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Abstract.

Providing sufficient labeled training data in many application domains is a
laborious and costly task. Designing models that can learn from partially
labeled data, or leveraging labeled data in one domain and unlabeled data
in a different but related domain is of great interest in many applications.
In particular, in this context one can refer to semi-supervised modelling,
transfer learning, domain adaptation and multi-view learning among oth-
ers. There are several possibilities for designing such models ranging from
shallow to deep models. These type of models have received increasing in-
terest due to their successful applications in real-life problems. This paper
provides a brief overview of recent techniques in learning from partially
labeled data.

1 Introduction

In many application domains one encounters limited labeled training data while
unlabeled data are more easily generated and available. The literature has wit-
nessed several attempts in overcoming the challenges of learning from partially
labeled datasets by proposing models that can leverage available labeled or unla-
beled data in different domains. The semi-supervised learning, domain adaption,
multi-view learning are among existing proposed models.

Semi-supervised models use both labeled and unlabeled data points in the
learning process. To this end, one incorporates the labels/unlabeled data in the
learning process to enhance the clustering/classification performance. Usually
both labeled and unlabeled data are from one domain and are drawn from the
same distribution. However there are several cases in which they are drawn from
different distribution, they have different feature dimensions. It is also possible
that they are drawn from two different but related domains. One can further
generalize this pattern and consider the case that the training and test data do
not exhibit the same distribution, same feature domains or their statistical prop-
erties change over time. The data might also have been described using different
representations, views or modalities. In all these cases, many classical machine
learning algorithms fail to provide the desired classification performance. There-
fore, addressing these challenging problems by designing suitable techniques and
models has recently attracted many researchers. In what follows we will give an
overview of some of the recent existing techniques that are used for learning from
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partially labeled data with above mentioned level of complexity. In particular,
in Section 2, a brief overview of existing semi-supervised modelling techniques is
provided. Domain adaptation methodologies are discussed in Section 3. Muti-
view learning methodologies are given in section 4.

2 Semi-supervised learning

Traditionally, there are two different types of tasks in machine learning, namely
supervised and unsupervised. In supervised learning all the training samples are
labeled and one tries to learn a right mapping from the given input to the desired
output. On the other hand, in unsupervised learning the training samples are all
unlabeled and the task is to for instance group or cluster the given data and find
the underlying patterns of the data. Semi-supervised learning (SSL) lies between
supervised and unsupervised learning where it aims at learning from both labeled
and unlabeled data, see Fig. 1. Learning from few labeled and a large number of
unlabeled training data is directly relevant to several practical problems where
it is expensive to produce labeled data. Semi-supervised learning (SSL) is one
of the modelling approaches that is able to cope with the limited training data
and has already shown its importance in many application domains including
automatic classification of web pages, medical images analysis, traffic or climate
data, biomedical signals among others. Int this type of learning one can benefit
from different type of partial supervision.

Unsupervised Semi-supervised Supervised

Fig. 1: Supervision Spectrum

For instance, there might be constraints on the data points such as having
the same target or not, or simply the target values for only some of the training
samples are given. In general there are two views on semi-supervised modeling.
In the first view the SSL is seen as unsupervised learning guided by constraints
and in the second view, SSL is considered as supervised learning with additional
information on the distribution of the examples [1, 2, 3, 4, 5, 6]. The semi-
supervised learning can be classified into two categories, i.e. transductive and
inductive learning [7]. In transductive learning the labels for a specified set of
test data are predicted. In inductive learning one learns a decision function
from a training data for future unobserved test instances. One can further
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categorize the semi-supervised inductive learning into semi-supervised clustering
and classification [2]. In semi-supervised clustering the task is to exploit labeled
data to adjust the cluster memberships of the unlabeled data. In contrary, semi-
supervised classification uses both unlabeled and labeled data to obtain a better
predictions and classification accuracy on unseen test data points [2].

Traditionally, in semi-supervised techniques, a classifier is first trained using
the available labeled data points and then the classified unlabeled data with
the highest confidence scores are added incrementally to the training set and
the process is repeated until the convergence criteria is met [8]. Some of the
successful semi-supervised models that have been proposed in the literature are
for instance, the Laplacian support vector machine (LapSVM) [7] with manifold
regularization, local spline regression for semi-supervised classification [9], A
label propagation [10], nonlinear embedding in deep multi-layer architectures [11]
and Semi-Supervised Kernel spectral clustering [2]. The design of many existing
SSL models benefits form one of the cluster assumption or manifold assumption.
In the former, the decision boundary between classes should lie in the lower
density region of the space. The latter assumes that the target function should
change smoothly along the tangent direction. It should be noted that most of
the graph based models perform transductive learning. However, LapSVM is one
of them with a data-dependent geometric regularization which has the out-of-
sample extension property and therefore is able to perform inductive inference.

