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Abstract. Deep neural networks (DNNs) are vulnerable to adversarial
examples and other data perturbations. Especially in safety critical ap-
plications of DNNs, it is therefore crucial to detect misclassified samples.
The current state-of-the-art detection methods require either significantly
more runtime or more parameters than the original network itself. This
paper therefore proposes GraN, a time- and parameter-efficient method
that is easily adaptable to any DNN.
GraN is based on the layer-wise norm of the DNN’s gradient regarding the
loss of the current input-output combination, which can be computed via
backpropagation. GraN achieves state-of-the-art performance on numer-
ous problem set-ups.

1 Introduction

Deep neural networks (DNNs) have proven themselves by achieving state-of-the-
art performance in many application fields. Due to their good results, they are
also used in safety-critical approaches, such as perception for autonomous driving
[1]. Especially for such applications, it is crucial to understand the generaliza-
tion performance of DNNs. While perfect generalization is difficult to achieve in
practice, it is particularly important in situations where generalization issues are
exploited on purpose. This is the case for adversarial examples [2], [3], [4], [5],
i.e. small perturbations of the input, that are often unrecognizable to humans,
but lead to a misclassification by the network.
There are two ways to tackle the problem of adversarial examples. One is to
use defense techniques, which make DNNs robust against adversarial attacks by
training. However, for each defense technique a new adversarial attack strategy
can usually be found. To avoid this problem, other works build a method on
top of the original network to detect adversarial examples [6], [7], [8], [9], [10],
[11]. Unfortunately, the current state-of-the-art detectors require either signifi-
cantly more parameters or more runtime than the original network itself. This
is critical for applications like autonomous driving where the available resources
are limited.
We therefore propose GraN, a parameter-efficient method whose main compo-
nent is the Gradient of the network with respect to the weights and the current
input-output combination, more precisely its Norm (see Figure 1). GraN is
based on the concept that misclassified examples have a larger gradient than
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correctly classified examples. It can be calculated in a manner similar to the
way a training step is conducted. Our experiments on three different datasets
show that GraN can detect misclassified examples faster and with less parame-
ters, while performing comparable to state-of-the-art detectors.

2 Related Work

Common adversarial detection methods can be split into three main categories
[10]: denoisers, prediction inconsistency based approaches and metric based ap-
proaches.
Denoisers such as MagNet [7] and HGD [8] are based on a preprocessing proce-
dure, in which the image is reduced to its main features by an encoder-decoder
method. The idea is to reduce noise and the added adversarial perturbation. De-
spite their good performance, denoisers can not be used in parameter-restricted
approaches since an additional encoder-decoder network with many parameters
is required [8], [10].
Prediction inconsistency based approaches use the idea that for misclas-
sified images the classification output is more sensitive to small changes in the
image. The most successful approach is based on feature squeezing. The original
image, an additional image with reduced color depth generated from the original
image and a smoothed image are classified by the network. The probabilities for
the three images are compared and the sensitiveness is used to decide whether
the original image is misclassified [9]. Usually, only an insignificant number of
parameters is used for such methods. However they do not perform well on some
adversarial attacks [9], [10].
Metric based approaches use statistical methods to check whether the current
input is behaving similar to normal inputs that have been investigated before.
One of the best known is a detector based on the Local Intrinsic Dimensionality
(LID) computed on the layer wise activation space [6]. It is a weighted distance
metric based on the k-nearest-neighbors of 100 randomly chosen samples from
the training set. This detector was outperformed by a method using the layer
wise Mahalanobis distance to the closest class-conditional Gaussian distribution
[11]. The most recent detector is based on Neural-network Invariant Checking
(NIC ) [10]. Additionally to the layer-wise activation distribution a classifica-
tion network consisting of one fully connected softmax layer is trained on each
activation layer. The more the class probabilities differ from layer to layer, the
more probable the current example is misclassified. LID, Mahalanobis and NIC
lead to good results but require a huge overhead of parameters or runtime in
comparison to the actual classification network. In case of LID, 100 images need
to be saved for comparison in the activation spaces. For Mahalanobis the mean
and the covariance matrix for each class and often high-dimensional layer have
to be stored and NIC additionally requires a huge overhead of parameters due
to the fully connected network on top of each activation layer.
Although some detectors show compelling performance, none of the existing de-
tectors meet the computational complexity restrictions of autonomous driving.
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Fig. 1: Overview of GraN.

