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Abstract. Our aim is to construct a framework that relates learning and
control for both classical and quantum domains. We claim to enhance the
control toolkit and help un-confuse the interdisciplinary field of machine
learning for control. Our framework highlights new research directions
in areas connecting learning and control. The novelty of our work lies
in unifying quantum and classical control and learning theories, aided by
pictorial representations of current knowledge of these disparate areas. As
an application of our proposed framework, we cast the quantum-control
problem of adaptive phase estimation as a learning problem.

1 Introduction

The fields of classical control (C C) [1] and quantum control (QC) [2] have been
treated separately and have evolved independently. Some techniques from C C
theory have been successfully employed in QC, but lack of a formalised structure
impedes progress of these techniques. Classical machine learning (ML) [3] and
its emergent quantum counterpart [4] are prolific research fields with connections
to the control field. Although these four research areas are well studied individ-
ually, we require a unified framework to un-confuse the community and enable
researchers to see new tools. We develop a framework that relates learning and
control for both classical and quantum domains, and assists in understanding
how to use learning for control.

To generate a unified framework, we first review existing literature on control
and learning, for both classical and quantum realms, emphasizing inconsistencies
in definitions and explanations. We then elevate existing concepts on C C to
account for quantum aspects. Learning for control is built into our unified
control scheme, with provisions for the various learning nuances. The aggregated
literature and our framework are diagrammatically depicted for clarity. As an
example of our framework, we demonstrate how to cast the QC problem of
adaptive phase estimation (APE) into a supervised learning (SL) problem.

Our paper is organized as follows: In §2, we introduce the relevant back-
ground on control, ML and their connections. Here we briefly describe the QC
problem that is presented as an example of our framework [§3] later in §4. Fi-
nally, §5 concludes the paper with future outlook and ideas.
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2 Background

In this section we give a pertinent review of the fields of ML, control and their
connections. In the last subsection we discuss the physical control problem of
APE.

2.1 Machine learning

In 1997, Mitchell defined learning according to [3]

An agent A is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.

This definition formally states the different components of a learning task, namely
A, E, P and T , which are used to categorize a ML problem and subsequently
apply the corresponding learning algorithm.

A ML task can be classified into three major categories based on the nature
of the E it uses, namely SL, unsupervised learning and reinforcement learning.
Another way to classify a ML task is based on the frequency of E of the agent.
In an online learning scenario, an agent learns by generating a training data dy-
namically by interacting with the system in real-time; whereas in offline learning
the agent starts with a static dataset.

Classical computational hardware cannot cope with the increasing volume
of data being used in various ML applications in terms of their space and time
complexities. Quantum computing, which has a fundamental advantage over
classical computing in terms of processing speed, can be beneficial for such cases.
Much research is done in the field of quantum-enhanced ML [4, 5], with a focus
on classical-quantum hybrid learning algorithms to be implemented in near-time
quantum devices [6, 7, 8]. On the other hand, ML helps with advancing quantum
technologies, like QC [9, 10].

2.2 Control

The task of control is

to use a controller C to steer specific controllable degrees of freedom
of a plant P, consisting of the physical system with its input and out-
put devices, such that its dynamics yields approximately the desired
observations, specified by r.

In a typical feedback control scheme, the controller can follow a closed-loop
strategy, whose actions on the plant are mediated by the control signal u, the
information gained from the output y of the plant and a predetermined control
policy ρ. This scheme is depicted in Fig. 1a. The control scheme can also be
open-loop when the feedback from the plant is unavailable or unnecessary.

The idea of ML for control has been known since Fu’s seminal concept of
learning control for classical systems [11]. Learning enables a controller, who
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is neither omniscient nor possesses a feasible alternative, to execute the task
successfully. Heuristic optimization algorithms, like genetic algorithms, enable
searches for feasible policies [12]. On the other hand, ML can also help in
modelling the plant’s dynamics. In most practical scenarios, plant dynamics is
complex and modelling including noise and fluctuations is infeasible. Learning
the controller’s policy is instead easier. Hybrid control schemes with learning
for both plant and controller have also been studied [13].

Conventionally, the term QC is used when the dynamics of the plant is
governed by quantum mechanics, and C C refers to the case in which classical
physics can accurately describe the dynamics of the plant [14, 15]. We can define
open and closed-loop QC similar to their classical counterparts but with some
subtleties arising due to the quantum measurement problem.

(a) Closed-loop C C scheme

(b) APE scheme

Fig. 1

2.3 Adaptive quantum enhanced metrology

Adaptive quantum enhanced metrology (AQEM) is one strategy for performing
quantum enhanced metrology, which aims to infer an unknown physical parame-
ter using quantum resources, such that the scaling in uncertainty of that param-
eter surpasses the standard quantum limit (SQL) and approaches the Heisenberg
limit [16]. In AQEM the control parameters are adaptively changed from one
experiment to the next based on the measurement outcomes. In our discussion
we consider the problem of optical APE, as the simplest case of AQEM, with
applications to gravitational wave detection and atomic clocks.

