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Abstract

We study the existence of dynamic equilibria with endogenously complete markets in

continuous-time, heterogenous agents economies driven by diffusion processes. Our

main results show that under appropriate conditions on the transition density of

the state variables, market completeness can be deduced from the primitives of the

economy. In particular, we prove that a sufficient condition for market completeness is

that the volatility of dividends be invertible and provide higher order conditions that

apply when this condition fails as is the case in the presence of fixed income securities.

In contrast to previous research, our formulation does not require that securities pay

terminal dividends and thus allows for both finite and infinite horizon economies.

Keywords: continuous-time asset pricing, dynamic market completeness, general

equilibrium theory.

JEL Classification. D51, D52, D53, G11, G12.



1 Introduction

Ever since the seminal contributions of Kreps (1982), Duffie and Huang (1985) and

Duffie (1986) the standard way of constructing securities market equilibria in conti-

nuous-time economies with heterogenous agents has consisted in three steps. First,

compute an Arrow-Debreu equilibrium. Second, define candidate prices for the traded

risky securities by using the associated consumption price process as a pricing kernel

and, third, verify that these prices give rise to dynamically complete markets. The

last step in this program is crucial in establishing the existence of an equilibrium.

Otherwise we cannot guarantee that the allocation of the Arrow-Debreu equilibrium

can be implemented by dynamic trading in the given set of securities. This last

step is also the most difficult one since the candidate prices are given by conditional

expectations which can rarely be computed explicitly.

In representative agent economies market completeness does not matter for the

existence of an equilibrium but it is nonetheless important for two reasons. First,

the microeconomic justification for such economies relies on aggregation results which

require complete markets, see Constantinides (1982). Second, it is now quite common

in asset pricing to start from a representative agent economy and then use the resulting

equilibrium pricing kernel outside the model to price securities, such as derivatives, that

were not included in the original menu of assets. Such an approach requires complete

markets since only in that case does the derived price give the amount necessary to

replicate the cash flows by trading in the primitive securities.

Despite its importance, the question of endogenous completeness has not received

much attention in the general equilibrium literature. In fact, most of the papers that

study multi-asset equilibrium models assume in one form or another that markets are

complete but do not actually prove it. A notable exception is Anderson and Raimondo

(2008) who assume that (i) the economy has a finite horizon and all risky securities

pay dividends at the terminal time, and (ii) the state variables are given by Brownian

motions; and prove that the candidate prices generate complete markets as soon as

the volatility matrix of the terminal dividends is nondegenerate.

Being the first of its kind, the result of Anderson and Raimondo (2008) is obviously

very important. However, their assumptions are often too strong to be applicable

in practice. For example, (i) requires that all traded assets pay terminal dividends

and hence does not allow for securities that pay only continuous dividends as is

customary in the literature. Furthermore, this assumption implies that the menu of

traded securities cannot include an instantaneously risk free savings account.1 Another

1This restriction is not in itself unnatural as one could use a zero coupon bond in zero net supply in
place of instantaneously risk free bond and then change numéraire to obtain a riskless asset. However,
most continuous-time models use a savings account as primitive security and it is therefore important
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obvious, but nonetheless important, limitation of (i) is that it does not allow for infinite

horizon economies. While (ii) is satisfied in the benchmark case where dividends

are modeled as correlated geometric Brownian motions, Anderson and Raimondo

(2008) themselves remark that this assumption is quite restrictive. In particular, this

assumption does not allow for mean reversion in the state variables and thus excludes

all of the standard equilibrium term structure models that assume mean reverting

affine state variables, see e.g. Vasicek (1977) and Cox et al. (1985).

In this paper, we extend the result of Anderson and Raimondo (2008) by removing

both of their key assumptions. Specifically, we provide conditions for endogenous

completeness in a continuous-time economy populated by heterogenous agents and

driven by a multidimensional diffusion process satisfying appropriate regularity condi-

tions. In our formulation, the traded securities do not need to pay terminal dividends.

As a result, the horizon of the economy can be either finite or infinite and we can

include instantaneously risk free bonds in the menu of traded assets as is customary

in the asset pricing literature. In this setting, the main results of this paper show that

dynamic market completeness can be deduced from the primitives of the economy in

most standard continuous-time equilibrium models.

To highlight the intuition behind our results consider a finite horizon economy and

recall that, in continuous-time, market completeness is equivalent to the invertibility

of the price volatility. Using a first order expansion we show that this matrix is

invertible in neighborhood of the terminal time provided that the exogenous volatility

of dividends is invertible and the question becomes that of knowing whether we may

propagate this property to the whole time interval. As observed by Anderson and

Raimondo (2008), who were the first to use it in this context, the notion of real

analyticity is uniquely suited to answer this question because a real analytic function

is either identically equal to zero or almost everywhere different from zero.2 Under our

assumptions the determinant of the price volatility is indeed real analytic as a function

of time and the state variables, and combining this property with our expansion

shows that markets are endogenously complete as soon as the exogenous volatility

of dividends is invertible at least at one point of the state space.

The requirement that the volatility of the dividends be nondegenerate is sufficient

for endogenous completeness but it is not necessary. In particular, if some of the traded

assets are fixed income securities, such as bonds or annuities, then this requirement

fails but markets may nonetheless be complete in equilibrium. To obtain sufficient

conditions for market completeness in such cases it is necessary to expand the price

to find conditions for completeness in such economies.
2The observation that real analyticity is essential to prove dynamic completeness is also contained

in Riedel and Herzberg (2010) who consider the same setting with terminal dividends as Anderson
and Raimondo (2008) but allow for more general diffusion state variables.
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volatility to higher orders and we provide complete details for the second order ex-

pansion. Since some of the securities now draw their value solely from variations in

the pricing kernel, the second order condition that we obtain depends not only on the

dividends but also on the agents’ preferences and endowments through the equilibrium

pricing kernel and might thus be difficult to apply as the latter can rarely be computed

explicitly. To circumvent this difficulty we show that, surprisingly, the validity of the

condition for one arbitrary agent in the economy is sufficient to guarantee the existence

of equilibrium for a generic set of initial endowments.