3 GraN: A Gradient-Norm Based Detector

In this section we first provide GraN as algorithm and secondly give information
on the used strategies for the indication of uncertainty.
GraN is a detector predicting if a pre-trained DNN with weights Θ is misclassi-
fying an input x. A flowchart of our approach is shown in Figure 1. The method
starts by running the DNN for the current input x. As usual for the classifica-
tion, the index with the largest value of the output F (x) is defined as the class
prediction y of the network. The same DNN is run for an input x̃, which is gen-
erated by smoothing x with a Gaussian-kernel with standard deviation s. Both,
the output F (x̃) on x̃ and the predicted class y are fed into the loss function
L(Θ, F (x̃), y). Then, the gradient with respect to the weights ∇ΘL(Θ, F (x̃), y)
is computed time-efficiently via backpropagation as in the training phase. In the
next step the set of gradients ∇ΘL(Θ, F (x̃), y) are transformed into a feature
vector: For each layer i ∈ {1, . . . , n} of the network, the gradient regarding the
set of its weights θi is replaced by its L1 norm

∇ΘL(Θ, F (x̃), y) =

⎛
⎜⎝
∇θ1L(Θ, F (x̃), y)

...
∇θnL(Θ, F (x̃), y)

⎞
⎟⎠ →

⎛
⎜⎝
||∇θ1L(Θ, F (x̃), y)||1

...
||∇θnL(Θ, F (x̃), y)||1

⎞
⎟⎠.

The resulting vector has length n depending on the numbers of layers in the
DNN. As in reference [6], a logistic regression network with n+ 1 parameters is
trained to predict the probability p of the input x to be misclassified.
The central idea and hence the main indication of uncertainty is the norm of
the gradient of the loss function ∇ΘL(Θ, F (x), y) computed for the network out-
put F (x) and the resulting class y. Mathematically, the gradient over a variable
expresses the effect of small changes of that variable on the output. Therefore,
the bigger the gradient, the bigger the corresponding uncertainty.
The difference between the network output F (x) and the resulting one-hot class
vector y is one of the most simple indications of uncertainty. This evidence
is covered by the gradient ∇ΘL(Θ, F (x), y), since the difference directly builds
the gradient over the last layer and represents the starting point for the back-
propagation. Hence, a huge distance between F (x) and y directly increases all
gradient values.
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To further enlarge the gradient for misclassified examples, the smoothed input x̃
is used for the prediction F (x̃). This smoothing procedure is thought to remove
the perturbations responsible for misclassification. Thereby we increase the dif-
ference between the class y predicted for x and the network output F (x̃) and
hence the gradient ∇ΘL(Θ, F (x̃), y).

4 Evaluation

We evaluate GraN on five adversarial attack methods and two additional misclas-
sification tasks each applied on three datasets. To be able to directly compare
the performance of GraN, we choose to implement LID as current state-of-the-art
method with the least number of parameters as discussed in Section 2.

4.1 Experimental Setup

All experiments are performed on the MNIST [12], CIFAR-10 [13] and SVHN
[14] datasets. All datasets consist of predefined test and training sets which we
refer to as pre-train and pre-test sets, since for the detection additional test and
training sets are required. For each dataset a DNN for the classification task
is trained on the pre-training data and tested on the pre-test set. The DNNs
are taken from reference [6]. For MNIST, a 5-layer Convolutional Neuronal
Network (CNN) was used. It achieved an accuracy of 96.89%. A 12-layer CNN
was trained for CIFAR and an accuracy of 87.47% was reached. For SVHN, a
6-layer CNN was trained and an accuracy of 90.29 % was observed.
Similar to [10] and [9], the adversarial set-up is built from the correctly classified
images from the pre-test set. For each of the images, five adversarial images are
generated by the attack methods and settings reference [6] evaluated on: FGSM
[2], BIM-a, BIM-b [3], JSMA [4] and CW [5]. Only the adversarial examples
that lead to misclassification are kept. Each attack method defines together
with the correct classified images one dataset. Additionally, two set-ups are
build that more closely resemble situations with real world sensor data. For the
noisy set-up, the correct classified images from the pre-test set are perturbed
with Gaussian noise, such that one half of the noisy images is misclassified.
For the wrong set-up, the original complete pre-test dataset is taken including
the misclassified examples. Each data set-up is split into a train (80%) and a
test (20%) set such that each set contains an equal number of misclassified and
correctly classified examples, excessive samples are deleted.
For GraN, the standard deviation for the Gaussian smoothing is set to s = 0.4
for all datasets. The number of neighbors for LID was set as determined in
reference [6]: k = 20 for MNIST and CIFAR and k = 30 for SVHN. For each
set-up, the detectors are trained on the generated training set to predict the
probability for an input to be misclassified and tested on the generated test set.
The performance metric is the AUC ROC score [%]. It is defined as the area
under the receiver operating characteristic (ROC) curve, which plots the true
positive rate over the false positive rate. The results are provided in Table 1.
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D. Met.
Cause for misclassification

