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Abstract We prove that for any incomplete market and any concave utility function the
marginal propensities to consume and to save are always positive. Furthermore, we intro-
duce a class of incomplete markets that includes almost all well known examples of market
incompleteness in finance and macroeconomics. Two concrete examples are idiosyncratic
income shocks and general, diffusion driven incompleteness. For all markets in our class we
explicitly solve the associated utility maximization problem by a recursive construction and
derive many important properties. For example, precautionary savings and the diminishing
marginal propensity to consume. Effectively, the class is characterized by these two eco-
nomic properties. We also prove that the growth rate of consumption is always larger when
markets are incomplete and that precautionary savings are monotone increasing in the size
of idiosyncratic risk. Our construction can be implemented computationally by an efficient,
robust numerical scheme.

Keywords Optimal consumption stream · Incomplete markets · Idiosyncratic risk ·
Convexity · Marginal propensity to consume

JEL Classification G11 · E21 · D91 · D81

1 Introduction

The optimal consumption of a rational economic agent is a function of many economic factors
such as asset prices, income and wealth. One of the most important problems in economics
is to understand the structure of this consumption function.
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130 S. Malamud, E. Trubowitz

There is a large literature, analyzing the “empirical” consumption function using empirical
data, see, e.g., [22]. There is also a large literature devoted to theoretical analysis of the optimal
consumption of rational, utility maximizing agents. The standard textbook on this literature
is [12].

When markets are complete, the structure of the consumption function becomes very
simple and transparent. Optimal consumption does not depend on the whole structure of
the income stream, but only on its intertemporal value, called the intertemporal wealth. In
particular, for the scale invariant CRRA utility functions, optimal consumption is a linear
function of wealth.

When markets are incomplete, the behavior changes dramatically and consumption
becomes a highly non linear function of both wealth and the whole income stream. Except
for the rather well understood case of standard, macroeconomic incomplete markets with
only one period risk free bonds (see, e.g., [21]), almost nothing is known about the structure
of the consumption function in general incomplete markets in the presence of risky assets.
In this paper we address the following basic economic questions:

(1) Are the marginal propensities to consume and to save positive for general incomplete
markets? That is, we ask whether consumption and savings are monotone increasing in
wealth.

(2) Do wealthy people consume a smaller fraction of their wealth than poor people? Equiva-
lently, we ask whether marginal propensity to consume is diminishing, i.e., consumption
is a concave function of wealth.

(3) How does consumption depend on uninsurable income risk? In particular, does future
income uncertainty force an agent to save more, i.e., does it generate precautionary
savings?

Of course, to have any hope of answering these three questions, we must “get our hands
on” the consumption function in general incomplete markets. That is, construct it in some
“explicit form”. The first obstacle to an explicit construction is that the budget constraints
are expressed in terms of an infinite set of state price densities. One of the key ideas of our
construction is to rewrite the budget constraints and first order conditions in terms of the
orthogonal projections on the so-called payoff subspaces and a special, unique, aggregate
state price density process (Proposition 2.9). This allows us to explicitly construct the optimal
consumption stream for arbitrary incomplete markets by a recursive procedure backwards
in time (Theorem 2.14) from the final horizon to the initial time period. In particular, our
explicit recursive structure immediately implies that both marginal propensities to consume
and to save are positive. Interestingly enough, even though current consumption is mono-
tone increasing in current wealth, future consumption is not necessarily monotone in current
wealth. This phenomenon reflects the fact that there are nonlocal maps in our recursive con-
struction. We have discovered a large class of incomplete markets for which these maps are
local.

Our new class C of incomplete markets is characterized by natural positivity properties.
For this class, the recursive procedure reduces to inverting functions of one variable. It is an
important class because it includes almost all well known examples of market incompleteness
in finance and macroeconomics. Three concrete examples are idiosyncratic income shocks,
discrete time diffusion driven incompleteness and markets with only one period risk free
bonds. Our solution procedure covers both traditional, time and state separable utilities, as
well as, the recursive utilities of Epstein–Zin type.

The incomplete markets in our class C have the following important properties:
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The structure of optimal consumption streams in general incomplete markets 131

• They are directly characterized by the presence of a hedgeable filtration, contained in the
underlying filtration. The states in the hedgeable filtration are precisely those that can be
perfectly hedged against by trading.

• They are economically characterized by the properties of diminishing marginal propen-
sity to consume and the presence of precautionary savings. Furthermore, only for these
incomplete markets future consumption is monotone increasing in current wealth.

• One period risk free bonds are the only assets available for trade in standard, macroeco-
nomic models (see, e.g., [21]). For this reason, the Euler equations have a particularly
simple form: the marginal utility process is a martingale (see [21, Chap. 16]). For gen-
uinely risky assets, the Euler equations are far more complicated. In our class C, this
difficulty is surmounted by expressing the Euler equations in terms of the hedgeable fil-
tration and the aggregate state price density process. Namely, the quotient of the marginal
utility and the aggregate state price density process is a martingale. This device enables
us to generalize most of the standard, macroeconomic analysis (see, e.g., [21]) to the case
of risky assets.

• The equations defining equilibria for incomplete markets in C can be written in a rela-
tively simple form purely in terms of the unique, positive, aggregate state price density
process, analogous to Arrow-Debreu equilibria for complete markets. We have developed
new methods for analyzing them, see, e.g., [23].

• The incompleteness captured in C is ideally suited for market consistent pricing of insur-
ance products, see, e.g., [24].

The economic intuition underlying our class is simple. It is particularly transparent when
pictured in terms of caricature, “smeared out”, one period Arrow state contingent securities.

A “sharp”, one period Arrow security pays one dollar in a particular, given state at the
next period. A “smeared out”, one period Arrow security pays one dollar on a set of states
at the next period. Trading in a small number of fundamental, multiperiod securities in our
incomplete markets generates a basis set of smeared out, one period Arrow securities, in
analogy with dynamically complete markets (see, e.g., [7]).

For example, if idiosyncratic income risk is the only source of incompleteness, there
are aggregate events that determine the state of the financial market that consist of many
idiosyncratic events. That is, the aggregate event is smeared out over a collection of idiosyn-
cratic events. Consequently, the true Arrow security corresponding to an aggregate event is
“smeared out” over idiosyncratic events.

To make this picture useful, we must get our hands on the smeared out Arrow securities
generated by trading in fundamental, multiperiod assets. To do this, we introduce a new
mathematical/economic tool that catches them. Namely, the hedgeable filtration.

Let G = (Gt ) be the underlying filtration (information structure). An incomplete market
belongs to our class C if and only if there exists a hedgeable subfiltration H = (Ht ) of
G with the property that any smeared out, one period Arrow security corresponding to an
event in Ht+1 can be replicated by purchasing a portfolio of assets at time t . We note that
Gt+1 ⊃ Ht+1 ⊃ Gt whenever there is always a one period risk free bond available for
trading. Surprisingly, the characterization of markets in our class at the quasi local level of
smeared out Arrow securities is equivalent to the imposition of global economic properties,
such as precautionary savings and diminishing marginal propensity to consume. Hedgeable
filtrations can be explicitly constructed in most important applications (see Sect. 4).

As we mention above, the recursive structure of the budget constraints and the Euler
equations that we have discovered allows us to explicitly construct the optimal consumption
stream. Concretely, let ct and Wt be the consumption and wealth of an agent at time t . Let
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w = (wt , t = 0, . . . , T ) be his/her income stream. We have explicitly constructed random
functions Ft (x, w) and Gt (x, w) such that, for each t = T, . . . , 1,

Wt = Ft (ct−1, w)

ct−1 = Gt−1(Wt−1, w)

A great deal of important economic information about the optimal consumption stream is
packed into the random functions Ft and Gt . In particular, both Ft and Gt are monotone
increasing in the first variable for each t . One immediate consequence is that, for incomplete
markets in the class C, future consumption is monotone increasing in current wealth. This is
not true for general incomplete markets.

The detailed structure of the random functions Ft (W, w) and Gt (c, w) depends on the
underlying utility function u(c). We give a complete description of the class of utility func-
tions u(c) such that, for each t = 0, . . . , T , the function Ft is jointly concave in the pair
(W, w), and Gt is jointly convex in (c, w). To our great surprise, the concrete description
of this class of utilities depends on the first five derivatives of u(c). Our class contains the
HARA utility functions with positive third derivative and, in particular, all CRRA and CARA
utilities.

The concavity of Gt (W, w) has an important economic significance. By definition, the
derivative

∂ct

∂Wt
= ∂Gt (Wt , w)

∂Wt

is the marginal propensity to consume. The concavity of Gt , with respect to the wealth Wt ,
expresses a diminishing marginal propensity to consume.

We now explain the relationship between our work and the existing literature.
Dreze and Modigliani [5] and Carroll and Kimball [2] show that both marginal propensity

to consume and marginal propensity to save are positive in the very special case when only
one period risk free bonds are available for trading. To the best of our knowledge, nothing
is known in the literature about the sign of both propensities in the presence of risky assets.
Our Theorem 2.15 establishes this economically important positivity in maximal generality
for arbitrary incomplete markets.