In an infinite horizon economy there is no terminal time close to which the volatility

of the candidate prices can be approximated. Instead, we expand the volatility of prices

as a function of the agents’ common discount rate and show that its determinant

can be computed from the primitives of the economy in a neighborhood of infinity.

Relying on this expansion we show that an equilibrium exists as soon as the dividend

volatility is invertible and provide a second order condition that applies when dividends

are degenerate. In contrast to the finite horizon case, the existence result that we

obtain holds for generic, rather than fixed, initial endowments and discount rates.

The reason for this is that by varying the agents’ discount rate we are changing the

initial distribution of wealth in the economy.

The rest of the paper is organized as follows. In Section 2 we present the model,

state our assumptions and recall some basic results about Arrow-Debreu equilibria.

Section 3 contains our main conditions for endogenous market completeness in finite

or infinite horizon economies. In Section 4 we provide examples of models in which our

assumptions on the primitives are satisfied. The proofs of our most important results

are provided in the appendix. More standard proofs as well as additional results are

presented in the online supplement.

2 The economy

Information structure. We consider a continuous-time economy on the time span

[0, T ] for some horizon T that can be either finite or infinite.

Uncertainty is represented by a probability space (Ω,F ,F, P ) supporting a Brow-

nian motion Z ∈ Rd. The filtration F = (Ft)t∈[0,T ] is the usual augmentation of the

filtration generated by the Brownian motion, and we let F ≡ FT .

Securities markets. The financial market is frictionless and consists in 1 + d con-

tinuously traded securities: one locally riskless savings account in zero net supply, and
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d dividend–paying stocks in positive supply of unit each.3

The savings account pays no dividends and earns an endogenously determined rate

of interest on deposits.4 On the other hand, we assume that stock i pays dividends at

rate5 gi(Xt) for some nonnegative real analytic function gi where Xt ∈ Rn is a vector

of state variables that evolves according to

Xt = X0 +

∫ t

0

µX(τ,Xτ )dτ +

∫ t

0

σX(τ,Xτ )dZτ (1)

for some X0 ∈ Rn and some functions µX and σX with values in Rn and Rn×d. The

key conditions we impose on the state variables are summarized in:

Assumption A:

(a) n = d and rank(σX(t, x)) = d for all (t, x) ∈ [0, T ]× Rn,

(b) The functions µX , σX are jointly real analytic in (t, x) ∈ [0, T ] × Rn and time

independent if the economy has an infinite horizon.

(c) The unique solution to equation (1) takes values in X ⊆ Rd and admits a

transition density p(t, x, τ, y) that is smooth for t 6= τ .

(d) There are locally bounded functions (K,L), a metric d that is locally equivalent to

the Euclidean metric, and constants ε, α, φ > 0 such that p(t, x, τ, y) is analytic

with respect to t 6= τ in the set

P2
ε ≡

{
(t, τ) ∈ C2 : <t ≥ 0, 0 ≤ <τ ≤ T and |=(τ − t)| ≤ ε<(τ − t)

}
and satisfies

|p(t, x, τ, y)| ≤ K(x)L(y)|τ − t|−αeφ|τ−t|−
d(x,y)2

|τ−t| ≡ p(t, x, τ, y) (2)

for all (t, τ, x, y) ∈P2
ε ×X 2.

The most important part in the above assumption is condition (d). This condition is

meant to guarantee that the candidate equilibrium prices to be constructed below are

3The market structure that we consider is standard in continuous–time asset pricing, see for
example Duffie (2001, Chapter 9). While our analysis can be easily adapted to the setting of Anderson
and Raimondo (2008) where none of the securities is locally riskless we choose to focus on the standard
formulation to facilitate the application of our results. The results for this alternative setting are
similar to those we present and are available upon request.

4One should think of the savings account as a series of instantaneous risk free bonds. If an agent
invests a at time t then his investment will grow to a(1 + rtdt) by time t + dt and this amount will
be available for either consumption or reinvestment over the next infinitesimal time interval.

5The assumption that the stocks do not pay terminal dividends is adopted for simplicity and can
be relaxed at the cost of more involved notation. See the online supplement for details.
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real analytic functions of time and can be shown to hold in many different models.

See Section 4 for various examples.

Preferences and endowments. The economy is populated by A ≥ 1 agents in-

dexed by a. The preferences of agent a over lifetime consumption plans are represented

by an expected utility index of the form Ua(c) ≡ E0

∫ T
0
e−ρτua(cτ )dτ where the constant

ρ ≥ 0 is a discount rate that is common to all agents and ua is a utility function that

is assumed to satisfy the following:

Assumption B: The function ua : (0,∞) → R is real analytic, increasing, strictly

concave and satisfies the Inada conditions: u′a(0) =∞, u′a(∞) = 0.

Agent a is endowed with ηai ∈ [0, 1] units of stock i and receives income at rate `a(Xt)

for some real analytic function `a : X → R+. We let η ∈ RA×d denote the matrix of

initial endowments and assume that η>1A = 1d so that markets clear.

Trading strategies and feasible plans. A trading strategy is a predictable process

(α, π) ∈ R1+d where αt and πit denote the number of units of the riskless asset and

the number of units of stock i held in the portfolio at time t.

A consumption plan is an adapted process c that is almost surely locally integrable

with respect to Lebesgue measure on [0, T ). A trading strategy (α, π) is said to finance

the consumption plan c at cost w if the associated wealth process Wt ≡ αtBt + π>t St

satisfies the dynamic budget constraint

Wt = w +

∫ t

0

ατdBτ +

∫ t

0

π>τ d(S +D)τ −
∫ t

0

cτdτ

where D and (B, S) denote respectively the vector of cumulative dividends and the

endogenous securities price processes.

