
Recurrent Neural Networks (RNNs) excel in domains such as speech 
recognition, machine translation, and language modelling. Sparsity is a 
technique to reduce compute and memory requirements of deep learning 
models. Sparse RNNs are easier to deploy on devices and high-end server 
processors.

Despite the compute and memory savings of sparse operations relative to their 
dense counterparts, their observed speed-up is less than expected on different 
hardware platforms. To address this issue, we investigate two approaches to 
induce block sparsity in RNNs: block pruning and group lasso regularization.

Using these techniques, we create block-sparse RNNs with sparsity ranging from 
80% to 90% with small loss in accuracy. This is a roughly 10x model size 
reduction. Additionally, we can prune a larger dense network to recover this loss 
in accuracy while maintaining high block sparsity and reducing the overall 
parameter count. Block-sparse RNNs eliminate overheads related to data 
storage and irregular memory accesses and better utilize modern hardware 
compared to unstructured sparsity.

Block-Sparse  Recurrent 
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Results

Block sparsity experiments. RNN model has 2 convolution layers, 7 
bidirectional layers, and softmax followed by CTC cost layer. GRU model has 2 
convolution layers, 3 gated recurrent unit layers, row convolution, and softmax 
followed by CTC cost layer. Block size is 4×4.

Model Algorithm # Params 
(millions) 

Sparsity CER Relative 
Perf 

RNN Dense 1760 N/A 67 0.0% 15.36 0.0% 
RNN Dense 704 N/A 11.6 0.0% 18.95 -23.4% 
RNN Sparse 1760 BP 7.3 89.2% 17.93 -16.7% 
RNN Sparse 2560 GLP 12.9 90.8% 15.89 -3.4% 
RNN Sparse 3072 BP 25.8 87.3% 15.66 -1.9% 
GRU Dense 2560 N/A 115 0.0% 15.42 0.0% 
GRU Dense 704 N/A 11.0 0.0% 21.26 -37.9% 
GRU Sparse 2560 GLP 10.8 90.6% 16.78 -8.8% 
GRU Sparse 3584 BP 25.6 88.4% 16.23 -5.2% 

Comparing group lasso variants. Block size is 4×4. Group lasso without 
pruning (GL) does much worse than group lasso with pruning (GLP).

Model Algorithm # Params 
(millions) 

Sparsity CER Relative 
Perf 

RNN Sparse 1760 GL 10.9 83.3% 30.14 -96.0% 
RNN Sparse 1760 GLP 6.2 90.8% 19.24 -25.3% 
RNN Sparse 2560 GL 24.4 82.8% 27.40 -78.4% 
RNN Sparse 2560 GLP 12.9 90.8% 15.89 -3.4% 

Block pruning (BP), varying block size. All results have similar accuracy, but 
models with smaller block sizes achieve this with fewer weights (higher sparsity).

Model Block 
Size 

# Params 
(millions) 

Sparsity CER Relative 
Perf 

RNN Sparse 1 1 7.3 89.2% 17.32 -12.8% 
RNN Sparse 4 4 7.3 89.2% 17.93 -16.7% 
RNN Sparse 12 2 10.8 84.1% 16.96 -10.0% 
RNN Sparse 8 8 10.7 84.1% 17.66 -14.9% 
RNN Sparse 16 16 11.1 83.6% 17.10 -11.3% 
RNN Sparse 32 32 14.1 79.1% 16.67 -8.5% 
GRU Sparse 1 1 13.1 88.7% 16.55 -7.3% 
GRU Sparse 4 4 16.2 86.0% 16.97 -10.5% 
GRU Sparse 16 16 20.8 81.9% 16.84 -9.2% 

Histogram of number of output connections for 
all neurons in the network. Block pruning (BP) 
with 4×4 blocks.
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Pruning schedule. Two layers in the RNN 
model are shown. Layer sparsity increases 
gradually throughout early training.
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Accuracy vs. sparsity. Baseline RNN model, 
varying hyperparameters to produce a spectrum 
of results ranging from 70% to 97% sparsity. 
Results worse than -75% are capped at 75%.

Sparsity by layer. Recurrent layers in the RNN 
model are shown. Layers closer to the input tend 
to be more sparse than layers near the output.
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Speedup for RNN 1760 matrix multiply. TitanX 
Maxwell with CuSparse. Sparse matrices are in 
CSR format. RNN matrix sizes are (1760, 1760) 
with 90% sparsity and (1760, batch size).

Speedup for GRU 2560 matrix multiply. GRU 
matrix sizes are (7680, 2560) with 95% sparsity 
and (2560, batch size).
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Speedup

• Explore other block reduction operations besides max, including average, RMS, 
geometric mean, and median.

• Explore sparse model training. We want to be able to train deep learning models 
that are sparse throughout the entire training run. This will allow us to exploit 
computation and memory savings for training.

• Improve the performance of sparse matrix dense vector libraries for GPUs and 
ARM processors that would speed up deployment.

Future Work

Sparsity Algorithm Description 
Block Pruning BP Blocks of weights are pruned throughout 

training by periodically comparing each 
block's largest weight against a gradually 
increasing threshold. 

Group Lasso GL Group lasso regularization with a large 
lambda ( g) drives less-important blocks of 
weights to zero. 

Group Lasso + 
Block Pruning 

GLP Group lasso regularization with a small 
lambda ( g) guides pruning by shrinking 
less-important blocks of weights. 

Weight Pruning WP Our earlier work: pruning individual weights. 
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Gather Max Reduce Broadcast Scatter

WEIGHT MASK

Block pruning. This toy example shows a 4×4 weight matrix. We gather blocks 
of size 2×2, perform a max reduction, compare to a prune threshold, and update 
a mask. A zero mask value indicates a pruned weight.

Group lasso regularization. λg is regularization lambda, w(g) is a block of 
weights, ||w(g)||2 is the L2 norm of the block, and G is the total number of blocks.
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