we deduce that

Ĝ(x, φ; y, z) = E

[∫ ∞
0

e−
∫ t∧τ(y)
0 (φ+λ(Xs;z))dsdt

∣∣∣∣X0 = x

]
.

where we have set

λ(x; z) = λ1{x≥z}.

Therefore, it follows from Theorem 4.9 in Karatzas and Shreve (1991) that Ĝ(x) ≡ Ĝ(x, φ; y, z)

is the unique bounded and piecewise C2 solution to

mxĜ′(x) +
1

2
σ2x2Ĝ′′(x) + 1 = (φ+ λ(x; z))Ĝ(x), x > y,

subject to the boundary condition

lim
x↓y

Ĝ(x) = 1/φ.

The general solution to this second order ODE is given by

Ĝ(x) = 1{y≤x≤z}Ĝb(x) + 1{x≥z}Ĝa(x)

where

Ĝb(x) ≡ 1/φ+ C1x
Θ(φ) + C2x

Ψ(φ),

Ĝa(x) ≡ 1/(φ+ λ) + C3x
Θ(φ+λ) + C4x

Ψ(φ+λ)

for some constants (Ci)
4
i=1 to be determined. Since the solution has to remain bounded as

the state increases, it must be that C4 = 0. In addition, the boundary condition at x = y
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and the smoothness of the solution require that

lim
x↓y

Ĝb(x) = 1/φ,

lim
x↓z

Ĝb(x) = lim
x↑z

Ĝa(z),

lim
x↓z

Ĝ′b(z) = lim
x↑z

Ĝ′a(z).

Solving this system of three equations for the remaining constants, plugging the solution into

the definition of the functions (Ĝb, Ĝa) and simplifying the result gives the desired result. �

To obtain the probability of restructuring before a fixed date we need to invert the Laplace

transform. Unfortunately, due to the complex dependence of the transformed function on

the transform parameter, this cannot be carried out in closed form. To circumvent this

difficulty, we follows Abate and Whitt (1995) and approximate the original function as

G(x, T ) ≈
m∑
k=0

(
m

k

)
eA/2

21+mT

[
Ĝ

(
x,

A

2T

)
+ 2

n+k∑
`=1

(−1)`<Ĝ
(
x,

A

2T
+ `

iπ

T

)]

where (m,n,A) are constants that control the accuracy of the approximation and we have

suppressed the dependence on the thresholds to simplify the notation. In our numerical

calculations we use the values

m = 11, n = 15, A = 8 log 10,

suggested by Abate and Whitt (1995) to obtain an accuracy of the order of 10−8 and verify

that the results we obtain are insensitive to that choice.
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Morellec, E., and N. Schürhoff, 2010, “Dynamic Investment and Financing under Personal Taxa-
tion,” Review of Financial Studies 23, 101-146.

Rauh, J., and A. Sufi, 2010, “Capital Structure and Debt Structure,” Review of Financial Studies
23, 4242-4280.

Schroth, E., G. Suarez, and L. Taylor, 2012, “Dynamic Debt Runs and Financial Fragility: Evi-
dence from the 2007 ABCP Crisis,” Working Paper, University of Pennsylvania.

Strebulaev, I., 2007, “Do Tests of Capital Structure Mean What They Say?” Journal of Finance
62, 1747-1787.

Tserlukevich, Y., 2008, “Can Real Options Explain Financing Behavior?” Journal of Financial
Economics 89, 232-252.

Vayanos, D., and P. O. Weill, 2008, “A Search-Based Theory of the On-the-Run Phenomenon,”
Journal of Finance 63, 1351-1389.

62



Table 1: Benchmark parameter values

Symbol Interpretation Value

A. Firm specific parameters:

r Interest rate 0.042
µ Risk-neutral cash flow rate 0.0067
m Real cash flow rate 0.0824
σ Cash flow volatility 0.2886
τ Corporate tax rate 0.15
ω Liquidation cost 0.45

B. Credit market parameters:

λ Arrival rate of creditors 3.00
q Proportional issuance cost 0.01
ε Fixed issuance cost 0.025
η Bargaining power of outside creditors 0.50
θ Bargaining power of inside creditors 0.50

C. Implied parameters:

τ∗ Maximal tax rate in the search model 0.9934
τ∗(∞) Maximal tax rate in the model with outside creditors 0.8116

This table gives the benchmark parameter values that we use in our numerical illustrations of the

model. The bargaining power of inside creditors is set equal to that of outside creditors. This is

without loss of generality since the surplus from issuing debt to inside creditors is always equal to

zero in equilibrium.
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Figure 1: Restructuring thresholds
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This figure plots the restructuring threshold for the search model X∗u(1) (dashed), the outside

restructuring threshold Xbu(1) (solid), the inside restructuring threshold Xbc(1), and the restruc-

turing threshold for the frictionless model with ε = 0 (dash-dotted) as functions of the arrival rate

of outside creditors λ, the proportional issuance cost q, the fixed issuance cost ε, the bargaining

power of outside creditors η, the volatility of the firm’s cash flows σ and the cost of default ω. In

each panel the vertical line indicates the base case value of the parameter that is being varied.
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Figure 2: Probability of restructuring before default
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This figure plots the probability of restructuring at a three years horizon (panel A.) and the uncon-

ditional probability of restructuring (panel B.) as functions of the arrival rate of outside creditors

λ, the fixed issuance cost ε and the proportional issuance cost q. The dotted (dashed) line gives

the probability of restructuring with inside (outside) creditors, the solid line gives the probability

of restructuring with either inside or outside creditors and the dot-dashed line gives probability of

restructuring in the frictionless model with ε = 0. In each panel the vertical line indicates the base

case value of the parameter that is being varied.
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Figure 3: Default and Leverage
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This figure plots the default threshold (panel A.) and the target leverage ratio (panel B.) for the

search model (dashed), the model with inside creditors (solid) and the frictionless model with ε = 0

(dot-dashed) as functions of the arrival rate of outside creditors λ, the fixed issuance cost ε and

the proportional issuance cost q. In each panel the vertical line indicates the base case value of the

parameter that is being varied.
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