A consumption plan c is feasible for agent a given a consumption price process m

if there exists a trading strategy that finances the net plan c− `a at an initial cost of

wa ≡ η>a S0 and which is such that the process

mtWt +

∫ t

0

mτ (cτ − `a(Xτ ))dτ

is a martingale with WT ≥ 0 if the horizon is finite and lim inft→T E[mtWt] ≥ 0

otherwise. The martingale property is a standard admissibility condition that excludes

doubling strategies from the feasible set (see e.g. Duffie (2001, Chapter 6)). On the

other hand, the requirement on the behavior of wealth as the horizon approaches is

meant to prevent agents from borrowing without ever paying back. Indeed, agents in
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the model are allowed to borrow against their future labor income, and may therefore

have negative wealth over some periods of time, but these interim debts must be repaid

before the horizon of the model.

In what follows we let Ca(m,B, S) denote the set of consumption plans that are

feasible for agent a given the consumption and securities prices m, B and S.

Equilibrium. The concept of equilibrium that we use is that of equilibrium of plans,

prices and expectations introduced by Radner (1972):

Definition 1: An equilibrium is a set of price processes (m,B, S), a consumption

allocation (ca)
A
a=1 and a set of strategies (αa, πa)

A
a=1 such that

(a) The plan ca maximizes Ua over Ca(m,B, S) and is financed by (αa, πa),

(b) All markets clear.

An equilibrium with consumption price m has dynamically complete markets if any

plan c such that wc ≡ E
∫ T
0
mτcτdτ <∞ can be financed at cost wc

The rest of the paper is devoted to finding conditions under which there exists an

equilibrium with dynamically complete markets. The starting point of our analysis will

be a static Arrow-Debreu equilibrium defined as a consumption price process m and a

consumption allocation (ca)
A
a=1 such that ca maximizes Ua over the set of consumption

plans which satisfy the static budget constraint

E

∫ T

0

mτ

(
cτ − `a(Xτ )− η>a g(Xτ )

)
dτ ≤ 0 ,

and the consumption good market clears. To guarantee that such an equilibrium exists

we impose the following:6

Assumption C: There are constants R ≤ ρ and ν > 1 such that

∫ T

0

A∑
a=1

(∫
X

e−Rτu′a (g(y)/A) g(y)p(0, x, ντ, y)dy

)
dτ <∞

for all x ∈X where p is defined as in equation (2) and g ≡ g>1d + `>1A denotes the

aggregate consumption.

Our first result establishes the existence of an Arrow–Debreu equilibrium and

characterizes the corresponding consumption price process:

6Alternative sets of sufficient conditions for the existence of an Arrow-Debreu equilibrium in a
setting similar to ours can be found in Dana (1993).
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Proposition 1: The set of Arrow-Debreu equilibria is non empty. In any such

equilibrium the consumption price process is given by

mt = m(t,Xt) ≡ e−ρt
∂u

∂c
(λ, g(Xt))

for some λ ∈ S+ where u(λ, c) = maxs∈S

∑A
a=1 λaua(sac) and S ⊆ RA denotes the

unit simplex. In particular, the equilibrium consumption price function is jointly real

analytic in (t, λ, x) ∈ (0, T )×S++ ×X .

Remark 1: We focus on a formulation with homogenous discount rates and time

independent aggregate consumption because it covers most of the cases of interest and

allows to guarantee that equilibrium prices are real analytic under simple conditions.

While it is possible to find conditions on the primitives of the model under which that

property holds with heterogenous discount rates and/or time dependent aggregate

consumption these conditions are a lot more involved and become very difficult to

interpret. See Appendix B for details.

3 Endogenous completeness

To find conditions under which our economy admits an equilibrium with dynamically

complete markets, we will follow the path set by Kreps (1982), Duffie and Huang

(1985), Duffie (1986) and Huang (1987). Namely, we will start from an Arrow-Debreu

equilibrium, then construct candidate prices for the traded securities by using the

consumption price process as a state price deflator, and finally check whether these

prices deliver complete markets.

3.1 Candidate price functions

Fix an Arrow-Debreu equilibrium and let mt ≡ m(t,Xt) denote the corresponding

consumption price. Appealing to Proposition 1 for the required smoothness and

applying Itô’s lemma shows that

−At ≡
∫ t

0

Eτ

[
dmτ

mτ

]
=

∫ t

0

D(m(τ,Xτ ))

m(τ,Xτ )
dτ ,

where the second order differential operator

D ≡ ∂

∂t
+ A =

∂

∂t
+ µX(t, x)>

∂

∂x
+

1

2
Tr

[
σX(t, x)σX(t, x)>

∂2

∂x2

]
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denotes the extended infinitesimal generator of the state variables. Accordingly, we

will take Bt ≡ exp(At) as our candidate for the price of the riskless asset. On the other

hand, a natural candidate for the stock price is the fundamental value of dividends

computed at the equilibrium consumption price, namely

St = S(t,Xt) ≡ Et

∫ T

t

m(τ,Xτ )

m(t,Xt)
g(Xτ )dτ . (3)

The following result establishes some properties of the candidate price function that

will prove crucial for the existence of an equilibrium.

Proposition 2: The function S is jointly real analytic in (t, x) ∈ (0, T ) ×X and

belongs to C∞((0, T ]×X ).

As is well-known, to assert that the candidate prices give rise to an equilibrium

it suffices to prove that, given these prices, markets are dynamically complete. In

a continuous time model, the latter is closely related to the properties of the stock

volatility. Specifically, it can be shown that markets are complete if and only if the

stock volatility is almost everywhere invertible (see Duffie (2001, Chapter 6)). Since

S is smooth, an application of Itô’s formula shows that the volatility of the candidate

stock prices is given by σS(t,Xt) = ∂S
∂x

(t,Xt)σX(t,Xt). Combining this with the fact

that a real analytic function is either identically zero or almost everywhere different

from zero delivers the following7:

Proposition 3: If det(σS(t, x)) 6= 0 for some (t, x) ∈ (0, T ) ×X then there exists

an equilibrium with dynamically complete markets.