The authors in [2] formulated a regularized Kernel Spectral Clustering (KSC)
which can be operated for both semi-supervised classification and clustering.
The KSC which is a completely unsupervised algorithm is used as the core
model and the available labeled data is incorporated to this model via adding
a regularization term to the cost function of the KSC formulation. Thanks to
the added regularization term, the model clustering scores are adjusted to be as
close as possible to the desired labels. The model is then obtained by solving
a linear system of equations in the dual. Extension of this model to analyze
streaming data in an online fashion has been proposed in [12].

Nowadays, deep learning has shown its great power in several learning tasks.
When training deep neural networks, samples with qualified labels are quite
important, due to their over-fitting essence. However, there are many applica-
tions which contain vast amount of unlabelled data. For example, in computer
assisted diagnosis tasks, there could be many medical images, but the labels,
especially accurate masks, need very heavy human consumption. Thus, learning
from partially labeled data becomes attractive for training deep neural networks
for those tasks. There are different ways to use unlabeled data for training neu-
ral networks. The unlabeled data could pre-train parts of the neural networks
to coincide with some expectations, e.g., sparse structure or similarity in latent
space. In those methods, unlabeled data are used in a unsupervised manner
[13, 14]. There are various methodologies for giving labels to unlabeled data.
In [15], a surrogate class is generated by automatically generating samples from
unlabeled data. In [16, 17, 18, 19], pseudo-labels are given to the unlabeled data
by links between labeled and unlabeled samples, which could be represented by
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graph or manifold.
In addition to predicting and assigning labels to unlabeled data and trans-

ferring the training task to supervised one, designing loss/target functions for
those unlabeled data is another efficient way. The design could be rooted in
underlying guesses, observations, or reasonable assumptions. For example, the
output distribution of a neural network for labeled and unlabeled data should be
the same [20]; the entropy should be minimized not only on labeled data but also
on the unlabeled ones [21]; all the data, no matter there are labels or not, could
be embedded in the same manifold [22]; a generative model could be trained
on unlabeled data and be mixed up with labelled data [23]. Among many deep
semi-supervised methods, the ladder net, proposed by [24], is a representative
work and has achieved very good performance. The idea of ladder net appeared
first in unsupervised learning [25] and the basic structure is an auto-encoder,
which is to remove noise by minimizing the difference of the original input and
its reconstruction. In semi-supervised learning, the label from the labeled and
the structure in all data are used together in the ladder net such that clean
features coinciding with prior expectations could be learned [24].

3 Domain adaptation

In many practical machine learning problems the statistical properties of the
data change from one domain to another. This domain shifts brings new chal-
lenges for classical machine learning algorithms which are designed based on the
assumption stationary data. Therefore the need for designing models that can
leverage the information of the labeled data in one domain to better classify
unseen data in a target domain is highly desirable. To this end, domain adap-
tation based models are proposed in the literature. In both domain adaption
and semi-supervised learning one tries to leverage labeled data to improve the
model generalization performance on the unseen unlabeled data. However, in
domain adaptation there are extra assumptions, i.e. one is dealing with two do-
mains which exhibit different distributions and/or there is a feature dimension
mismatch. In case one can ignore these assumptions, then the source and target
domain can provide the labeled and unlabeled data to be used by semi-supervised
models.

There are three main scenarios one can consider for domain adaption prob-
lems which differ in the information considered for the target task. In unsu-
pervised domain adaptation, one learns from a set containing labeled, unlabeled
source instances and unlabeled target instances, i.e the labeled information from
the target domain is not taken into account. In supervised domain adaptation,
all the instances considered are labeled. In the semi-supervised setting, one
learns from labeled source instances as well as a small fraction of the target
labeled instances [26]. The main two types of domain adaptation problems that
are addressed in the literature are homogeneous and heterogeneous domain adap-
tion. In the homogeneous domain adaptation, the feature representation for the
source and target domains is the same, i.e. Xs = Xt but the marginal probabil-
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ity distributions are not the same i.e. P (Xs) 6= P (Xt). However heterogeneous
domain adaptation is more challenging since the distributions, feature domains
and dimensions in source and target are different. The literature have witnessed
several domain adaptation methodologies for addressing both homogeneous and
heterogeneous data. The two main categorize are models with shallow and deep
architectures. In what follows we give a brief overview of some of the successful
shallow domain adaptation methods.