Leland [19] and Sandmo [32] were the first to show that a utility function with a positive
third derivative (convex marginal utility) is sufficient for precautionary savings (see also [12,
Proposition 6.1]). They did this in the special case of a one period model with a single risk
free bond (no risky assets). Dreze and Modigliani [5] obtained weaker sufficient conditions
(involving the risk free rate), sufficient for precautionary savings with only one period risk
free bond. Finally, Menezes and Auten [25] obtained necessary and sufficient conditions for
precautionary savings with general one period utility functions and only one period risk free
bonds.

In their attempt to include risky assets in their analysis of precautionary savings, Dreze
and Modigliani [5, p. 323], write: “Unfortunately, when r is stochastic, this line of reasoning
is no longer valid”. Here, r is the rate of return on a risky asset. We show that “this line of
reasoning” can be made valid if an only if the market is in our class C. Propositions 5.5 and 5.6
generalize and extend the results of Leland [19] and Sandmo [32] and Dreze and Modigliani
[5] in a substantial way, we characterize incomplete markets for which precautionary savings
arise.

Miller [28] considered economies with an arbitrary number of periods, but again only with
one period risk free bonds and assumed that the risk free rate is constant and independent of
time. But, he allowed for an arbitrary idiosyncratic income shocks process. Miller showed
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The structure of optimal consumption streams in general incomplete markets 133

that for utility functions with positive third derivative, consumption monotonically decreases
when the riskiness of labor income shocks increases. Special cases of this general theorem
were obtained in [27] and [35]. Note that the market in question is purely idiosyncratically
incomplete: the aggregate filtration is trivial, because there is no uncertainty in asset returns.
Our Corollary 5.18 can thus be considered as a partial extension of this theorem: consumption
is monotone decreasing in the size of idiosyncratic risk for utility functions satisfying the
conditions of Theorem 5.15. We do not know whether there is a direct extension of Miller’s
result to the whole class of idiosyncratically incomplete markets.

Kimball [17] was the first to develop a rigorous theory of precationary savings analogous
to the Arrow-Pratt theory of risk aversion. He introduced a new quantity, absolute prudence
of a utility function, and showed that it determines the strength of the precautionary savings
effect. In particular, he proved that, if the absolute prudence is decreasing(increasing) then
labor income uncertainty will raise(lower) the marginal propensity to consume at any given
level of consumption. Kimball also considered the effects of portfolio composition (in one
period models) on savings. Our techniques allow us to obtain results of this type, but this
will be a topic of a separate paper.

The importance of a diminishing marginal propensity to consume was emphasized by
Keynes [16, see, e.g., pp. 31, 120, 349]. Zeldes [38] found, by means of computer simula-
tions, that the presence of idiosyncratic risk makes consumption concave. There is also strong
empirical evidence for concavity (see, e.g., [22,36]). Many papers have been devoted to the
investigation of a diminishing marginal propensity to consume in standard, macroeconomic
models without risky assets, see, e.g., [1,2,17,18]. Notably, Carroll and Kimball [2] prove
that consumption is a concave function of wealth for HARA utilities when only one period
risk free bonds are available for trading. Proposition 5.17 establishes a much stronger result.
Namely, it shows that the concavity holds for a the whole class C of incomplete markets and
for a large class of utitlities, including HARA as a small subclass, and that consumption is in
fact jointly concave in wealth and endowment. Note that concavity in the whole endowment
process is a much stronger fact than concavity just in wealth.

Levhari and Srinivasan [20] and Rotschild and Stiglitz [31] analyzed how optimal savings
and portfolio composition depend on the riskiness of the underlying assets. In particular, they
proved a surprising result that, for a CRRA utiliy, optimal savings increase (decrease) in the
size of uncertainty when risk aversion is larger (smaller) than one. These phenomena can
also be interpreted as precautionary savings effects, but they are generated by the uncertainty
in asset returns, and not by the income uncertainty. We do not analyze such effects in this
paper. See, Kimball [18] for a general theory of precautionary portfolio composition in one
period models.

Gollier [12, Proposition 74] compares precautionary savings in a one period model with
only a risk free bond with savings in a complete market model and obtains conditions, under
which market completeness increases savings. In an attempt to generalize this result to incom-
plete markets with risky assets, Gollier [12, Proposition 75] considers an artificial model with
a risky asset that only lives in the second period. That is, optimal investment in this risky
asset is not intertemporal. He shows that the above result for complete markets extends to
this artificial model. Unfortunately, his method of proof does not work for incomplete mar-
ket models with intertemporal risky assets. It is possible to show, using our methods, that
Gollier’s result extends to the class C of incomplete markets and to any number of periods.
This will be done in a separate paper.

In this paper we work exclusively in discrete time. Using our quantitative control over
consumption streams, it is possible to pass to the continuous time limit. All the beautiful recur-
sive structure disappears, but the important properties (such as convexity) remain. This will
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be done in a separate paper. There is a large literature, initiated by Merton [26], devoted
to continuous time models. The main idea is to reformulate the problem in terms of a
Hamilton-Jacobi-Bellman, nonlinear partial differential dynamic programming equation, and
then solve it explicitly for very special choices of utility functions, endowment processes and
asset prices. For the most part, incompleteness is modelled phenomenologically through an
exogenous diffusion process, see, e.g, [4,6,9,14,26]. There are other special methods for
logarithmic utility functions, see [11].

A brief outline of the paper

In Sect. 2, we introduce two new notions for general incomplete markets, the payoff subspaces
and the aggregate state price densities. We show how budget constraints and first order con-
ditions can be written down in an elegant and clear way using these new notions. Using the
structure of the budget constraints and first order conditions, we show in Theorem 2.15 that
both marginal propensity to consume and marginal propensity to save are positive for any
incomplete market and any utility function.

In Sect. 3 we introduce the class C of incomplete markets and give its characterization in
terms of natural positivity properties.

In Sect. 4 we present three very important classes of incomplete markets, idiosyncratically
incomplete, discrete time diffusion driven and markets with only one period risk free bonds,
and show that they are subclasses of C.

In Sect. 5 we study the recursive structure of the optimal consumption streams for markets
in C and use this structure to derive important economic properties of precautionary savings
and marginal propensity to consume.

Finally, in Sect. 6 we derive an approximation to the optimal consumption stream with
CRRA utility when idiosyncratic risk is small. Our approximate optimal consumption streams
are crucial for our analysis of equilibria in [23].

2 General incomplete markets

2.1 The structure of market incompleteness

The uncertainty in our model is captured by a finite, filtered probability space (�, G , B)

where the filtration G = (Gt )
T
t=0 satisfies

{∅,�} = G0 ⊂ G1 ⊂ · · · ⊂ GT = B

There are T time periods. We emphasize that everywhere in this paper the probability space
� and time horizon T are assumed to be finite. All the remarkable recursive structure of
the optimal consumption streams that we uncover disappears for infinite state spaces. But,
because we have a quantitative control over the optimal streams, we can pass to infinite
state space, infinite horizon and continuous time limits. The structure disappears, but most
important economic properties (such as convexity and uniform bounds) are preserved in the
limit.

We allow for an arbitrary type of market incompleteness, except for a natural

Assumption 1 One period risk free bonds are available for trading at each moment of time.

Definition 2.1 Let M = {A1, . . . , AN } be the underlying incomplete market with financial
assets A1, . . . , AN . An asset Ai has a price process (pit ) and a dividend process (dit ). The
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The structure of optimal consumption streams in general incomplete markets 135

payoff subspace Lt at time t is defined by

Lt =
{

N∑
i=1

xi,t−1(pit + dit )

∣∣∣∣ xi,t−1 ∈ L2(Gt−1)∀i

}
(2.1)

This is the set of payoffs at time t of all possible (of course, Gt−1-measurable) investments
at time t − 1. We denote by Pt

L the orthogonal projection onto the subspace Lt in the
space L2(Gt ). Similarly, let Pt

G , t = 1, . . . , T , be the orthogonal projection (conditional
expectation) from L2(�, B) onto L2(�, Gt ). We write PG for the direct sum

PG =
T⊕

t=1

Pt
G

Note that, by Assumption 1, L2(Gt−1) ⊂ Lt and Pt
L 1 = 1. Furthermore, for any Gt−1-

measurable Y and any Gt -measurable X we have

Pt
L XY = Y Pt

L X

The projection Pt
L is very important for understanding the structure of market incomplete-

ness.
A portfolio strategy for an agent, with a G adapted individual endowment process, trading

on the market M is an n dimensional, G adapted process x = (x1, . . . , xn) Here, x j =
(x j0, . . . , x jT −1, 0). The random variable x jt counts the number of shares of asset A j held
at time t +1 before dividends are paid and assets are traded. The last component 0 formalizes
the convention that no investments are made at the final time period T .

Definition 2.2 The dividend process Dx generated by the portfolio strategy x is

Dx,t =
N∑

j=1

(d jt + p jt )x jt−1 −
N∑

j=1

p jt x j t (2.2)

for t = 0, . . . , T , where d j and p j are the dividend and price processes of the asset A j . In
particular, the initial investment is Dx,0 = −∑N

j=1 p j0x j0,

Recall the standard definition of state price densities.

Definition 2.3 A G -adapted process R = (Rt ) is referred to as a state price density process
(SPD process) for the market M if the identity

Rt pit = E

[
Rt+1 (pit+1 + dit+1)

∣∣∣∣Gt

]

holds for any asset Ai , i = 1, . . . , N , and any t = 0, . . . , T − 1. In particular, under the
standard no-bubble condition piT = 0, the price

pit = R−1
t E

[
T −t∑
τ=1

Rt+τ dit+τ

∣∣∣∣Gt

]

is the discounted value of future dividends.