The main obstacle one encounters when trying to apply the above Proposition is that,

unless d ≡ 1 or the candidate price function can be computed in closed form, it is in

general very difficult to check that its volatility is invertible even at a single point.8

To circumvent this difficulty, we show in the next section that it may be sufficient

to check that the volatility of the intermediate dividends, rather than that of the

candidate prices, is nondegenerate.

3.2 Conditions for market completeness

In this section we present conditions that are sufficient to guarantee that the price

volatility is invertible and, hence, that there exists an equilibrium with complete

7See Riedel (2001) for a related result in a single stock economy with incomplete information.
8An important case in which this property can be checked quite easily is that of finite horizon

economies where all risky securities pay terminal dividends as in Anderson and Raimondo (2008).
Indeed, in such case the price volatility coincides with that of the terminal dividends at time T and
it suffices to assume that the latter is nondegenerate to obtain the existence of a complete markets
equilibrium. See the online supplement for details.
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markets. To highlight the intuition behind our approach we start by considering the

finite horizon case before we turn to infinite horizon economies.

3.2.1 Finite horizon economies

Let T < ∞, fix an Arrow-Debreu equilibrium and denote by S the corresponding

candidate price function. Using equation (3) in conjunction with Proposition 2 and

standard martingale arguments shows that the candidate prices solve the partial

differential equation

− ∂

∂t
(m(t, x)S(t, x)) = A (m(t, x)S(t, x)) +m(t, x)g(x) (4)

subject to S(T, x) = 0d where A denotes the infinitesimal generator of the state

variables. Differentiating with respect to x on both sides and using the continuity of

derivatives established in Proposition 2 then gives

∂S

∂x
(t, x) = (T − t)g′(x) + o(T − t)

and it follows that

σS(t, x) = (T − t)σg(T, x) + o(T − t)

where the matrix valued function σg(t, x) denotes the volatility of dividends. This

simple expansion shows that the determinant of the price volatility is proportional to

the determinant of the dividend volatility in a neighborhood of the terminal time and

leads to the following:

Theorem 1: If det(σg(T, x)) 6= 0 for at least one x ∈ X then there exists an

equilibrium with dynamically complete markets.

The conclusion of Theorem 1 is quite intuitive. Indeed, this result simply states

that under our assumptions non degeneracy of the exogenous volatility of dividends is

automatically transmitted to the endogenous volatility of the prices and thus ensures

market completeness. A striking feature of this result is that it only depends on the

dividends: Changing the utility functions, initial endowments and/or labor income has

no effect on the existence of an equilibrium.

The condition of Theorem 1 is sufficient but it is not necessary. In particular,

if some of the traded assets are fixed income securities, then this condition fails but

markets may nonetheless be complete as illustrated by Example 1 below. To find

sufficient conditions for market completeness in such cases we perform a second order
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expansion of the volatility. Differentiating equation (4) with respect to (t, x) and using

the continuity of the derivatives of the candidate prices shows that

σS(t, x) = (T − t)σg(T, x) +
1

2
(T − t)2H(x) + o(T − t)2 (5)

where we have set

H(x) ≡ ∂

∂x

(
D(m(T, x)g(x))

m(T, x)

)
σX(T, x) − 2

∂σg
∂t

(T, x) . (6)

Combining this expansion with well-known results on determinants then leads to a

second order condition for the existence of an equilibrium with dynamically complete

markets. Specifically, defining

Bi(x) = σg(T, x) + eie
>
i (H(x)− σg(T, x))

where ei is the ith vector in the orthonormal basis of Rd, it can be shown that an

equilibrium with dynamically complete markets exists provided that det(B1(x)) +

· · ·+det(Bd(x)) 6= 0 for some x ∈X . In contrast to that of Theorem 1, this condition

depends not only on dividends but also on preferences through the pricing kernel and

might thus be difficult to apply since m can rarely be computed in closed form. To

circumvent this difficulty we show below that an equilibrium exists for generic initial

endowments if the above condition holds when m is replaced by the marginal utility

of a single agent. The reason why we need to consider generic endowments is that to

get the result we have to further expand the price volatility around the case where the

economy is populated by a single agent.

To state the result, let ma(t, x) ≡ e−ρtu′a(g(x)) denote the discounted marginal

utility of agent a evaluated at the aggregate consumption and set

Ba,i(x) = σg(T, x) + eie
>
i (Ha(x)− σg(T, x)) (7)

where the vector ei ∈ Rd is defined as before and the function Ha is defined as in

equation (6) but with the function m replaced by ma.

Theorem 2: Assume that the relative risk aversion of all agents is bounded between

γ1 and γ2 for some 0 < γ1 ≤ γ2. If det(Ba,1(x)) + · · · + det(Ba,d(x)) 6= 0 for some a

and some x ∈ X , then an equilibrium with dynamically complete markets exists for

all matrix η of initial endowments out side of a closed set of measure zero.

The following example illustrates how one can apply Theorem 2 to establish the

existence of a complete markets equilibrium in an economy where Theorem 1 fails due

to the fact that one of the traded assets is a fixed income security.
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Example 1: Consider a finite horizon economy where at least one agent, say agent

one, has constant relative risk aversion γ > 0 and let d ≡ 2 . Assume that

dX1t =
(
X2t − ‖σ1‖2/2

)
dt+ σ>1 dZt,

dX2t = κ (θ −X2t) dt+ σ>2 dZt,

for some constants (κ, θ, σi) such that det(σ1, σ2) 6= 0; and that the dividends rates

are given by g1(x) ≡ 1 and g2(x) for some real analytic function g2.

