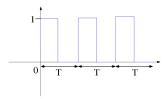
Exemples d'exercices - Semaine 6

1 Bande passante

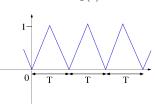
- a) Soit $X(t) = \sum_{i=1}^{n} a_i \sin(2\pi f_i t)$ un signal de bande passante $B = \max(f_1, f_2, \dots, f_n)$. Quelle est la bande passante des signaux suivants?
- 1. 2X(t)
- 2. X(t-1)
- 3. X(3t)
- 4. $X(t) + \sin(2\pi f t)$, avec $f \neq f_1, f_2, \dots, f_n$
- 5. X'(t) [i.e., la dérivée de la fonction X(t)]
- b) Soient maintenant X(t) et Y(t) deux signaux de la forme ci-dessus, avec bandes passantes B_X et B_Y , respectivement. Que pouvez-vous dire sur la bande passante des signaux suivants?
- 1. X(t) + Y(t)
- $2. X(t) \cdot Y(t)$

2 Filtre à moyenne mobile

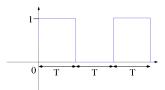
a) Comment les signaux suivants sont-ils transformés après un passage à travers un filtre à moyenne mobile de période $T_c = T$?



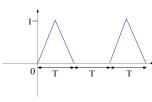
 $X_1(t)$



 $X_3(t)$



 $X_2(t)$



 $X_4(t)$

Pas besoin ici de formules mathématiques pour répondre : des dessins suffiront!

- b) Qu'arrive-t-il à un signal périodique de période T (voir exercice 5) après un passage à travers un filtre à moyenne mobile de même période $T_c = T$?
- c) Soit $X(t) = \sin(2\pi f t)$, une sinusoïde pure de fréquence f. Montrer qu'après un passage à travers un filtre à moyenne mobile de période T_c , l'amplitude du signal sortant $\widehat{X}(t)$ satisfait l'inégalité

$$|\widehat{X}(t)| \leq |\operatorname{sinc}(f T_c)|$$
 pour tout $t \in \mathbb{R}$,

où on rappelle que $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$ par définition.