
Softmax Recurrent Unit: A new type of RNN cell
Lucas Vos1 and Twan van Laarhoven1,2

1- Open University of the Netherlands - Faculty of Management, Science and Technology
Heerlen - The Netherlands

2 - Radboud University - Institute for Computing and Information Science
Nijmegen - The Netherlands

Abstract. Recurrent Neural Networks (RNNs) have been very successful
in many state-of-the-art solutions for natural language tasks like machine
translation. However, LSTM, the most common RNN cell, is complex
and utilizes a lot of components. We present the Softmax Recurrent Unit
(SMRU), a novel and elegant design of a new type of RNN cell. The SMRU
has a simple structure, which is solely based around the softmax function.
We present four different variants of the SMRU and compare them to both
the LSTM and GRU on various tasks and datasets. These experiments
show that the SMRU achieves competitive performance, surpassing either
the LSTM or the GRU on any the given task, while having a much simpler
design.

1 Introduction

Many machine learning tasks consist of dealing with sequential data, like machine
translation, speech to text conversion, anomaly detection, or simply predicting
the next value of a sequence. A Recurrent Neural Network (RNN) is the standard
choice for these tasks because it captures sequential dependencies and can handle
the variable input lengths seen in these datasets.

Ever since Hochreiter and Schmidhuber introduced the Long Short-Term
Memory (LSTM) unit [1] to overcome the vanishing gradients problem of plain
RNN, the LSTM has achieved impressive results in many domains and tasks
like handwriting recognition [2], machine translation [3] and speech recognition
[4]. Although LSTM has been very successful, a major criticism is that it is an
ad-hoc and complex architecture [5].

This criticism motivated us to look for a better architecture, especially one
with a clear design and few components. The Softmax Recurrent Unit (SMRU)
has an unsophisticated layout, completely built around the softmax function.
We use the softmax function to control the hidden state, similar to the gates in
LSTM and GRU, based on the input and previous hidden state. The result is a
novel and elegant RNN unit designed around a single component. The idea to
balance the gates with a single function forms a new class of RNN units.

Besides the basic SMRU, we introduce two small changes leading to four
variants. These four variants of the SMRU are compared with the LSTM and
GRU architectures on several tasks. The results of these experiments show
that the more straightforward architecture of the SMRU achieves competitive
performance to other architectures.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

309

2 Related work

There has been some research into alternatives to the LSTM architecture.
In an effort to reduce the complexity of the LSTM architecture, Cho et al.

[6] have introduced Gated Recurrent Unit (GRU). Compared to the LSTM the
GRU has one fewer gate (3 instead of 4).

In 2018 Jozefowicz et al. performed an extensive search for RNN cells, to
find alternatives to the LSTM [5]. Their scan involved a genetic-like algorithm
constructing thousands of variants. Although some of these variants showed
slightly better results on specific tasks, the conclusion was that the LSTM (along
with the right bias initialization) gives very good results.

Greff et al. have also looked for alternative RNN cells, but their approach
concentrated on a subset of 8 fixed LSTM variants to look at both the perfor-
mance and the importance of hyper-parameters on larger datasets [7]. These
variants did not perform significantly better on average, but they found that the
learning rate is one of the most crucial hyper-parameters, and that the forget
gate and output activation functions are the most critical of the LSTM cell.

Both works did not capture the architecture we present in Section 3, because
only pointwise non-linearities where considered, and so the softmax function was
not included in their scope.

3 The Softmax Recurrent Unit

We propose an alternative unit for RNNs, the Softmax Recurrent Unit (SMRU).
Controlling this hidden state is key to an RNN cell because the hidden state
must represent the crucial part of the information it has seen. We identify three
important actions to manipulate the hidden state: add some value to it, remove
some value and finally to keep a part of the previous state. These actions do
not have to exclude each other and are mixed to compute a next hidden state.
In the LSTM and GRU this is done through a complex set of gates. Instead we
propose to use the softmax function,

softmax(x)i =
exp(xi)∑n
j=1 exp(xj)

.

So, at timestep t, in the SMRU the new hidden state is calculated as

ht = softmax(at, rt,kt) · (1, 0,ht−1) =
exp(at) + exp(kt)ht−1

exp(at) + exp(rt) + exp(kt)
,

using three gates activations

at = Uaxt + Vaht−1 + ba,

rt = Urxt + Vrht−1 + br,

kt = Ukxt + Vkht−1 + bk,

for the add, remove and keep actions. Here U and V are weights on the input
and on the previous hidden state respectively, and the b are bias terms.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

310

We use the state ht also as the output of the SMRU. Note that the hidden
state always lies between 0 and 1. By increasing at the new hidden state be-
comes closer to 1, by increasing rt the hidden state becomes closer to 0, and by
increasing kt the hidden state stays closer to the previous state.