Using Proposition 4 in conjunction with well-known results on Gaussian processes

we have that Assumptions A, B and C hold. However, Theorem 1 cannot be used

here because the dividend volatility is degenerate. To circumvent this difficulty we use

Theorem 2. Since agent 1 has power utility a direct calculation shows that

2∑
i=1

det(B1,i(x)) =
γg′2(x)g′(x)

g(x)
det(σ1, σ2)

is non zero as soon as g′ 6= 0 and it follows from Theorem 2 that an equilibrium with

dynamically complete markets exists for generic initial endowments.

Remark 2: (a) Theorems 1 and 2 show that in the finite horizon case completeness

can be deduced from the primitives of the economy provided that the prices are

real analytic functions of both time and the state variables. We prove in the

online supplement that real analyticity in space can be dispensed with provided

that the conditions of the theorems hold for almost every x ∈ X rather than

for at least one x ∈ X . By contrast, we show that the requirement of real

analyticity in time cannot be relaxed by providing examples of representative

agent economies that fail to admit a complete markets equilibrium despite non-

degenerate dividends because the candidate prices are not real analytic.

(b) Riedel and Herzberg (2010) show that in the setting of Anderson and Raimondo

(2008) real analyticity of the candidate price function is sufficient to establish the

existence of a complete markets equilibrium if the volatility matrix of terminal

dividends is invertible. However, the conditions they impose are not sufficient for

the candidate prices to be real analytic. Indeed, to guarantee that this property

holds it is necessary to impose bounds on the transition density in a complex

neighborhood of [0, T ] as in equation (2).

3.2.2 Infinite horizon economies

In an infinite horizon economy there is no terminal time close to which the price

volatility can be approximated and, as result, the approach of the previous section
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cannot be used. Instead we will expand the volatility of the candidate prices as

a function of the agents’ common discount rate and use this expansion to derive

conditions for the generic existence of a complete markets equilibrium.

Using equation (3) it can be shown (see Lemmas 4, 5 and 6 in the appendix) that

volatility matrix of the candidate prices is real analytic in ρ and satisfies9

σS(x, ρ) =
1

ρ
σg(x) +

1

2ρ2
H(x) + o (1/ρ)2

which is the direct analog of equation (5) for the infinite horizon case. Combining

this expansion with some generic determinacy arguments then delivers the following

counterpart to Theorems 1 and 2:

Theorem 3: Assume that the relative risk aversion of all agents is bounded between

γ1 and γ2 for some 0 < γ1 ≤ γ2. If either det(σg(x)) 6= 0 or det(Ba,1(x)) + · · · +
det(Ba,d(x)) for some a and some x ∈ X then an equilibrium with dynamically

complete markets exists for all η and ρ > R outside of a closed set of measure zero.

Remark 3: A close inspection of the proof shows that Theorem 3 remains valid if

we only require equation (2) to hold for real, rather than complex, values of the time

arguments. The reason for this important simplification is that with an infinite horizon

the volatility of the candidate prices is automatically real analytic as a function of ρ

and this is all that is needed to deduce the generic existence of an equilibrium with

complete markets from the primitives of the model. The result of Theorem 3 also

extends to the case of heterogenous discount rates, provided that we make appropriate

changes in Assumption C.

Remark 4: To facilitate the presentation we have assumed that there are as many

risky assets as Brownian motions but this assumption is not necessary for the validity

of our main results. In particular, the conclusions of Theorems 1, 2 and 3 remain valid

if there are are more risky securities than Brownian motions provided that the stated

conditions hold for a fixed set of d risky securities.

4 Applications

In this section we provide examples of classes of models that satisfy the conditions of

Assumption A.

9In the infinite horizon case, the drift and diffusion of the state variables are assumed to be time
independent. As a result, the volatility of dividends is also time independent and the expressions in
equations (6) and (7) simplify.
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Vector autoregressive processes. Assume that the state variables follow a vector

autoregressive process of the form

dXt = (b(t)− A(t)Xt) dt+ σX(t)dZt

where Z ∈ Rd is a Brownian motion, and b ∈ Rd, A ∈ Rd×d and σX ∈ Rd×d are real

analytic functions. This class of models includes as a special case the model studied by

Anderson and Raimondo (2008) where the state variables coincide with the underlying

Brownian motions but it is significantly more flexible as it allows for arbitrary mean

reverting Gaussian processes.

Proposition 4: If rank(σX(t)) = d for all t ≥ 0 then Assumption A holds provided

that the economy has a finite horizon.10

Autonomous diffusion processes. Assume that each of the coordinates of the

vector of state variables follows an autonomous diffusion process of the form

dXit = µi(Xit)dt+ σi(Xit)dZit (8)

for some real analytic drift and volatility functions. Let Xi ≡ (li, ri) with −∞ ≤ li <

ri ≤ ∞ denote the state space of the ith coordinate and assume that the solution

to equation (8) does not reach the boundaries of Xi in finite time. For this class of

models the existence of a transition density follows from well-known results (see e.g.

Itô and McKean (1965, 4.11)) and we have:

Proposition 5: Assume that equation (2) holds for real values of t 6= τ . Then

Assumption A holds.

Since the bound only needs to hold for real, rather than complex, values of time, it

is much easier to check. For example, relying on the above result it can be shown

that Assumption A holds, provided that each coordinate follows either an arithmetic

Brownian motion; or a square root process:

dXit = (µi − κiXit) dt+ ξi
√
|Xit|dZit

for some ξ2i < 2µi; or a constant elasticity of variance process:

dXit = µiXitdt+ ξi |Xit|βi dZit
10If the economy has an infinite horizon then we assume that the coefficients of the driving process

are time independent and, in that case, additional conditions on the eigenvalues of the matrix A are
required for the validity of the result. See the online supplement for details.
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for some βi ≥ 1; or a general one dimensional diffusion whose drift and volatility

coefficients µi and σi ≡ 1/φ′i are such that Gi(y) ≡ (µiφ
′
i + 1

2
σ2
i φ
′′
i ) ◦ φ−1i (y) satisfies a

linear growth condition (see Quian and Zheng (2004, Theorem 3.2)).

