
Recurrent Neural Networks (RNNs) excel in domains such as speech
recognition, machine translation, and language modelling. Sparsity is a
technique to reduce compute and memory requirements of deep learning
models. Sparse RNNs are easier to deploy on devices and high-end server
processors.

Despite the compute and memory savings of sparse operations relative to their
dense counterparts, their observed speed-up is less than expected on different
hardware platforms. To address this issue, we investigate two approaches to
induce block sparsity in RNNs: block pruning and group lasso regularization.

Using these techniques, we create block-sparse RNNs with sparsity ranging from
80% to 90% with small loss in accuracy. This is a roughly 10x model size
reduction. Additionally, we can prune a larger dense network to recover this loss
in accuracy while maintaining high block sparsity and reducing the overall
parameter count. Block-sparse RNNs eliminate overheads related to data
storage and irregular memory accesses and better utilize modern hardware
compared to unstructured sparsity.

Block-Sparse Recurrent
Neural Networks

Results

Block sparsity experiments. RNN model has 2 convolution layers, 7
bidirectional layers, and softmax followed by CTC cost layer. GRU model has 2
convolution layers, 3 gated recurrent unit layers, row convolution, and softmax
followed by CTC cost layer. Block size is 4×4.

Model Algorithm # Params
(millions)

Sparsity CER Relative
Perf

RNN Dense 1760 N/A 67 0.0% 15.36 0.0%
RNN Dense 704 N/A 11.6 0.0% 18.95 -23.4%
RNN Sparse 1760 BP 7.3 89.2% 17.93 -16.7%
RNN Sparse 2560 GLP 12.9 90.8% 15.89 -3.4%
RNN Sparse 3072 BP 25.8 87.3% 15.66 -1.9%
GRU Dense 2560 N/A 115 0.0% 15.42 0.0%
GRU Dense 704 N/A 11.0 0.0% 21.26 -37.9%
GRU Sparse 2560 GLP 10.8 90.6% 16.78 -8.8%
GRU Sparse 3584 BP 25.6 88.4% 16.23 -5.2%

Comparing group lasso variants. Block size is 4×4. Group lasso without
pruning (GL) does much worse than group lasso with pruning (GLP).

Model Algorithm # Params
(millions)

Sparsity CER Relative
Perf

RNN Sparse 1760 GL 10.9 83.3% 30.14 -96.0%
RNN Sparse 1760 GLP 6.2 90.8% 19.24 -25.3%
RNN Sparse 2560 GL 24.4 82.8% 27.40 -78.4%
RNN Sparse 2560 GLP 12.9 90.8% 15.89 -3.4%

Block pruning (BP), varying block size. All results have similar accuracy, but
models with smaller block sizes achieve this with fewer weights (higher sparsity).

Model Block
Size

Params
(millions)

Sparsity CER Relative
Perf

RNN Sparse 1 1 7.3 89.2% 17.32 -12.8%
RNN Sparse 4 4 7.3 89.2% 17.93 -16.7%
RNN Sparse 12 2 10.8 84.1% 16.96 -10.0%
RNN Sparse 8 8 10.7 84.1% 17.66 -14.9%
RNN Sparse 16 16 11.1 83.6% 17.10 -11.3%
RNN Sparse 32 32 14.1 79.1% 16.67 -8.5%
GRU Sparse 1 1 13.1 88.7% 16.55 -7.3%
GRU Sparse 4 4 16.2 86.0% 16.97 -10.5%
GRU Sparse 16 16 20.8 81.9% 16.84 -9.2%

Histogram of number of output connections for
all neurons in the network. Block pruning (BP)
with 4×4 blocks.

Analysis

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800

Ne
ur

on
s

Output Connections

89% sparsity
94% sparsity

Pruning schedule. Two layers in the RNN
model are shown. Layer sparsity increases
gradually throughout early training.

0%

25%

50%

75%

100%

0 5 10 15

Sp
ar

sit
y

Epoch

WP recurrent layer
WP linear layer
BP recurrent layer
BP linear layer
GLP recurrent layer
GLP linear layer

Accuracy vs. sparsity. Baseline RNN model,
varying hyperparameters to produce a spectrum
of results ranging from 70% to 97% sparsity.
Results worse than -75% are capped at 75%.

Sparsity by layer. Recurrent layers in the RNN
model are shown. Layers closer to the input tend
to be more sparse than layers near the output.

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sp
ar

sit
y

Layers

WP
BP 4 4
BP 16 16

-75%

-50%

-25%

0%

70% 80% 90% 100%

Re
la

tiv
e

Ac
cu

ra
cy

Sparsity

WP
BP 4 4
BP 16 16

Speedup for RNN 1760 matrix multiply. TitanX
Maxwell with CuSparse. Sparse matrices are in
CSR format. RNN matrix sizes are (1760, 1760)
with 90% sparsity and (1760, batch size).

Speedup for GRU 2560 matrix multiply. GRU
matrix sizes are (7680, 2560) with 95% sparsity
and (2560, batch size).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30

Sp
ee

du
p

Batch Size

WP
BP 4 4
BP 16 16

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20 25 30

Sp
ee

du
p

Batch Size

WP
BP 4 4
BP 16 16

Speedup

• Explore other block reduction operations besides max, including average, RMS,
geometric mean, and median.

• Explore sparse model training. We want to be able to train deep learning models
that are sparse throughout the entire training run. This will allow us to exploit
computation and memory savings for training.

• Improve the performance of sparse matrix dense vector libraries for GPUs and
ARM processors that would speed up deployment.

Future Work

Sparsity Algorithm Description
Block Pruning BP Blocks of weights are pruned throughout

training by periodically comparing each
block's largest weight against a gradually
increasing threshold.

Group Lasso GL Group lasso regularization with a large
lambda (g) drives less-important blocks of
weights to zero.

Group Lasso +
Block Pruning

GLP Group lasso regularization with a small
lambda (g) guides pruning by shrinking
less-important blocks of weights.

Weight Pruning WP Our earlier work: pruning individual weights.

Abstract

0 1 0 0

0
0
0
0

1
1
1
1

0
0
0
0

0
0
0
0

0
0
1
1

0
0
1
1

0
0
0
0

0
0
0
0

Gather Max Reduce Broadcast Scatter

WEIGHT MASK

Block pruning. This toy example shows a 4×4 weight matrix. We gather blocks
of size 2×2, perform a max reduction, compare to a prune threshold, and update
a mask. A zero mask value indicates a pruned weight.

Group lasso regularization. λg is regularization lambda, w(g) is a block of
weights, ||w(g)||2 is the L2 norm of the block, and G is the total number of blocks.

Sharan Narang, Eric Undersander, Greg Diamos