3.1 Variants

After the introduction of the LSTM, additional changes were introduced to the
architecture [8] [7]. Inspired by the history of the LSTM, we look at different
SMRU implementations. We introduce two changes of the basic architecture
which we believe are natural extensions.

Centered variant (SMRU-c) It has been previously noted that the RNN
cells benefit from using state centered around 0. To achieve this in the SMRU,
we give the remove gate an active role in the final calculation of the hidden state,

ht = softmax(at, rt,kt) · (1,−1,ht−1).

This extends the range of the hidden state from [0..1] to [−1..1].
Softmax first (SMRU-s) In this variant, we perform the softmax function

before the addition of the weighted input and weighted previous hidden state.
The inspiriation comes from the MUT1 cell considered in [5], which showed very
good results by using a similar idea of early non-linearties.

In this variant we split the gates in two, one part based on the input and one
part based on the previous state, to get

atx = Uaxt + bax ath = Vaht−1 + bah,

and similarly for the remove and keep gates. The new hidden state of this variant
is then calculated by

ht = softmax(atx,ath, rt, rth,ktx,kth) · (1, 1, 0, 0,ht−1,ht−1)

We also consider a SMRU-cs variant that combines both ideas.

3.2 Initialization

Gers et al. discovered that the performance of the LSTM increases when the
bias of the forget gate is set to 1 [9]. Jozefowicz et al. later reconfirmed this
effect [5].

This discovery inspired us to search for bias initialization effects on the
SMRU. We will look at three bias initializations variants, b-add, b-remove, b-
keep, which initialize the corresponding named gate at 1 while holding the others
at 0. We will compare these to the default zero initialization (b-zero).

4 Experiments

We have implement the SMRU in PyTorch 1.0.1. The code is available on
GitHub1.

1https://github.com/voslucas/smru

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

311

mnist56 ptb luong bahdanau nott1 nott2
model ↑ acc ↓ ppl ↑ bleu ↑ bleu ↓ nll ↓ nll
LSTM 89.90 97.49 22.76 24.10 3.52 3.48
GRU 89.70 101.57 23.04 23.12 3.55 3.29
SMRU 88.20 106.85 22.74 22.95 3.42 3.31
SMRU-c 91.95 n/a 21.56 22.31 3.45 3.28
SMRU-s 81.50 108.55 22.20 23.52 3.77 3.55
SMRU-cs 90.40 99.07 22.55 23.51 3.83 3.31

Table 1: Results of the tasks per RNN cell. (↑ higher is better, ↓ lower is better)

We compare the performance of the SMRU variants with LSTM and GRU on
four different datasets. We only change the RNN cell in these tasks, and keep all
other model and training parameters the same. The details of the used network
architectures and training parameters are omitted for space reasons. These can
be found in the source code.

The datasets we use are:
MNIST56: The MNIST dataset contains 60000 training images and 10000

test images of 28x28 pixels representing the digits 0 to 9. We divide the pixels
of each image from top left to bottom right into a 56 step long sequence of 14
pixel values. After the sequence, the network needs to predict the correct digit.

PTB: Penn TreeBank is a large annotated corpus of English text [10]. The
task is to predict the next word given a context of previous words. We use the
pre-processed dataset of Mikolov et.al. [11].

IWSLT: The International Workshop on Spoken Language Translation ’15
English-Vietnamese is a small dataset of 133k sentence pairs. The task is to
translate the sentence. We reuse the codebase of JoeyNMT toolkip [12], as well
as the supplied model and hyper-parameters. We use SacreBLEU as our scoring
mechanism for comparison between the different cell types [13]. We used two
predefined models coming from the Joey NMT toolkit [12], one using Bahdanau
attention [14] and the other with Luong attention [15].

Nottingham: A collection of 1200 British and American folk tunes. The
original chords are transformed into 88 binary notes (0=off, 1=on) and every
timestep represents an eighth note. The goal is to predict the next note given
a list of played notes. The performance is measured in terms of negative log-
likelihood (NLL) loss. We use the dataset with two models: one uses a single
layer (nott1) and the other uses two layers of RNN cells (nott2).

5 Results

The results of the experiments are shown in Table 1. The SMRU design shows
very competitive results in comparison to the GRU and LSTM.