State price densities are dual objects to asset prices. They allow formulating many issues
in a very elegant and clear way. We recall some well known properties of state price densities.
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Lemma 2.4 There is no arbitrage in the market if and only if there exists a positive state
price density process.

The market is dynamically complete if and only if there exists a unique, positive state price
density process.

A process D is a dividend process of a portfolio strategy if and only if it is orthogonal to
any SPD process, i.e.,

E

[
T∑

t=0

Dt Rt

]
= 0

for any SPD process R [7].

When markets are incomplete, there are infinitely many state price density processes. This
is one of the main difficulties in the analysis of utility maximization in incomplete markets.
It turns out that there is a unique, natural, “aggregate” state price density process such that
all budget constraints and first order conditions can be formulated in terms of this special
process.

Lemma 2.5 Under the assumption of no arbitrage, there exists a unique, aggregate state
price density process M = (Mt ) such that Mt ∈ Lt for all t = 1, . . . , T . Furthermore, a
process R = (Rt ) is a state price density process if and only if

Pt
L

Rt

Rt−1
= Mt

Mt−1

for all t .

The aggregate SPD process M is natural because it lives in the market subspace, just like
the prices themselves. Note that, in general, M is not positive. This is the main source of
problems: the projection Pt

L is not necessarily positivity preserving. We will come back to
this point later (see, Sect. 3).

2.2 The optimal consumption stream

In this section we will use the aggregate SPD process M to write down the first order condi-
tions and budget constraints solely in terms of M.

Definition 2.6 The budget set B(w) of an agent with a G -adapted endowment process w =
(wt ) is given by

B(w) := {C = w + Dx > 0
∣∣x is a G adapted portfolio strategy}

Lemma 2.7 Let M = (Mt ) be the aggregate state price density process for the market M .
A positive consumption stream C = (ct , t = 0, . . . , T ) belongs to B(w) if and only if

(I − Pt
L )Pt

G

[
T∑

τ=t

(cτ − wτ )
Mτ

Mt

]
= 0 (2.3)

for all t = 1, . . . , T and

E

[
T∑

τ=0

(cτ − wτ )Mτ

]
= 0 (2.4)
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Note that (2.4) is the standard, complete market budget constraint. Constraints (2.3) are new
and reflect market incompleteness. They simply mean that the financial wealth

Pt
G

[
T∑

τ=t

(cτ − wτ )
Mτ

Mt

]
=

N∑
j=1

(d jt + q jt )x jt−1

at time t must belong to the payoff subspace Lt for each t . We will need the following
important quantities.

Definition 2.8 Given a G adapted endowment process w, let for each t = 1, . . . , T

Yt (w, M) = M−1
t E

[
T∑

τ=t

wτ Mτ

∣∣∣∣Gt

]

be the value at time t of the future stream of endowment and

It (w, M) = (I − Pt
L )Yt

be the unhedgeable component of the value of the endowment stream.

Consider an agent with a G -adapted endowment process w, trading in the market to max-
imize

E

[
T∑

t=0

e−ρt u(ct )

]

over all consumption streams C = (ct ) in the budget set B(w). Here, u(c) is a monotone
increasing, concave utility function satisfying the Inada conditions

lim
c→0

u′(c) = +∞, lim
c→+∞ u′(c) = 0

Since, by assumption, � is finite, Inada conditions and strict concavity guarantee existence
and uniqueness of an optimal consumption stream C = (ct ) satisfying the standard Euler
equation

u′(ct )pit = E[e−ρu′(ct+1) (pit+1 + dit+1) |Gt ]
for any asset Ai , i = 1, . . . , N . Thus, Lemma 2.5 implies

Proposition 2.9 The optimal consumption stream C = (ct ) is uniquely determined by the
first order conditions

Pt+1
L e−ρu′(ct+1) = Mt+1

Mt
u′(ct ) (2.5)

and the budget constraints (2.3) and (2.4).

Equations (2.5), (2.3) and (2.4) form a highly non linear and complicated system of equa-
tions. We would like to have a recursive procedure, allowing us to construct the solution and
derive its properties. We will need several definitions.
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Definition 2.10 Fix a time period t . A map F : Lt → Lt is monotone decreasing condi-
tioned on Gt−1 if

E[(F(X) − F(Y ))(X − Y )|Gt−1] < 0

for all X 	= Y ∈ Lt .

Note that, obviously, a monotone decreasing map is injective and its inverse is also mono-
tone decreasing.

We will now construct the optimal consumption stream recursively. The construction
involves the notion of a random function. The random functions arising below may have
complicated domains of definitions, but we do not discuss it here (see, Sect. 5.2). Given a
sigma algebra A, an A-measurable random function is just an A-measurable map from the
probability space to the set of smooth functions.1 Similarly, we will also consider random
maps, mapping real numbers into random variables in Lt .

We will need the following auxiliary

Lemma 2.11 Let f (s, x) : �×R → R be a Gt measurable random function. Then, the map
J : Lt → Lt defined via

J (X) = Pt
L

(
u′ ( f (s, X))

)
is monotone decreasing conditioned on Gt−1 (see, Definition 2.10). Furthermore, for any
Y ∈ Lt , the Gt−1-measurable random function

K (s, x) = Pt−1
G

[
Y J−1(Y x)

]
is monotone decreasing in x.

Note that F(s, x) = J−1(Y x) is a random map R → Lt , but K (s, x) is a random function.
Of course, one must be careful here with the domains of definition. But, since we know

a-priori that the optimal consumption stream exists, everything is already in the domain of
definition and we do not have to worry about it. One easily checks that the derivatives of all
monotone maps in question are invertible (in fact, they are positive definite) and therefore, the
inverse function theorem guarantees that the inverse map is well defined in an open neighbor-
hood. Of course, these questions are important if we want to construct a numerical agorithm.
See Sect. 5.2 for a detailed discussion of these questions for the class C of incomplete markets.

We will also need

Definition 2.12 Let for each t = 1, . . . , T

Vt (w, M) := Pt
L

[
M−1

t

T∑
τ=t

cτ (w, M)Mτ

]

This quantity

Vt (w, M) :=
N∑

j=1

(d jt + p jt )x jt−1 + Pt
L

[
M−1

t

T∑
τ=t

wτ Mτ

]

is the financial wealth plus the market value of the future endowment stream.

1 Since our probability space � is finite, we do not have to discuss technical issues of measurability of a map
into an infinite dimensional space.
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The structure of optimal consumption streams in general incomplete markets 139

For each endowment process w, set

GT (s, w)(x) := (IT (w, M) + x) (2.6)

By construction, it is a GT measurable random function. Lemma 2.11 implies that there
exists a GT -measurable random map FT (s, w)(x) : R → LT , being the unique solution to
the equation

e−ρPT
L [u′(GT (s, w)(FT (x)))] = u′(x)MT M−1

T −1 (2.7)

Continuing inductively, we obtain

Proposition 2.13 Fix a nonnegative endowment process w. Let GT and FT be the random
functions (maps) given by (2.6) and (2.7). For each t = 1, . . . , T − 1 there exists a pair of
Gt -measurable random functions Gt (s, w)(x) (taking values in R) and Ft (s, w)(x) (taking
values in Lt ). They are inductively determined as the unique solutions (recall, Definition 2.8)

to the equations

Gt (x) + E

[
Mt+1

Mt
Ft+1(s, w)(Gt (x))

∣∣∣∣Gt

]
= x + It

and

e−ρPt
L [u′ (Gt (s, w)(Ft (x)))] = u′(x)Mt M−1

t−1

Finally, G0 is the unique solution to

G0(x) + E[M1 F1(s, w)(G0(x))|Gt ] = x + E

[
T∑

t=1

wt Mt

]

For every state s ∈ � and every nonnegative w the random functions Gt , t = 0, . . . , T , and

Kt (s, x) = E

[
Mt+1

Mt
Ft+1(s, w)(x)

∣∣∣∣Gt

]

(for t � 1) are monotone increasing in x.

The optimal consumption stream is constructed recursively in

Theorem 2.14 Let C(w, M) = (ct , t = 1, . . . , T ) be the optimal consumption stream. For
every state s ∈ �, and all t = 1, . . . , T ,

Vt = Ft (s, w)(ct−1) (2.8)

and
ct = Gt (s, w)(Vt ) (2.9)

Finally, c0 = G0(s, w)(w0). Here, Ft , Gt , t = 1, . . . , T , are the random functions con-
structed in Proposition 2.13.

The monotonicity results of Proposition 2.13 imply

Theorem 2.15 The marginal propensity to consume

∂ct

∂Vt
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and the marginal propensity to save

1 − ∂ct

∂Vt

are positive for each t = 1, . . . , T . Similarly, both marginal propensities

∂c0

w0
and 1 − ∂c0

∂w0

are also positive.