FGSM BIM-a BIM-b JSMA CW Wrong Noisy

M
LID 100.00 99.70 99.99 99.25 99.87 97.35 96.33
GraN 99.51 98.46 99.19 95.78 92.03 93.25 93.96

C
LID 99.20 82.24 100.00 98.81 99.20 87.25 81.74
GraN 98.82 84.70 99.74 99.42 99.90 89.30 89.21

S
LID 99.99 87.26 99.98 97.76 97.34 83.49 80.81
GraN 99.98 91.94 99.96 99.07 99.91 91.86 87.75

Table 1: Performance of GraN (own) and LID [6] based on AUC ROC score [%]
on different set-ups for MNIST (M), CIFAR-10 (C) and SVHN (S) dataset.

4.2 Discussion

The AUC ROC performance for GraN is between 90% and 100% for almost all
set-ups. Except for MNIST, GraN outperforms LID in five of seven set-ups.
The slightly worse performance on MNIST can be lead back to the simplicity
of the MNIST dataset. Even with many small changes the original number is
still recognizable for humans, whereas the network is concentrating on a small
number of features that in most cases are enough for classification. This makes
it easy for adversarial attacks because small details can be easily changed and
hence the gradient stays low. The more complex the dataset is, the more diverse
feature information is saved within the network. Even if the main features are
changed, there are several other features contradicting the false decision, which
therefore leads to a higher gradient. In most application fields, the data is more
complex than the simple MNIST dataset. This promises good performance of
GraN on such.
We remove perturbations leading to misclassification irrespective if the input is
adversarial or not, by means of the Gaussian low-pass filter as provided in Section
3. It was found empirically, that the usage of F (x̃) instead of F (x) is leading
to a performance improvement but is not essential for GraN’s functionality.
This perturbation removal procedure works very well in particular when the
perturbations are similar to sensor noise. For autonomous driving applications
this is a major use case. However, as our experiments show, it works as well for
a larger class of adversarial perturbations.
The necessary resources for GraN and LID are compared using the example
of the CIFAR dataset [13]: In addition to the parameters of the classification
network, LID needs (100 ·32 ·32 ·3+66 =) 307.266 parameters to save 100 images
and 66 parameters for its logistic regression network. GraN only needs the 35
parameters for its logistic regression network and therefore 0.01% from that of
LID. Although there was no particular attention payed to runtime optimization,
the computation time of GraN was 0.5% from that of LID. There is the option
to reduce the runtime of LID by directly saving the activations for each image,
however this would lead to an even larger overhead of parameters for LID and
the computation time of GraN would still be less than 50% of that of LID.
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5 Conclusion and Future Work

We introduced and evaluated GraN, a novel, parameter-efficient method that
detects adversarial examples as well as other misclassified examples. It is able to
distinguish between noisy examples that are correctly and incorrectly classified.
The time- and parameter-efficient performance for various adversarial attacks,
especially on the more complex data sets, make GraN a promising method for
several real-world scenarios. The perturbation-removal approach used here is
geared towards sensor-noise. Even though this seems rather specific, our exper-
iments show that it works well for various adversarial attacks. In future work,
we will assess the performance of other perturbation-removal procedures than
Gaussian smoothing and investigate the effects of replacing the norm and logistic
regression part with more powerful procedures.

Acknowledgment: We thank Matthias Rath and Stephan Scheiderer for their
valuable input.
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