In the Notthingham and MNIST56 datasets, one of the SMRU variants
achieves the highest scores.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

312

mnist56 ptb
model ↑ acc ↓ ppl
b-zero 81.25 107.58
b-add 79.30 111.56
b-remove 74.65 109.12
b-keep 88.20 106.84

Table 2: Comparison of bias initialization methods. All with the base SMRU
variant. (↑ higher is better, ↓ lower is better)

In both language-oriented tasks (PTB and IWSLT), the SMRU did not gain
first position, however, the SMRU shows similar or better performance than
either the LSTM or the GRU. We note that the design of the experiments is a
simple change of the RNN cell, leaving all hyper-parameters the same and no
RNN cell specific tuning is performed. The language task models and parameters
where optimized around the LSTM and GRU. Higher scores might be possible
when the hyper-parameters are optimized for the SMRU.

Of the SMRU variants, the original architecture shows the best overall per-
formance, but it falls behind on the PTB en Bahdanau task. The SMRU-c
(centered) achieves two first positions in the overall task list (on MNIST56 and
NOTT2), however on the PTB task, the SMRU-c failed to converge. This might
be due to the higher effective learning rate caused by doubling the range of state
values. The SMRU-s (softmax-first) variant has the worst overall performance.
The combination SMRU-cs is the most stable over all tasks.

We have also performed experiments on the different bias initialization meth-
ods on the MNIST56 and PTB tasks, see Table 2. Here we consistently find that
initializing the bias of the keep gate to 1 (b-keep) gives the best results. This
matches previous results about the forget gate of LSTM. Likely because it means
that more of the previous state is kept, increasing the gradient flow to earlier
timesteps. The other bias initialization schemes perform worse than zero initial-
ization. All other experiments were performed with his b-keep initialization.

6 Conclusion

We have introduced a new type of RNN cell, the Sotmax Recurrent Unit (SMRU).
The architecture of the SMRU cell is based solely around the softmax function.
The use of a softmax function gives an elegant way of combining multiple gates
in a single step. This design not considered by previous searches of LSTM vari-
ants, and using softmax or similar functions could open up new search space for
network architecture searches.

We found that the SMRU benefits from a keep-gate bias initialization of 1.
Besides the basic design of the SMRU, we have tested some variants. The SMRU-
c and the SMRU-cs variants show the most potential whenever hyper-parameter
tuning is an option, because they are very sensitive to the used learning rate. In

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

313

comparison to the LSTM and GRU, the SMRU variants achieve better perfor-
mance than either the GRU or the LSTM within the given tasks.

In our experiments we have used a CPU-based implementation because of its
flexibility. This limits the applicability to large datasets and models. However
there is no technical reason why a GPU-based could not be made.

References
[1] Sepp Hochreiter and Jurgen Schmidhuber. Long short term memory. Neural computation.

Neural Computation, 9(8):1735–1780, 1997.
[2] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber. A

novel connectionist system for unconstrained handwriting recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 31(5):855–868, May 2009.

[3] Minh thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba.
Addressing the rare word problem in neural machine translation. In In ACL, 2015.

[4] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neu-
ral networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 6645–6649, May 2013.

[5] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of
recurrent network architectures. In International Conference on Machine Learning, pages
2342–2350, 2015.

[6] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

[7] Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink, and Jurgen Schmid-
huber. Lstm: A search space odyssey. IEEE Transactions on Neural Networks and
Learning Systems, 28(10):2222–2232, Oct 2017.

[8] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction
with lstm. In 1999 Ninth International Conference on Artificial Neural Networks ICANN
99. (Conf. Publ. No. 470), volume 2, pages 850–855 vol.2, Sep. 1999.

[9] Felix A Gers and Jurgen Schmidhuber. Recurrent nets that time and count. In Proceedings
of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and Perspectives for the New Millennium,
volume 3, pages 189–194. IEEE, 2000.

[10] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of English: The Penn Treebank. 1993.

[11] Tomáš Mikolov, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan Honza Čer-
nocký. Empirical evaluation and combination of advanced language modeling techniques.
Proceedings of the Annual Conference of the International Speech Communication Asso-
ciation, INTERSPEECH, pages 605–608, 2011.

[12] Julia Kreutzer, Joost Bastings, and Stefan Riezler. Joey NMT: A minimalist NMT toolkit
for novices. To Appear in EMNLP-IJCNLP 2019: System Demonstrations, Nov 2019.

[13] Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186–191, Belgium, Brussels,
October 2018. Association for Computational Linguistics.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[15] Minh-Thang Luong and Christopher D Manning. Stanford neural machine translation
systems for spoken language domains. In Proceedings of the International Workshop on
Spoken Language Translation, pages 76–79, 2015.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

314