3 The class C of incomplete markets

The absence of arbitrage is equivalent to the existence of a positive SPD process R. But, even
though there exists a positive R, it may happen that

Pt
L Rt = Rt−1

Mt

Mt−1

takes negative values and, consequently, the aggregate SPD process M may take negative
values. Thus, it is crucial for us to know when the projection Pt

L is positivity preserving.
There is another natural reason why an economically reasonable Pt

L should be positivity
preserving. This is the so-called minimal variance hedging. The following simple fact is true:

Proposition 3.1 Let X be a random claim at time t. Then,

Pt
L X = arg min

{
E[|X − Y |2]|Y ∈ Lt

}
That is, the projection Pt

L X is the payoff of the portfolio, that best approximates the claim
Y in the L2-distance.

Naturally, one would like to generate a positive payoff by hedging a positive outcome.
Amazingly, the class of incomplete markets for which Pt

L is positivity preserving turns
out to have numerous remarkable economic properties. Furthermore, to our own surprise,
it includes almost all examples of market incompleteness known in finance and macroeco-
nomics.

Theorem 3.2 The projection Pt
L is positivity preserving (that is, it maps nonnegative random

variables to nonnegative ones) if and only if there exists a sigma algebra A with Gt−1 ⊂ A ⊂
Gt such that

Pt
L X = E[X | A]

and Lt = L2(A). That is, Pt
L is positivity preserving if and only if it is a conditional

expectation.

Now we are ready to introduce the class C of incomplete markets.

Definition 3.3 An incomplete market M belongs to the class C if there exists a subfiltration
H = (Ht ) of G such that

• Ht+1 ⊃ Gt ⊃ Ht for all t .
• The payoff process (pit + dit ) of any asset Ai is adapted to H .
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• Any Ht measurable claim Y can be replicated by a Gt−1 measurable portfolio π1, . . . , πN

of assets, purchased at time t − 1. That is,

Y =
T∑

i=1

πi (pit + dit )

We refer to H as the hedgeable filtration.

Theorem 3.2 provides a remarkable characterization of the class C:

Proposition 3.4 An incomplete market belongs to the class C if and only if Pt
L is positivity

preserving for any t = 1, . . . , T .
The aggregate state price density process M is positive and is the unique state price density

process adapted to the hedgeable filtration H .

We also mention an interesting connection with the notion of the minimal martingale
measure, introduced by Schweizer [33]. It is not difficult to show, using the minimal entropy
property (see [34]), that, for incomplete markets in the class C, the aggregate SPD process
corresponds to the minimal martingale measure.

4 Examples of incomplete markets in the class C

4.1 Idiosyncratic incompleteness

In this section we describe a special type of incomplete markets, for which the only source
of incompleteness is idiosyncratic income risk. Pure idiosyncratic incompleteness is charac-
terized by the following properties.

Definition 4.1 Idiosyncratic incompleteness.

• There exist two filtrations F = (Ft , t = 0, . . . , T ) and G = (Gt , t = 0, . . . , T ) of the
underlying sigma algebra B satisfying Gt ⊃ Ft for each t = 0, . . . , T .

• Aggregate filtration F contains information only about “aggregate” events.
• The dominating, idiosyncratic filtration G contains additional information about individ-

uals, that is, idiosyncratic events.
• All asset prices and dividends are adapted to F . That is, asset prices do not care about

idiosyncratic events.
• The market is dynamically complete with respect to the aggregate filtration F (but not

with respect to G ). That is, idiosyncratic risk is the only source of incompleteness.

The following example illustrates the structure of idiosyncratic incompleteness.

Example There is only one risky asset (equity) with binomial dividend process and one
period risk free bonds are traded at every period. Then, the aggregate filtration F is simply
the binomial filtration and it is well known that the market is dynamically complete. But,
there is a larger, idiosyncratic filtration G and idiosyncratic income processes of agents are
adapted to G (but not to F ). A recursive structure, similar to ours, has been discovered in
the binomial case by Musiela and Zariphopoulou [30], Musiela and Zariphopoulou [29].

Utility maximization problems in a continuous time version of this market have been
considered by Duffie et al. [6] and Hendersen [14].

123



142 S. Malamud, E. Trubowitz

The main result of this section is

Proposition 4.2 Any idiosyncratically incomplete market belongs to the class C. The hedge-
able sigma algebra Ht is given by

Ht = σ(Ft , Gt−1)

That is, Ht is the minimal sigma algebra, containing Ft and Gt−1.

It is clear that the difference between Ht and Gt constitutes exactly the unhedgeable idi-
osyncratic events. Because the market is complete with respect to F , we can always hedge
against the events in Ht by a Gt−1 measurable investment at time t − 1. But, since all asset
returns are F adapted, we can not hedge against anything in Gt \Ht . Therefore, given a
Gt -measurable shock Yt at time t , the projection

Yt − Pt
H Yt = Yt − E[Yt | Ht ]

is precisely the unhedgeable part of Yt .
The class of idiosyncratically incomplete markets plays a very important role in macroeco-

nomics, see, e.g., Constantinides and Duffie [3]. We are very lucky that all idiosyncratically
incomplete markets fit into the class C!

It will be technically useful to assume that knowledge of idiosyncratic events at time t
does not give us any additional information about aggregate events at time t + 1. We make
the formal

Assumption 2 For each t = 1, . . . , T , and for every integrable random variable Y measur-
able with respect to Ft+1,

E[Y |Ft ] = E[Y | Gt ] (4.1)

Note that, since the market is complete with respect to F , there exists a unique, SPD
process M adapted to F such that

Mt pit = E[Mt+1(pit+1 + dit+1)|Ft ]
holds for any asset Ai , i = 1, . . . , N . But, the identity

Mt pit = E[Mt+1(pit+1 + dit+1)|Gt ]
does not hold in general. Assumption 2 fixes this problem.

Proposition 4.3 Under Assumption 2, the unique, aggregate SPD process M adapted to H
is, in fact, adapted to F and coincides with the unique SPD process relative to F .

4.2 Discrete time diffusion driven incompleteness

Diffusion driven incomplete market models have become standard in modern finance. In this
section we introduce a class of discrete time diffusion driven incomplete markets and show
that they all belong to the class C.

Let e0 = (1, 1, . . . , 1) be the “riskless vector” and {e0, e1, . . . , eN } ⊂ R
N+1 be an ortho-

normal basis of R
N+1. That is,

〈ei , e j 〉 =
N+1∑
k=1

eike jk = δi j
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where δi j is the Dirac delta. Let ω = {s1, . . . , sN+1} be an N + 1-point probability space
with each state having probability 1/(N + 1). Let Xi , i = 1, . . . , N , be the random variable
taking value ei j in the state s j .

Consider a sequence (X1t , . . . , X Nt ), t � 1, of independent, identically distributed copies
of the random vector (X1, . . . , X N ). Obviously,

E[Xit X jt ] = δi j and E[Xi ] = 0

for all i, j = 1, . . . , N .

Definition 4.4 The N -dimensional process Bt = (B1t , . . . , BNt ) defined by B0 = 0 and

Bit+1 = Bit + Xit

is referred to as a discrete time N -dimensional Brownian motion.

It is well known (see, e.g., [13]) that an N -dimensional Brownian motion can in fact be approx-
imated by such discrete time processes. The most important property of this discrete time
Brownian motion is that the spanning property is preserved: the vectors ei , i = 0, . . . , N +1
form a basis for R

N+1. Now we are ready to make the

Definition 4.5 Let G be the underlying filtration. A discrete time, diffusion driven incom-
plete market model is given by N risky asset price processes (Pi (t), i = 1, . . . , N ) defined
by

log(Pi (t + 1)) − log(Pi (t)) = µi (s, t) +
N∑

j=1

σi j (s, t)
(
B jt+1 − B jt

)
(4.2)

where (B1t , . . . , BNt ) is a discrete time N -dimensional Brownian motion and µi ,

i = 1, . . . , N , and σi j , i = 1, . . . , N , are arbitrary, G -adapted processes, such that the
matrix is nondegenerate for a.e. s and every t .

The spanning property of the discrete time Brownian motion immediately implies the
following

Proposition 4.6 Any discrete time, diffusion driven incomplete market model belongs to the
class C. The corresponding hedgeable filtration H is given by

Ht = σ(Ft , Gt−1)

where F = (Ft ) is the aggregate filtration, generated by the discrete time Brownian motion
(B1, . . . , BN ).

Note that µi and σi j are allowed to be arbitrary G -adapted processes. A natural continuous
time analog of the stochastic difference equations (4.2) are the equations

d Pi

Pi
= µi (s, t)dt +

N∑
j=1

σi j (s, t)d B jt (4.3)

where (B1, . . . , BN ) is an N -dimensional Brownian motion. The class of models, described
by (4.3), looks more restrictive than the class of all standard, diffusion driven incomplete
market models

d Pi

Pi
= µi (s, t)dt +

D∑
j=1

σi j (s, t)d B jt (4.4)
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where D > N is the dimension of the driving Brownian motion (all popular stochastic vol-
atility models, such as, e.g., the model of Heston [15] fit into this class). The following
proposition shows that, in fact, the two classes coincide.

Proposition 4.7 Suppose that the rank of the N × D matrix σ = (σi j )
N ,D
i, j=1 in (4.4) equals N

almost surely for all t . Then, there exists an N-dimensional Brownian motion (W1, . . . , WN )

and a G -adapted matrix-valued process β = (βi j )
N
i j=1 such that the system of SDE’s (4.4)

is equivalent to the system

d Pi

Pi
= µi (s, t)dt +

N∑
j=1

βi j (s, t)dW jt (4.5)

Thus, any model of the form (4.4) can be rewritten in the form (4.3).