Optical phase estimation in a Mach-Zehnder interferometer [Fig. 1b] involves
an unknown phase shift ϕ, whose value has to be estimated, and a controllable
phase shift Φ, whose value after themth measurement is Φm. The interferometer
has two input ports and two output ports. The input is an N -photon entangled
state |ψN 〉, which is sent to the interferometer one-photon-at-a-time. The output
is denoted by bm ∈ {0, 1} according to the output port through which the mth
photon exits the system. The controller C follows a policy % to change Φ after
each measurement such that it eventually approximates the unknown phase shift.

The QC problem in APE is to devise a feasible policy that delivers an impre-
cision in ϕ with scaling greater than SQL, based on the measurement outputs [9].
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The policy is a set of rules that determines how the controller adjusts the value
of Φm in the mth round of measurement based on the previous measurement
outcomes {b1, b2, . . . , bm}. For this work we are restricted to Markovian feedback
with update rule

Φm = Φm−1 − (−1)bm∆m, (1)

where % is the ordered set (∆1,∆2, . . . ,∆N ) and ∆m ∈ [0, 2π). When all photons
are exhausted, the estimate ϕ̃ is given by ΦM , where 0 ≤ M ≤ N considering
the case of photon loss. The imprecision ∆ϕ̃ is quantified by the Holevo variance

V %
N := (S%

N )−2 − 1, (2)

where S%
N :=

∣∣∣∣∣10N2∑
k=1

exp i(ϕ(k)−(Φ%
N )(k))

10N2

∣∣∣∣∣, and is minimized for the choice of a feasible

policy.

3 Machine learning framework for control

In this section we first provide a graphical representation of the existing literature
in the fields of control, learning and their connections. We then present our
unified framework of ML for control and elaborate on its scope.

We begin by constructing a graphical representation for the background on
learning and control, in the classical and quantum domains, to identify the ex-
isting and missing works in these fields [4, 17, 18, 19]. The graph is a directed
square graph where the vertices represent the four fields, the horizontal edges
define classical/quantum unification concepts, and vertical and diagonal edges
define the idea of learning for control and vice-versa. We then identify authori-
tative sources in these fields that we treat as canons in our framework. In order
to develop our unified concepts of control (learning), we use those canons but
relax any restriction arising from classical physics. The square graph in Fig. 2a
is obtained as a by-product of our proposed framework.

The diagrammatic representation of our proposed ML framework for control
is provided in Fig. 2b. We introduce a teacher (T)/user (U), which is a classical
agent (depicted in orange) governing the process of learning for control, and is
different from the teacher in [11]. T determines the type of learning and instructs
C, P and the learner L to act in the training or testing phase. We represent L,
which executes the learning algorithm, in a purple box to account for the fact
that it can be either classical or quantum. We use the same colour convention
for the plant, controller and the various channels interconnecting them. The
application of our framework is elaborated in the next section with a simple QC
problem.

4 APE as a SL problem

As a demonstration of our proposed framework of ML for control, we describe in
this section the control problem of APE as a SL problem and explain the stages
of learning.
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(a) Unifying framework: C L and QL de-
notes classical machine learning and quan-
tum machine learning respectively

(b) Quantum/Classical learning control

Fig. 2

The algorithm for ML for APE starts with a decision by T whether to act
in training or testing stage. In the training stage, T instructs both L and C to
interact with the plant P to generate training data online and subsequently learn
a feasible control policy %. T also interacts with P to set its initial state. In
the policy testing stage, T instructs just the controller to implement the learned
policy on the plant to achieve the desired result.

We identify the Mach-Zehnder interferometric system, along with its input
and output ports and detectors, of Fig. 1b as the plant P in our learning for
control framework [Fig. 2b]. The input state |ψN 〉 and the unknown phase ϕ
of P is set by T. The controller sends signal u in the form of controllable phase
shift Φm, which is calculated using the output bm of P and a policy % [Eq. (1)].

The learning agent L employs a SL algorithm to design a feasible control
policy for estimating the unknown phase ϕ. To this end we map the different
components of the QC problem to a SL problem. The training dataset {b, ϕ} is
constructed online, where the feature vector b is a N -bit string corresponding to
the sequential measurement outcomes. The label ϕ is the value of the unknown
phase which is chosen randomly from [0, 2π) during the training phase. The
learning algorithm seeks a function Φ% : B → {ϕ}, where B is the space of b
such that the Holevo variance [Eq. (2)] is minimized.

5 Conclusions

In this work we have reviewed state-of-the-art in learning for quantum and clas-
sical control. We have proposed a framework that unifies ML techniques for QC
and QC. We show that APE fits into our proposed framework, demonstrating
the viability of this new approach that might help the community to understand
better the application of learning algorithms for control. During the preparation
of this article we have identified the lack of works connecting quantum learning
to QC and quantum learning to C C.
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