General diffusion processes. To obtain a general class of models in which the

conditions of Assumption A are satisfied assume that the drift µX and volatility σX

are bounded real analytic functions with bounded derivatives and that the volatility

is uniformly elliptic in the sense that

sup
(t,x)∈(0,T )×X

∥∥σX(t, x)>ξ
∥∥2 ≥ ε‖ξ‖2

for all ξ ∈ Rd and some ε > 0. Under these assumptions it follows from the general

theory of heat kernel bounds that the states variables admit a transition density which

satisfies Assumption A.(d). See for example Eidelman (1969, Theorem 8.1), Lunardi

(1995, Chapters 3, 5, 6 & 8) and Auscher (1996).

Analytic semigroups. Relying on the semigroup approach to diffusion processes, it

can be shown that the bound of Assumption A.(d) holds with d(x, y) = C
∑

i |xi−yi|1/2

for some C > 0, provided that the operator A generates an analytic semigroup on

an appropriate space of functions. Very general sufficient conditions that cover many

important cases can be found in Lunardi (1995), Gozzi et al. (2002) and Grigor’yan

(1994, 2003, 2006) among others.

Appendix A. Proofs

Proof of Proposition 1. The existence result follows by a slight modification of

the arguments in Malamud (2008) and is reported in the online supplement. The

characterization of the consumption price and its real analyticity follow from Huang

(1987, Propositions 3.1 and 3.2), the market clearing condition and the real analytic

implicit function theorem (see e.g. Krantz and Parks (2002, Section 2.3)). Q.E.D.

Lemma 1: The transition density p(t, x, τ, y) is jointly real analytic in (t, x) for τ 6= t.

Furthermore, for any constant ε > 0 and any vector k ∈ Nd
+ there exists a locally

bounded function A(x) = A(x; ε, |k|) > 0 such that:∣∣∣∣∣∂k0+|k|p(t, x, τ, y)

∂tk00 ∂x
k1
1 · · · ∂x

kd
d

∣∣∣∣∣ ≤ A(x)L(y)|τ − t|−(α+k0+|k|)eφ|τ−t|(1+ε)−
(d(x,y))2

2(1+ε) |τ−t|

for all k0 ∈ N and (t, τ, x, y) ∈P2
ε ×X 2 such that d(x, y) > ε.
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Proof. Since the transition density is smooth for τ 6= t, it follows from standard

results that it solves the backward Kolmogorov equation

D(p(t, x, τ, y)) =
∂p(t, x, τ, y)

∂t
+ A (p(t, x, τ, y)) = 0

for t 6= τ . Combining this property with Eidelman (1969, Theorem 6.2) shows that p

is real analytic in x ∈ X for τ 6= t. Furthermore, its radius of analyticity is bounded

away from zero when (t, x) vary in a compact subset of [0, τ) × X , and joint real

analyticity follows from Siciak (1969), see also Eidelman (1969, Theorem 8.1).

The second part follows from Assumption A and estimates for solutions of parabolic

partial differential equations. See Davies (1997), Eidelman (1969, p. 23–28) and the

online supplement for details. Q.E.D.

Lemma 2: We have 0 < m(t, x) ≤ Cm
∑A

a=1 e
−ρtu′a(ḡ(x)/A)) for some Cm > 0.

Proof. See the online supplement. Q.E.D.

Lemma 3: The function S is well-defined and real analytic in t ∈ (0, T ).

Proof. Fix an arbitrary t0 ∈ (0, T ). By Proposition 1 and Lemma 2, we know that

the function m is strictly positive and real analytic with respect to t ∈ [0, T ], so it

suffices to prove that for each i the function

Qi(z, x) ≡ m(z, x)Si(z, x) =

∫ T

z

∫
X

p(z, x, θ, y)m(θ, y)gi(y)dydθ (9)

is well-defined and analytic in a complex neighborhood P0 ⊃ t0. Choosing the

neighborhood appropriately we may assume that any segment connecting points z ∈
P0 with T lies in the set P2

ε of Assumption A. Therefore, it follows from Lemma

2 and the second part of Assumption C that the integrand in (9) has an integrable

majorant and it follows that Qi is well defined in P0. Furthermore, the integrand

being analytic in z by Assumption A and Proposition 1 it follows from the Morera

theorem (see e.g. Shabat (1992, Theorem 2) and Eidelman (1969, p.223)) that Qi is

analytic with respect to z ∈P and the proof is complete. Q.E.D.

Proof of Proposition 2. Let πi(t, x, τ) ≡ Et[m(Xτ )g(Xτ )]. By Proposition 1 and

Lemma 2, we know that the function m is strictly positive and real analytic with

respect to x ∈X so it suffices to show that the result holds for the function

Qi(t, x) ≡ m(t, x)Si(t, x) =

∫ T

t

e−ρτπi(t, x, τ)dτ .
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Fix an x ∈X , pick two open sets X1 ⊂X2 ⊆X such that x ∈X1 and let hi ≡ nmgi

where n : X → [0, 1] is a smooth function that is equal to 1 on X1 and to zero outside

of X2. Using this notation we have πi = Fi +Hi where

Fi(t, x, τ) ≡
∫

X c
1

p(t, x, τ, y)(mgi − hi)(y)dy,

Hi(t, x, τ) ≡
∫

X2

p(t, x, τ, y)hi(y)dy

and X c
1 = X \X1. A direct calculation based on Lemmas 1, 2, Assumption C and

the fact that d(x, y) > ε for some ε > 0 and all y ∈ X c
1 shows that for every k ∈ Nd

there exists an integrable function fk,x such that∣∣∣∣∣∂kp(t, x, t+ θ, y)

∂xk11 · · · ∂x
kd
d

(mgi − hi)(y)