Proof Let σ ′ be the transpose of σ . The process

Wt =
t∫

0

(σσ ′)−1/2σdB

is a continuous, square integrable martingale with the quadratic covariance matrix t I dN . The
classical theorem of P. Levy says that W is an N -dimensional Brownian motion. The matrix

β = (σσ ′)1/2

is the required. �

The natural impulse would be to take an arbitrary continuous time diffusion driven model,

discretize it, get all the nice properties of the optimal consumption stream, and then pass to the
continuous time limit. But, proving convergence is not straightforward. He [13] shows that
for Markov processes the prices weakly converge to their continuous time limit. In general,
proving convergence is quite technical and we will do this in a subsequent paper, see, e.g.,
Willinger and Taqqu [37], Duffie and Protter [8] for some work in this direction. After all,
for practical applications, both in real world and in computer simulations, time is discrete.

4.3 The market with only one period risk free bonds

In the standard, macroeconomic saving problem, one period risk free bonds are the only
assets available for trading. This incomplete market obviously belongs to the class C with
the hedgeable filtration

Ht = Gt−1

for all t . Furthermore, the aggregate state price density process is in this case given by

Mt = r−1
1 · · · r−1

t

where rt is the risk free rate at time t .

5 The optimal consumption stream for an incomplete market in the class C

The nice structure of markets in the class C allows us to write the budget constraints and first
order conditions in a very elegant way. Lemma 2.7 takes the form
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Proposition 5.1 Let M ∈ C, H the corresponding hedgeable filtration and M the aggre-
gate state price density process. A consumption stream C = (ct , t = 0, . . . , T ) lies in the
budget set B(w) if and only if

E

[
T∑

τ=0

(cτ − wτ )Mτ

]
= 0 (5.1)

and

E

[
T∑

τ=t

(cτ − wτ )Mτ

∣∣∣∣Ht

]
= E

[
T∑

τ=t

(cτ − wτ )Mτ

∣∣∣∣Gt

]
(5.2)

for all t = 1, . . . , T . Here, M = (Mt ) is the aggregate state price density process.

Similarly, Proposition 2.9 takes the form

Proposition 5.2 Let H be the hedgeable filtration and M the aggregate state price density
process. The optimal consumption stream is uniquely determined by the budget constraints
of Lemma 5.1 and the Euler equations

E[e−ρu′(ct+1)M−1
t+1|Ht+1] = u′(ct )M−1

t

That is, the quotient e−ρt u′(ct )M−1
t is a martingale with respect to the shifted, hedgeable

filtration (Ht+1).

The fact that the quotient e−ρt u′(ct )M−1
t is a martingale is one of the most remarkable

properties of incomplete markets in the class C. We note that nothing similar can arise for
general incomplete markets.

Definition 5.3 Let C(w, M) = (ct ) be the optimal consumption stream satisfying the budget
constraints (5.2) and the first order conditions of Proposition 5.2. We denote by

Wt = M−1
t E

[
T∑

τ=t

cτ Mτ

∣∣∣∣Gt

]
(5.3)

the intertemporal wealth at time t .

Note that the budget constraints (5.2) can be written down in the following equivalent
form:

Wt − E[Wt |Ht ] = Yt − E[Yt |Ht ] = I(w, t) (5.4)

That is, the unhedgeable component of the intertemporal wealth coincides with the unhedge-
able component of the intertemporal value of endowment.

5.1 Precautionary savings

Consider a simple incomplete market model with only one period risk free bonds available
for trading and suppose, for the simplicity, that the risk free rate r is constant. Then, Proposi-
tion 5.2 means that the marginal utility process u′(ct ), t � 0 is a martingale with respect to G .
This result is well known in macroeconomic theory (see, e.g., [21, Chap. 16]). In particular,
this implies that at infinite horizon the consumption must grow to infinity. Proposition 5.2
is a direct extension of this claim to the whole class C of incomplete markets. This is the
precautionary savings effect.
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We will need a

Definition 5.4 Let g(x) : R
+ → R+ be the inverse of the marginal utility function u′(x),

that is g(u′(x)) = x for all x ∈ R
+.

We first consider the case of purely idiosyncratically incomplete markets (see, Sect. 4.1).
In this case, idiosyncratic income shocks are the only source of uncertainty. Consequently, if
the endowment process w is adapted to the aggregate filtration F , there are no idiosyncratic
shocks, the market becomes complete and the optimal consumption stream satisfies the first
order conditions

e−ρt u′(ct ) = u′(c0)Mt

That is,
ct = g(u′(c0)e

ρt Mt ) (5.5)

Similarly,

ct = g
(

u′(ct−1)e
ρ Mt M−1

t−1

)
for all t � 1. Idiosyncratic shocks together with the convexity of marginal utility generate
precautionary savings, as we show in

Proposition 5.5 Let cm = (ct , t = 0, . . . , T ) be the optimal consumption satisfying the
Euler equations of Proposition 5.2. Suppose that u′′′(x) > 0, that is the agent has prefer-
ences for skewness. Then,

Pt
H ct � g

(
u′(ct−1)e

ρ Mt M−1
t−1

)
If u′′′(x) < 0, then the inequalities above hold in the opposite direction.

Proposition 5.5 means that, given the consumption at time t − 1, an agent exposed to
idiosyncratic risk will consume more in the next period than an agent with no idiosyncratic
component in the individual endowment. Thus, the size of precautionary savings depends on
the curvature of the marginal utility. It is a well known result in macroeconomics (see, e.g.,
[19,27,28,32]) in the case when only one period risk free bonds are available for trading.
To the best of our knowledge, almost nothing is known about precautionary savings in the
presence of risky assets. Proposition 5.5 shows that all the conventional economic intuition
directly extends to the whole class C of incomplete markets. Furthermore, we conjecture,
that such percautionary savings effects arise only in incomplete markets from the class C.

In the case of a scale invariant CRRA utility the precautionary savings effect is even
stronger. Note that, for

u(x) = x1−γ − 1

1 − γ

the optimal consumption stream in a complete market satisfies

ct = e−ργ −1
M−γ −1

t c0

We have

Proposition 5.6 Let C = (ct , t = 0, . . . , T ) be the optimal consumption stream for a CRRA
utility with risk aversion γ . Then,

ct

e−ρtγ −1 M−γ −1

t
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is a submartingale with respect to (Ht+1, t = 0, . . . , T ). That is,

E[ct |Ht ]
ct−1

�
e−ρtγ −1

M−γ −1

t

e−ρ(t−1)γ −1 M−γ −1

t−1

Proposition 5.6 shows that for CRRA utilities, in the presence of idiosyncratic risk, the
growth

E[ct |Ht ]
ct−1

of consumption at each moment of time is larger than the corresponding consumption growth
in a complete market. This is a very strong form of precautionary savings that arises because
of the scale invariance of CRRA utilities.

5.2 Recursive structure

In Sect. 2.2 we have presented a way to construct the optimal consumption stream recursively.
The main difference between general incomplete markets and the markets in class C is the
non-local character of the projections Pt

L . By contrast, a conditional expectation acts locally
and allows us to solve all the equations state by state. The main ingredient of the recursive
construction in Proposition 2.13 is the inversion of nonlinear, non-local monotone maps,
described in Lemma 2.11. Inversion of such a map is a difficult problem, that is very non-
trivial to implement numerically. By contrast, when Pt

L = Pt
H is a conditional expectation,

the corresponding map is local and the problem reduces to inverting (random) functions of
one variable, which is a much easier problem. We describe this construction in detail below.

Definition 5.7 Denote by P the set of all positive endowment processes w, adapted to G .
Fix a subalgebra A of B. An A measurable lower threshold a(s, w) is a map from �×P

to (0,+∞), that is A measurable for each fixed w. That is, for each fixed w, this is just a
A-measurable random variable.

An A measurable random function supported by the lower threshold a(s, w) maps a point
(s, w) ∈ �×P(G , M) to a real valued function g(s, w)(x) that belongs to C∞(a(s, w),+∞),
such that for each fixed w ∈ P and fixed x ∈ R the random variable g(s, w)(x) is A mea-
surable.

That is, for each fixed w and fixed state s, g(s, w)(x) is a smooth function, defined on the
half line (a(s, w),+∞).

Definition 5.8 We denote by esssup[X |A] conditional, essential supremum of a random
variable X on � with respect to the sigma subalgebra A ⊂ B. That is, esssup[X |A] is the
minimal A-measurable random variable Y , satisfying Y � X .2

We will now inductively construct two random functions Ft and Gt for each t = 1, . . . , T .
We will need the following technical

Lemma 5.9 Fix a subalgebra A of B. Let µ(s, w)(x) be a A measurable random func-
tion supported by the lower threshold a(s, w). Suppose that for almost every s ∈ � and

2 Conditional, essential supremum is easily constructed when � is finite: the algebra Ais generated by “states”,
i.e., pairwise disjoint subsets of �, such that any set in A is a union of a finite number of “states”. Then, for
each “state”, conditional essential supremum is just the maximum over the corresponding subset of �.
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every w∈P , the random function µ is strictly monotone decreasing on (a(s, w),+∞). For
convenience, set

A(s, w) := esssup[a(s, w)|A]
If

lim
x↓A

E[µ(s, x)|A] = +∞ (5.6)

lim
x→+∞ µ(s, x) = 0 (5.7)

almost surely, then the unique A measurable solution g(s, w)(x) to

E[µ(s, w)(g(x))|A] = x

is an A measurable random function supported by the lower threshold 0. Furthermore, for
each w and almost every s, the function g(s, w)(x) is monotone decreasing on (0,+∞).