In shallow and traditional models there are three major directions of works
proposed in the literature for domain adaptation problems including instance re-
weighting methods [27, 28, 29] and feature transformation [30, 31]. In the sample
reweighting approach, one assigns sample-dependent weights to the training data
with the aim of minimizing the distribution discrepancy between the source and
target data points in the re-weighted space [27]. In practice one usually can use
the density ratio between the probability densities of the two domains to estimate
the sample dependent weights. Another main approach in domain adaptation
is to learn a domain-invariant feature representation for both source and tar-
get domains. Several successful feature transformation methods are proposed in
the literature. The authors in [30] introduced the Transfer Component Analysis
(TCA) in order to learn common latent features having the same marginal dis-
tribution across the source and target domains. The Structural Correspondence
Learning method proposed in [31] learns a common feature space by identifying
correspondence among features from different domains. A domain adaptation
approach that uses the correlation subspace as a joint representation of the
source and target data is introduced in [32].

Often in many domain adaptation problems, side information in the form of
correspondence (paired) instances are available across domains, see Fig. 2. In
this case, the instance similarity constraints between domains, can be used to
enhance the generalization performance of the model [33]. A Regularized Semi-
Paired Kernel Canonical Correlation Analysis (RSP-KCCA) model is introduced
in [26] for learning a new representation of the data for the sake of the domain
adaptation problem. This model also belongs to the family of feature transfor-
mation methods. The corresponding optimization problem is formulated in the
primal-dual Least Squares Support Vector Machines setting where side informa-
tion are incorporated through proper regularization terms. A new representation
of both source and target data sets is learnt by solving a linear system of equa-
tions in the dual. The model seamlessly integrates unlabeled, labeled, paired
and unpaired instances and can be employed in unsupervised, semi-supervised
as well as supervised fashions.

Other types of domain adaptation models that have recently gained atten-
tions poses deeper architectures and are based on artificial neural-networks.
Within this category of models one can refer to learning representations us-
ing the marginalized stacked denoising autoencoders (mSDA) [34], adjusting the
the pre-trained networks to the new task by fine-tuning [35, 36, 37], interpolating
between domains [38] and cross-domain neural-kernel networks [39].
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Fig. 2: Example of labeled paired instances [26].

4 Multi-view learning

The success of learning from partially labelled data relies on the full use of the
links between labelled and unlabelled data. One interesting and effective way
is multi-view learning, which was first proposed by [40]. Its basic assumption is
that labeled and unlabeled data share similarity in different views. The origi-
nal idea of multi-view learning, called co-training [40], is to learn several weak
classifiers based on labeled data but from multiple views and then bootstrap the
weak classifiers by unlabeled data. Later on, the idea of co-training has been
theoretically analyzed in [41, 42] and successfully applied in other tasks, e.g.,
spectral clustering [43] [44]. Another way of using multi-view data is to design
a regularization term that could capture the joint prior knowledge. In this di-
rection, [45] is a representative method that applies kernel canonical correlation
analysis [46] in support vector machines to model the similarity in a common la-
tent space. Establishing a co-regularization term for multiple views is applicable
and effective for many tasks. For example, [46] designed a regularization term
from manifold-based ensemble learning; the multi-view version of the Hessian
regularization method [47] achieves promising performance in image annotation;
the application on graph-oriented method could be found in [48, 49, 50].

Here we list multi-view learning as a category of learning from partially
labeled data. But this idea is actually applicable for many applications, no
matter in supervised, semi-supervised, or unsupervised tasks. For example, the
idea of co-regularization can used in unsupervised learning task [51] when there
exists a good common base manifold. In the person re-identification problem,
different cameras provide multi-view for the same person and multi-view learning
that considers different views simultaneously is helpful [52, 53, 54]
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5 Conclusions

We have briefly reviewed several existing approaches in connection to learning
from partially labeled data. The covered approaches range from shallow models
to deep architectures in the context of semi-supervised learning, domain adap-
tation and multi-view learning.
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