∣∣∣∣∣ ≤ fk,x(θ, y) (10)

for all (t, θ, y) ∈ [0, T ] × [0, T − t] ×X c
1 . Therefore, it follows from the dominated

convergence theorem that Fi is smooth in x and satisfies

∂kFi(t, x, τ)

∂xk11 · · · ∂x
kd
d

=

∫
X c

1

∂kp(t, x, τ, y)

∂xk11 · · · ∂x
kd
d

(mgi − hi)(y)dy (11)

for all (t, τ) ∈ [0, T ]. On the other hand, since the function hi is smooth and compactly

supported, it follows from Eidelman (1969, Theorem 5.3) that Hi is smooth with

respect to x and satisfies

∂kHi(t, x, τ)

∂xk11 · · · ∂x
kd
d

=

∫
X1

∂kp(t, x, τ, y)

∂xk11 · · · ∂x
kd
d

hi(y)dy, (12)

as well as

lim
t→T

∫ T

t

e−ρτ
∂kHi(t, x, τ)

∂xk11 · · · ∂x
kd
d

dτ = 0 (13)

Adding (11) and (12) shows that πi is smooth with respect to x, and it immediately

follows that Qi is smooth with respect to x and satisfies

∂kQi(t, x)

∂xk11 · · · ∂x
kd
d

=

∫ T

t

e−ρ(τ−t)
∂kπ(t, x, τ)

∂xk11 · · · ∂x
kd
d

dτ , (14)

as well as

lim
t→T

∂kQi(t, x)

∂xk11 · · · ∂x
kd
d

= 0
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where the limit follows from (13), (10) and the monotone convergence theorem. Since

Qi is real analytic in time by Lemma 3 we know that it is smooth with respect to t

and it thus follows from standard martingale arguments that

−∂Qi(t, x)

∂t
= A (Qi(t, x)) +m(t, x)gi(x). (15)

As a result, any mixed derivative of Qi can be expressed in terms of derivatives with

respect to x and it follows that Qi ∈ Ck((0, T ] ×X ). Finally, since the coefficients

of (15) are real analytic in x we know from Eidelman (1969, Theorem 6.2) that Qi is

real analytic in x with a radius of analyticity that is uniformly bounded away from

zero when (t, x) vary in compact subsets of (0, T )×X , and joint real analyticity now

follows from Lemma 3 and the results of Siciak (1969). Q.E.D.

Proof of Theorems 1 and 2. The validity of (5) follows by differentiating (4) and

using the smoothness of S, provided by Proposition 2. Furthermore, a direct but

tedious calculation provided in the online supplement shows that

det(σS(t, x)) = θd det(σg(t, x)) +
θ1+d

2

d∑
i=1

det(Bi(x)) + o(θ)1+d (16)

where θ = T − t. Under the assumption of Theorem 1, this shows that the function

det(σS(t, x)) is not identically zero. Since it is real analytic by Proposition 2 and

Krantz and Parks (2002, Proposition 2.2.3), it follows from Anderson and Raimondo

(2008, Theorem B.3) that det(σS(t, x)) is almost everywhere non zero on (0, T )×X .

Combining this with Proposition 3 shows that an equilibrium with complete markets

exists and completes the proof of Theorem 1.

To prove Theorem 2 we argue as follows: By the real analytic implicit function

theorem, we have that m(t, x, λ) is real analytic in (t, x, λ) ∈ [0, T ] ×X ×S++ and

satisfies m(t, x, ea) = ma(t, x). Since the drift and volatility of the state variables are

real analytic, this implies that det(Bi(x, λ)) is real analytic in (x, λ) ∈X ×S++ and

satisfies det(Bi(x, ea)) = det(Ba,i(x)). Combining this with (16) shows that under

the assumption of Theorem 2 the function det(σS(t, x, λ)) is almost everywhere non

zero on (0, T ) ×X ×S++ and it only remains to prove that generic Pareto weights

λ correspond to generic initial endowments η. As we show in the proof of Theorem

3, our assumptions guarantee that the equilibrium is determinate for almost every η.

Therefore, in a small ball B(η′) around a generic initial endowment η′ there exists a

C1 bijection between η and λ, and the desired result follows. Q.E.D.

Consider now an infinite horizon economy and let S(x, ρ, λ) denote the candidate

prices of the risky assets, seen as functions of the state variables, the agents’ common
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discount rate and the Pareto weights.

Lemma 4: Under the assumptions of Theorem 3 we have

0 = lim
ρ→∞

(
ρ
∂S

∂x
(x, ρ, λ)− g′(x)

)
= lim

ρ→∞

(
ρ2
∂S

∂x
(x, ρ, λ)− ρg′(x)−H(x)

)
.

Proof. Since the coefficient of the state variables are time independent we have that

πi(t, x, t+ θ) = π̄i(x, θ) depends only on (x, θ). It follows from the proof of Proposition

2 that π̄i ∈ C∞(X × [0,∞)). Standard martingale arguments imply that that π̄i is a

solution to (∂/∂θ)π̄i = A (π̄i) with the initial condition π̄i(x, 0) = m(x)gi(x), and the

desired result now follows from Lemma 5 below, the definition of the candidate price

function and (14). Q.E.D.

Lemma 5: If f ∈ C`(R+) is a function such that e−ρtf(t) is integrable for all k ≤ `

and some ρ > 0 then we have

lim
ρ→∞

ρk

(
ρ

∫ ∞
0

e−ρtf(t)dt−
k∑
i=0

ρ−if (i)(0)

)
= 0, k ≤ `− 1.

Proof. This proof follows from a standard induction argument based on the domi-

nated convergence theorem and is presented in the online supplement. Q.E.D.

Lemma 6: Under the assumptions of Theorem 3 and for almost every vector of Pareto

weights λ ∈ S++, we have that the candidate prices volatility matrix is almost surely

non-degenerate for almost every ρ > R.