Similarly, suppose that µ is strictly monotone increasing on (a,+∞) for almost every
s ∈ � and every w ∈ P . If

lim
x↓a

µ(s, x) = b(s, w)

lim
x→+∞ µ(s, x) = +∞

almost surely, then the unique solution g(s, w)(x) to

E[µ(s, w)(g(x))|A] = x

is an A measurable random function supported by the lower threshold

E[b(s, w)|A]
Furthermore, for each w and almost every s the function g(s, w)(x) is monotone increasing
on

(E[b(s, w)|A],+∞)

Recall Definition 2.8. Inada conditions imply that the random function

u′ (IT (w, M) + x) =: µ(s, w)(x)

supported by the lower threshold

aT (s, w) = − min{IT , 0}
satisfies condition (5.6) of Lemma 5.9.

For each endowment process w, set

GT (s, w)(x) := (IT (w, M) + x) (5.8)

By construction, it is a GT measurable random function supported by the lower threshold

aT (s, w) = − min{IT , 0}
Lemma 5.9 and the conclusion of the preceding paragraph imply that there exists an HT

measurable random function FT (s, w)(x) supported by the lower threshold a = 0 that is the
unique solution to the equation

e−ρ E[u′(GT (s, w)(FT (x)))|HT ] = u′(x)MT M−1
T −1 (5.9)
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Continuing inductively, we obtain

Proposition 5.10 Let GT and FT be the random functions given by (5.8) and (5.9). For each
t = 1, . . . , T − 1 there exists a pair of random functions Gt (s, w)(x) and Ft (s, w)(x) that
are respectively Gt and Ht measurable and respectively supported by the lower thresholds
a = 0 and

at (s, w) := esssup[(E[Ft+1(s, w)(0)|Gt ] − It )|Gt ]
They are inductively determined as the unique solutions (recall, Definition 2.8) to the equa-
tions

Gt (x) + E

[
Mt+1

Mt
Ft+1(s, w)(Gt (x))

∣∣∣∣Gt

]
= x + It

and

e−ρ E[u′(Gt (s, w)(Ft (x)))|Ht ] = u′(x)Mt M−1
t−1

For almost every s ∈ � and every nonnegative w the random functions Ft and Gt ,

t = 1, . . . , T are monotone increasing in x to the right of their lower thresholds.

Remark 5.11 The random function Ft is monotone increasing on (0,+∞) and consequently
has a limit as x ↓ 0. One can show that

Ft (s, w)(0) := lim
x↓0

Ft (s, w)(x) = esssup[at (s, w)|Ht ]

Remark 5.12 Clearly, finiteness of � implies that the random function u′(Gt (x)) satisfies
condition (5.6) of Lemma 5.9. That is,

lim
x→At

E[u′(Gt (x))|Ht ] = +∞ (5.10)

with

At = esssup[at |Ht ]
This observation makes it possible to carry out the inductive application of Lemma 5.9,
required for the proof of Proposition 5.10.

Recall that

Vt (w, M) := Pt
H

[
M−1

t

T∑
τ=t

cτ (w, M)Mτ

]

We now make the inductive structure of the optimal consumption stream explicit in

Theorem 5.13 Let C(w, M) = (ct , t = 1, . . . , T ) be the optimal consumption stream. The
consumption c0(w, M) at time zero is determined by

c0 + E [M1 F1(s, w)(c0)] = E

[
T∑

t=0

wt Mt

]

For every s ∈ �, and all t = 1, . . . , T ,

Vt = Ft (s, w)(ct−1) (5.11)
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and
ct = Gt (s, w)(Vt ) (5.12)

Here, Ft , Gt , t = 1, . . . , T , are the random functions constructed in Proposition 5.10.

Note that the budget constraints can be rewritten in the form

Vt = Wt − It (w, M)

By Definition 2.8, It is a linear function of the income stream. Consequently,

Wt = Ft (s, w)(ct−1) + It (w, M)

(see Definition 5.3) and

ct = Gt (s, w) (Wt − It (w, M))

Note that the construction of the random functions Ft and Gt can be easily and effectively
implemented on a computer because on each step we should solve a one dimensional equa-
tion. An application of some version of the Newton procedure will very quickly yield the
required result. Thus, our explicit, recursive construction can be easily implemented on the
computer.

We would like again to emphasize the difference between the structure of the optimal
consumption streams for general incomplete markets (see, Theorem 2.9) and the streams in
the markets from C. In Theorem 2.9, the map Ft is not monotone in any sense. Thus, future
wealth and thus future consumption are not monotone functions of past wealth. This is a
very surprising phenomenon: it might happen that increasing the wealth today will force the
agent’s consumption and wealth to decrease in some future states. Monotonicity of Ft and
Gt , proved in Proposition 5.10, implies that nothing like this can happen for markets in C.
Namely, the following is true:

Theorem 5.14 For markets in the class C, future consumption and future wealth are mono-
tone increasing functions of past consumption and past wealth.

5.3 Diminishing marginal propensity to consume

The functions Ft and Gt contain all the important economic information about the structure
of the optimal consumption stream. For example, the derivative

∂ct

∂Wt
= ∂Gt (s, w) (Wt − It (w, M))

∂Wt

of the consumption with respect to wealth is referred to as the marginal propensity to con-
sume. The next theorem describes important convexity/concavity properties of the functions
Ft and Gt .

Theorem 5.15 Let g(x) be the inverse of the function u′(x). Suppose that the function u′
(and then, of course, g(x)) is convex, that is, u′′′(x) > 0 and the function

− g′(x)

g′′(x)

is concave. Then, for every t = 1, . . . , T and almost every s ∈ � the random function
Gt (s, w)(x) is jointly concave in the pair (x, w), while the random function Ft (s, w)(x) is
jointly convex in the pair (x, w). Here, Ft and Gt are the random functions, constructed
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in Proposition 5.10. If − g′(x)
g′′(x)

is not concave, then none of the functions Ft (Gt ) is convex
(concave).

Remark 5.16 Direct calculation shows that conditions of Theorem 5.15 hold true for any
HARA utility function with u′′′ > 0. In particular, they hold for all for CRRA and CARA
utilities.

An important consequence of Theorems 5.15 and 5.13 is

Proposition 5.17 Under the hypothesis of Theorem 5.15. For each moment of time t,

• Consumption ct is a jointly concave function of wealth Wt and endowment process w.
• Future wealth Wt+1 is a jointly convex function of consumption ct and endowment pro-

cess w.

Proposition 5.17 has very important economic consequences. The fact that consumption is
a concave function of wealth means that the marginal propensity to consume is diminishing.
That is, the reacher an agent is, the smaller is the part of the wealth he consumes. Keynes
[16] emphasized the importance of the concavity of the consumption function. This fact has
been rigorously proved by Carroll and Kimball [2] in the case when only one period risk free
bonds are available for trading. Proposition 5.17 establishes a much stronger result. Namely,
it shows that the concavity holds for a the whole class C of incomplete markets, and that con-
sumption is in fact jointly concave in wealth and endowment. It would be interesting to make
statistical investigations of real consumption data analyzing the joint concavity property.

Note that the wealth Wt can be decomposed

Wt = ct + E

[
Mt+1

Mt
Wt+1

∣∣∣∣Gt

]
(5.13)

into consumption ct at time t and savings

St = E

[
Mt+1

Mt
Wt+1

∣∣∣∣Gt

]

The last formula reflects the fact that savings St at time t equal the discounted value of future
wealth Wt+1. Thus, clearly, if consumption ct (Wt ) is concave in Wt , the wealth Wt = Wt (ct )

is a convex function of consumption. Consequently, the savings

E

[
Mt+1

Mt
Wt+1

∣∣∣∣Gt

]
= St = Wt (ct ) − ct

are also a convex function of ct . Proposition 5.17 establishes much stronger result: future
wealth Wt+1 is pointwise convex in past consumption.

We will also show how concavity directly relates to precautionary savings. Suppose that
the market is idiosyncratically incomplete and let us add an idiosyncratic component λwI

to the endowment process wA of an agent. We assume that idiosyncratic shocks have mean
zero, conditioned on the aggregate events in F . That is, PF wI = 0. Parameter λ measures
the strength of idiosyncratic risk. Because the shocks have mean zero, the wealth of the agent
does not change, but the consumption stream will change because of precautionary savings.
The following result is a direct consequence of Proposition 5.17.

Corollary 5.18 Under the hypothesis of Theorem 5.15, let

w(λ) = wA + λwI
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be the endowment process of the agent with PF wI = 0 and λ > 0. Then, consumption
c0(w(λ)) at time zero is monotone decreasing in λ, and consequently, the savings S1 are
monotone increasing in λ.

Corollary 5.18 establishes a very strong form of precautionary savings: savings are mono-
tone increasing in the size of idiosyncratic risk for the class of utility functions described in
Theorem 5.15.

Obviously, all the remarkable structure, arising for markets in C completely evaporates
when PL is not positivity preserving. For example, precautionary savings occur for utilities
with u′′′ > 0 because of the Jensen inequality

E[u′(c)|Ht ] > u′(E[c|Ht ])
Clearly, no inequality of the form

Pt
L u′(c) > u′(Pt

L c)

can hold when Pt
L is not positivity preserving. First, a non positivity preserving projection

Pt
L will immediately destroy all convexity properties of u′. Second, if Pt

L c is not positive,
u′(Pt

L c) is not even defined.
Similarly, it is clear from the proof of Theorem 5.15 that, without positivity of Pt

L u′, all
the convexity/concavity properties also disappear.

6 Constant relative risk aversion. Weak idiosyncratic risk

In this section we obtain an approximate expression for the optimal consumption stream in the
special case of purely idiosyncratically incomplete market (see Sect. 4.1) when idiosyncratic
risk is small and the utility function is CRRA, u(x) = (x1−γ − 1)/(1 − γ ).

We will also use the notations

PH =
T⊕

t=1

Pt
H

PF =
T⊕

t=1

Pt
F

Everywhere in this section the market is assumed to be purely idiosyncratically incom-
plete.

Definition 6.1 Let

�t = �t (ρ, γ, M) := M−1
t Pt

F

T∑
τ=t

e−ρtb M1−b
τ c0 = M−1

t Pt
F

T∑
τ=t

cmτ Mτ

where

cm t = e−ρtb M−b
t c0

is the complete market consumption stream and b = γ −1. Let also (see Definition 2.8)

Yt (w, M) = M−1
t E

[
T∑

τ=t

wτ Mτ

∣∣∣∣Gt

]
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and

It (w, M) = Yt − E[Yt |Ht ]
We define

V I
τ = VarFτ (Iτ )

(�τ )2 = Pτ
F

VarHτ (Iτ )

(�τ )2

We can now compute the second order Taylor expansion for the optimal consumption
stream when idiosyncratic risk is weak. Namely, we consider an agent with an F -adapted
endowment stream wA and we want to see what happens when we add a small idiosyncratic
component ε(I − PF )wI, to the endowment. Here, ε is a small parameter and (I − PF )

guarantees that the conditional mean of idiosyncratic shocks is zero.

Theorem 6.2 Let C(ε) := C(w(ε)) be the optimal consumption stream of the agent with
discount rate ρ, CRRA utility function u(x) = (x1−γ − 1)/(1 − γ ) and endowment process
w(ε) = wA + ε(I − PF )wI with wA ∈ PF H. Then,

PF C(ε) = cm

(
1 + ε2 1

2
(1 + γ )

t∑
τ=1

V I
τ + O(ε3)

)
(6.1)

Here, cm = (cm t , t = 1, . . . , T ) is the complete market optimal consumption stream.
Consequently, the growth rate

log
Pt
F ct (ε)

Pt−1
F ct−1(ε)

of the optimal consumption stream is monotone increasing in ε for all sufficiently small ε

and for any t = 1, . . . , T .

Remark 6.3 Recall (see Definition 2.8) that It is the unhedgeable part of agent’s future
idiosyncratic risk and �τ (see Definition 6.1) is the value at time t of the future optimal
consumption stream in a complete market. Therefore, we can view

VarFτ (Iτ )

(�τ )2

as size of future unhedgeable idiosyncratic risk relative to the complete market consumption.
Thus, the quantity arising in the expansion (6.1) is the cumulative size of future idiosyncratic
risk over the period [1, . . . t].

Remark 6.4 The second order coefficient in the expansion (6.1) is always nonnegative and
strictly positive for generic idiosyncratic risk processes, not belonging to PF H . This means
that the growth rate of the optimal consumption process is monotone increasing in the strength
of idiosyncratic risk for sufficiently small ε. As we show in Corollary 5.18, the expected value
of future consumption stream is monotone increasing in ε for all ε (not only for sufficiently
small). Simple examples show that the monotonicity result of Theorem 6.2 does not hold for
strong idiosyncratic risk (large ε). The “average” monotonicity of Corollary 5.18 is the best
result we can get for strong idiosyncratic risk.
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Appendix A: The derivation of budget constraints and first order conditions

Lemma A.1 For any two Gt+1-measurable random variables X, Y we have

E[Pt+1
L (X)Y | Gt ] = E[Pt+1

L (Y )X | Gt ]
Proof It suffices to show that for any Gt -measurable random variable Z ,

E[Pt+1
L (X)Y Z ] = E[Pt+1

L (Y )X Z ]
The last claim follows from the self-adjointness of Pt+1

L and the identity Pt+1
L (Y Z) =

ZPt+1
L (Y ). �


Proof of Lemmas 2.5 and 2.7 By Lemma A.1,

E[(d j,t+1 + p j,t+1)Rt+1 R−1
t |Gt ] = E[(d j,t+1 + p j,t+1)P

t+1
L (Rt+1 R−1

t )|Gt ]
That is, R is a state price density process if and only if Pt+1

L (Rt+1 R−1
t ) is a stochastic discount

factor for each t .
Let R be any positive state price density process. Then,

Mt =
t∏

τ=0

Pτ
L (Rτ R−1

τ−1)

is an aggregate SPD process. It remains to show that it is unique. But, any SPD process M
satisfies

E
[(

d j,t+1 + p j,t+1
)

X Mt+1 M−1
t

] = E[p jt X ]
for any Gt -measurable X . Since such variables span Lt+1, a variable Mt+1 ∈Lt+1 is uniquely
determined by these identities.

The budget constraints of Lemma 2.7 follow directly from the following property: a con-
sumption stream ct = wt + Dx,t generated by a portfolio strategy x satisfies

Pt
G

T∑
τ=t

(cτ − wτ )
Mτ

Mt
= Dx,t =

N∑
j=1

(D jt + q jt )x jt−1 ∈ Lt

�


Appendix B: Positivity of the projections

Proof of Theorem 3.2 Let 1, . . . , S be the states of the sigma algebra Gt (nodes of the event
tree at time t) and {δ1, . . . , δS} be the standard basis L2(Gt ) with δi (si ) = 1 and δi (s j ) = 0
for all j 	= i .

Suppose that Pt
L is positivity preserving. By construction, Pt

L 1 = 1 and therefore, in
the above standard basis, Pt

L is a stochastic matrix with nonnegative entries and the ergodic
theorem (see, e.g., [10,21]) implies that

lim
r→∞

1

r

r∑
τ=1

(Pt
L )τ
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exists and is a direct some of one dimensional projections. But,

(Pt
L )τ = Pt

L

for all τ � 1 and thus Pt
L is itself a direct sum of one dimensional projections. Since

Pt
L 1 = 1 the vectors on which it projects must be characteristic functions of some subsets of

�. This subsets generate a sigma algebra Ht and, clearly, Pt
L is the conditional expectation

with respect to Ht . �


Appendix C: Convexity and concavity

We will need two auxiliary lemmas. The first one is well known.

Lemma C.1 Let H be a convex subset of a linear space and F : H × R+ → R,

(h, x) → F(h, x)

be jointly concave in (h, x) and strictly monotone in x. Let g(h) : H → R+ be the unique
solution to the equation

F(h, g(h)) = 0

Then, if F is monotone decreasing in x then g is convex, and if F is monotone increasing in
x then g is concave.

Lemma C.2 Let � be a probability space and H := L+∞ be the set of positive essentially
bounded random variables with essentially bounded inverse:

L+∞ := {X ∈ L∞(�)|X > 0 and X−1 ∈ L∞}
Let also f (x) : R

+ → R
+ be a monotone decreasing function and g(x) its inverse,

g( f (x)) = f (g(x)) = x, x ∈ R

If the function f (x) (and hence g(x)) is convex and the function

− g′(x)

g′′(x)
: R

+ → R
+

is concave, then the function F : H → R
+ defined by

F(X) = g (E[ f (X)])
is concave.

Proof By direct computation, the Hessian D2 F of the function F is given by

〈D2 F(X)Y, Y 〉 = g′′(E[Z ]) (
E[ f ′(X)Y ])2 + g′(E[Z ])E[ f ′′(X)Y 2] (C.1)

Let f ′′(X) denote also the operator of multiplication by the function f ′′(X). Then,

D2 F(X) = g′(E[Z ])( f ′′(X))1/2
(

I + g′′(E[Z ])
g′(E[Z ]) E

[
( f ′(X))2

f ′′(X)

]
P
)

( f ′′(X))1/2

where

PY =
(

E

[
( f ′(X))2

f ′′(X)

])−1

E

[
f ′(X)

( f ′′(X))1/2 Y

]
f ′(X)

( f ′′(X))1/2
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is the orthogonal projection onto the vector f ′(X)

( f ′′(X))1/2 ∈ L+∞. Therefore, the Hessian is
nonpositive definite if and only if

g′′(E[Z ])
−g′(E[Z ]) E

[
( f ′(X))2

f ′′(X)

]
� 1 (C.2)

Since Z = f (X) and g is the inverse of f , we have X = g(Z). Furthermore, differentiating
the identity g( f (x)) = x to times, we get that

( f ′(g(z)))2

f ′′(g(z))
= − g′(z)

g′′(z)
Therefore, inequality (C.2) can be rewritten as

E

[
g′(Z)

g′′(Z)

]
�

g′

g′′ (E[Z ])

This is simply Jensen’s inequality for the function g′/g′′. �

Proof of Theorem 5.15 We now prove the convexity/concavity property. We prove the claim
inductively. If the rewrite the defining equation for Ft in the form

g(E[u′(Gt (s, w)(Ft ))|Ht ]) − g(eρu′(ct−1)M−1
t−1 Mt ) = 0

then we are in a position to apply Lemmas C.1 and C.2. Since, by construction, GT is linear
and hence concave, and a superposition of two monotone increasing concave functions is
again concave, we get the required result. If we know that Ft+1 is convex, then Lemma C.1
applies to the equation

Gt Mt + Pt
G Ft+1(Gt ) − It − Vt = 0

are we get the required concavity of Gt . The proof is completed by induction. �


Appendix D: A toy calculation: the inductive construction of optimal consumption
streams in a two period model

To make the inductive construction of optimal consumption streams immediately accessible,
we carry out the procedure in the simplest possible case of a two period model with a toy
probability space.