Proof. Combining the result of Lemma 5 with an argument similar to that we used

in the proof of Theorems 1 and 2 shows that

det(σS(x, ρ, λ)) =
1

ρd
det(σg(x)) +

1

2ρ1+d

d∑
i=1

det(Bi(x, λ)) + o(1/ρ)1+d.

Since S is automatically real analytic in ρ > R, we have that det(σP (x, ρ, λ)) is also

real analytic in ρ > R. It follows that the required assertion holds for those λ ∈ S+, for

which | detσg(x)|+ | det(Bi(x, λ))+ · · ·+det(Bd(x, λ))| is not identically equal to zero.

Since det(Bi(x, ea)) = det(Ba,i(x)) and the function det(Bi(x, λ)) is real analytic in

(x, λ), the assumption of the statement guarantees that this holds for generic λ ∈ S+

and the proof is complete. Q.E.D.
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Proof of Theorem 3. Fix the initial endowments for all but the first stock and

consider the vector valued mapping defined by

Ga(ρ, λ) ≡ E

∫ ∞
0

e−ρtm(Xt, λ)

S1(x, ρ, λ)

(
Ia(λ

−1
a m(Xt, λ))− `a(Xt)−

d∑
i=2

ηaigi(Xt)

)
dt ,

where Ia denotes the inverse marginal utility of agent a. With this notation we have

that the Negishi equation that allows to determine the equilibrium Pareto weights

from the agents’ initial endowments is

G(ρ, λ) = (η11, . . . , ηA1)
> ≡ η1 ∈ S . (17)

By the existence part of Proposition 1 we know that G is onto. Since, the relative

risk aversions are bounded from above and away from zero, it can be shown (see the

online supplement for details) using Assumption C and Lemma 2 that G is C1 with

respect to (ρ, λ) ∈ (R,∞) ×S++. Therefore, by Sard’s theorem (see e.g. Sternberg

(1964, Theorem II.3.1)) we get that for each fixed ρ > R almost every η1 ∈ S is

regular for G in the sense that any solution λ to (17) satisfies det ∂G(ρ,λ)
∂λ

6= 0. Fix such

a regular (ρ, η∗1), let λ∗ be a solution to (17) and B be a small open neighborhood of

(ρ, λ∗) such that the map (ρ, λ) → (ρ,G(ρ, λ)) is C1 bijection from B to some B′.

By Lemma 6, the candidate prices volatility matrix is non-degenerate for almost every

(ρ, λ) ∈ B and the standard change of variable formula implies that the image of such

(ρ, λ) has full measure in B′. As a result, an equilibrium with dynamically complete

markets exists for all (ρ, η1) in this image and the desired conclusion now follows from

the arbitrariness of the initial endowments in stocks 2, . . . , d. Q.E.D.

Proof of Propositions 3, 4 and 5. See the online supplement. Q.E.D.

Appendix B. Time-dependent consumption and heterogenous

discount rates

In this appendix we provide conditions on the dividends, labor income rates and

preferences that allow to extend the validity of our finite horizon results to cases in

which the aggregate consumption g(t, x) =
∑

i gi(t, x) +
∑

a `a(t, x) is time dependent

and the discount rates can be heterogenous across agents. The main difficulty in

dealing with such cases is that in order to define the candidate price

Si(t, x) =

∫ T

t

∫
X

p(t, x, τ, y)m(τ, y)gi(τ, y)dydτ
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for complex values of t we need that the radius of complex analyticity of the integrand

p(t, x, τ, y)m(τ, y)gi(τ, y) be bounded away from zero uniformly in y. When discount

rates are homogeneous and dividends are time-independent, this is not a problem, as

in this case m(τ, y) = e−ρτm(y) for some time independent function m. Otherwise,

showing the uniform analyticity of m becomes a highly non-trivial problem. In partic-

ular, in that case the conditions imposed by Anderson and Raimondo (2008) are not

sufficient to guarantee this uniform analyticity even in their simpler setting. To solve

this problem one needs to impose the following stringent conditions:

Assumption D: Consider a finite horizon economy and assume that

(a) For any ε > 0 there exists a complex neighborhood O ⊃ [0, T ] such that g(t, x)

can be analytically continued to O,

|=(g(t, x))| ≤ ε<(g(t, x)), and K−1 g(<t, x) ≤ <(g(t, x)) ≤ K g(<t, x)

for all (t, x) ∈ O ×X and some constant K = K(ε,O) > 0.

(b) There exists a constant ε > 0 such that the inverse marginal utilities Ia(z) are

analytic in the sector {z ∈ C : |=z| < ε<z} and

lim
z∈Cε, |z|→∞

(
zb
∞
a Ia(z)− c∞a

)
= lim

z∈Cε, |z|→0

(
zb

0
aIa(z)− c0a

)
= 0

for each a ≤ A and some constants b0a, b
∞
a > 0 and c0a, c

∞
a > 0.

(c) There are constants R ≤ mina ρa and ν > 1 such that

∫ T

0

∫
X

A∑
a=1

e−Rτu′a(g(τ, x)/A) g(τ, x) p̄(0, x, ντ, y)dy dτ <∞

for all x ∈X where the function p is defined as in Assumption A.

Remark 5: A simple case where condition (a) holds is in which gi(t, x) = eδitgi(x)

and `a(t, x) = eκat`a(x) for some real analytic gi, `a ≥ 0 and some constants δi, κa.

Condition (b) requires that the utility functions behave like power functions close to

zero and infinity and can be shown to hold for most standard utility functions.

The following theorem shows that our results remain valid in this more general

setting and concludes this appendix.

Theorem 4: Assume that the aggregate consumption is time dependent and that the

agents’ discount rate are heterogenous. Then Propositions 1, 2, 3 and Theorems 1, 2

remain valid, provided that Assumption C is replaced by Assumption D.

Proof. See the online supplement. Q.E.D.
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