D.1 A toy probability space, sigma algebras and projections

• � = {s1, . . . , s8} is the probability space with eight elements of equal probability 1/8.
• G0 = {∅,�} is the trivial algebra, G1 is the algebra, generated by

{s1, s2, s3, s4}, {s5, s6, s7, s8} (D.1)

and G2 = 2�.
• F0 = F1 = {∅,�} are trivial algebras and F2 is the algebra, generated by

{s1, s2, s5, s6}, {s3, s4, s7, s8} (D.2)

• H0 = H1 = {∅,�} are trivial algebras and H2 is generated by the sets

{s1, s2}, {s3, s4}, {s5, s6}, {s7, s8} (D.3)
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Lemma D.1 Assumption 2 holds. That is, for t = 0, 1 and any Ft+1 measurable random
variable Y , Pt

F Y = Pt
G Y .

Proof Assumption 2 obviously holds for t = 0 because F0 = G0 are trivial. For t = 1, we
have to show that for any F2 measurable variable Y P1

F Y = P1
G Y . Since Y is F2-measurable,

it is constant on the sets (D.2). Let Yi := Y (si ). Then,

P1
F Y = E[Y ] = 1

2
(Y1 + Y3)

Conditioning on the sets (D.1), generating G1, and using the fact that Prob[si ] = 1/8 for all
i = 1, . . . , 8, we obtain

E [ Y | {s1, s2, s3, s4}] = 1

2
(Y1 + Y3) = 1

2
(Y5 + Y7) = E[ Y | {s5, s6, s7, s8}]

�

D.2 Budget constraints and first order conditions

Fix aggregate state price densities M = (M0, M1, M2). As usual, M0 = 1. Let w = (w0,

w1, w2) be the G adapted endowment process of the agent. Let It , t = 1, 2, be the (random)
values of idiosyncratic risk at time t , introduced in Definition 2.8. By definition,

I2(w, M) = (
I − P2

H

)
w2 M2 = w2 M2 − P2

H w2 M2

and

I1(w, M) = (
P1
G − P1

H

)
(w1 M1 + w2 M2)

Observe that

P1
H I1 = 0 (D.4)

P2
H I2 = 0 (D.5)

Let for the simplicity u(x) = (x1−γ − 1)/(1 − γ ) be a CRRA utility function. Let C =
(c0, c1, c2) be the optimal consumption stream, satisfying the budget constraints (5.1), (5.2)
and the first order conditions (5.2), that in the present case reduce to

c2 M2 = V2 + I2 (D.6)

e−ρP2
H c−γ

2 M−1
2 = c−γ

1 M−1
1 (D.7)

c1 M1 + P1
G c2 M2 = V1 + I1 (D.8)

e−ρP1
H c−γ

1 M−1
1 = c−γ

0 (D.9)

where,

V2 = P2
H c2 M2

V1 = P1
H (c1 M1 + c2 M2)

Observe that both M1 and V1 are constants, because F1 = H1 are trivial algebras. This is a
peculiarity of the present toy calculation. We use this observation below to simplify some of
the equations, but it is not strictly necessary.

123



158 S. Malamud, E. Trubowitz

For any random variable X on �, we use the abbreviated notation X (si ) := X(i). The
identity (D.5) takes the form

I2(1) + I2(2) = I2(3) + I2(4) = I2(5) + I2(6) = I2(7) + I2(8) = 0 (D.10)

since all states have the same probability. Similarly, I1 is G1 measurable and is therefore
constant on the sets (D.1) and takes only two values,

I1(1) = I1(2) = I1(3) = I1(4)

I1(5) = I1(6) = I1(7) = I1(8)

Therefore, (D.4) becomes
I1(1) + I1(5) = 0 (D.11)

Moreover, V2 = P2
H c2 M2 is constant on the sets (D.3) since it is a H2 measurable random

variable. Substituting (D.6) into (D.7), we obtain the equation

e−ρP2
H (V2 + I2)

−γ = c−γ
1 M−1

1 M1−γ
2 (D.12)

for V2.

D.3 Two period inductive construction

First observe that (D.12) is equivalent to

e−ρ
(
(V2(i) + I2(i))

−γ + (V2(i) − I2(i))
−γ

) = 2 (c1(i))
−γ M−1

1 (M2(i))
1−γ

for i = 1, . . . , 8, by combining (D.10) and Prob
[
si | {si , si+1}

] = 1/2. For each fixed
i = 1, . . . , 8, and all x > 0, there is a unique solution y = F2(w, si )(x) to the equation

e−ρ
(
(y + I2(i))

−γ + (y − I2(i))
−γ

) = 2x−γ M−1
1 (M2(i))

1−γ

where F2(w, si )(x) is a monotone increasing function of x > 0. Clearly, F2(w, si )(x) is an
H2 measurable random function, supported by the lower threshold 0 because I2 and M2 are
both H2 measurable. It follows that

V2(i) = F2(w, si )(c1(i)) (D.13)

In the special case γ = 1, we mention that

F2(w, si )(x) =
x M2(i)e−ρ +

((
x M2(i)e−ρ

)2 + 4 (I2(i))2
)1/2

2
(D.14)

The next step in the induction is to construct the random function G1(w, si )(x). For this
purpose, observe that, by (D.13), the second budget constraint (D.8) becomes

c1(i)M1 + P1
G F2(w, si )(c1(i)) = V1 + I1(i) (D.15)

for i = 1, . . . , 8. The random variable c1 actually takes only two values, since G1 is generated
by the two sets (D.1). Therefore, (D.15) is equivalent to3

c1(1)M1 + 1

2
(F2(w, s1)(c1(1)) + F2(w, s3)(c1(1))) = V1 + I1(1)

c1(5)M1 + 1

2
(F2(w, s5)(c1(5)) + F2(w, s7)(c1(5))) = V1 + I1(5)

(D.16)

3 Note that, by (D.11), I1(5) = −I1(1). We do not use this fact explicitly.
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For all

x > a(1) := 1

2
(|I2(1)| + |I2(3)|) − I1(1) (D.17)

there is a unique solution y = G1(w, s1)(x) to the equation

yM1 + 1

2
(F2(w, s1)(y) + F2(w, s3)(y)) = x + I1(1) (D.18)

Similarly, for all

x > a(5) := 1

2
(|I2(5)| + |I2(7)|) − I1(5) (D.19)

there is a unique solution y = G1(w, s5)(x) to the equation

yM1 + 1

2
(F2(w, s5)(y) + F2(w, s7)(y)) = x + I1(5) (D.20)

By direct examination, both functions on the right hand sides of (D.18), (D.20) are monotone
increasing in y and therefore (D.18), (D.20) can be rewritten as

c1(i) = G1(w, si )(V1) (D.21)

for i = 1, 5. The random function G1 is monotone increasing and G1 measurable with G1

measurable lower threshold a taking values a(1), a(5) on the sets (D.1) (see (D.17) and
(D.19)).

The last step is to determine the function V1 = F1(c0). It is determined by combining
(D.9) and (D.21) into(

(G1(w, s1)(V1))
−γ + (G1(w, s5)(V1))

−γ
) = 2c−γ

0 M1

Appendix E: Weak idiosyncratic risk

The action of the Jacobian

D(C) = ∂C(w, M)

∂w

in the case when the idiosyncratic component of w vanishes (that is, w = wA = PF w) takes
a simple form. Recall that

�t = Pt
F

T∑
τ=t

cmτ Mτ

Let

Q = PG − PH

A direct calculation shows that

Lemma E.1 Let w ∈ PF H and

N = diag(�t )
T
t=1

be the multiplication operator by the process �t . Then,

D(C)|w = B := cmJN−1QJ ∗M (E.1)
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Similarly, the following is true:

Lemma E.2 The second derivative

D2(C) = ∂2C
∂w2

satisfies

D2(C)(w, w) = (1 + γ )(I − D(C))
[
C−1(D(C)w)2]

Note that PF Q = 0 and therefore, when (I − PF )w = 0 (complete market),

PF D(C) = PF cmJN−1QJ ∗M = cmJN−1PF QJ ∗M = 0

Consequently,

PF C(w) = cm + ε2 1

2
(1 + γ )cm−1(D(C)w)2

= cm

(
1 + ε2 1

2
(1 + γ )

t∑
τ=1

V I
τ + O(ε3)

)
(E.2)
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