
An Empirical Study of Iterative Knowledge
Distillation for Neural Network Compression

Sharan Yalburgi1, Tirtharaj Dash1, Ramya Hebbalaguppe2,
Srinidhi Hegde2, Ashwin Srinivasan1

1- BITS Pilani, K.K. Birla Goa Campus, India

2- TCS Research, India

Abstract. In this paper we introduce Iterative Knowledge Distilla-
tion (IKD), the process of successively minimizing models based on the
Knowledge Distillation (KD) approach in [1]. We study two variations of
IKD, called parental- and ancestral- training. Both use a single-teacher,
and result in a single-student model: the differences arise from which model
is used as a teacher. Our results provide support for the utility of the IKD
procedure, in the form of increased model compression, without significant
losses in predictive accuracy. An important task in IKD is choosing the
right model(s) to act as a teacher for a subsequent iteration. Across the
variations of IKD studied, our results suggest that the most recent model
constructed (parental-training) is the best single teacher for the model in
the next iteration. This result suggests that training in IKD can proceed
without requiring us to keep all models in the sequence.

1 Introduction

Deep Neural Networks have achieved remarkable results in various fields in-
cluding medical diagnosis, finance, drug discovery, speech recognition and space
exploration to name a few. However, they often have hundreds of millions of
parameters leading to large model size. This is a burden while training and even-
tually deploying the model on real-time systems where predictions are required
to be almost instantaneous and accurate in a resource constrained environment.
As we entertain larger neural networks to model our data, it becomes impera-
tive to consider its storage, computational and power requirements. Our study
in this paper addresses the first two aspects only as the third aspect can be
evaluated when the model is deployed in a hardware [2].

This paper is concerned with model compression, which refers to techniques
for simplifying a large neural network to one that requires less resources—usually
storage and computational—with no significant loss in performance. A sim-
ple form of model compression results, for example, by progressively dropping
edges (synaptic connections) with low weights, as long as there is no significant
change in estimates of model performance [3]. However, this form of weight-
based dropout of edges (and nodes which do not have any incoming edges as a
result) is not necessarily the best way to compress a model. In this paper, we
propose a variant of a well-known model compression method called knowledge

distillation (KD). In KD [1], a complex model transfers knowledge to a less com-
plex model [4]. The complex model is often referred to as the teacher and the
simpler model as the student.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

217

2 Iterative Knowledge Distillation (IKD)

Iterative knowledge distillation–as the name suggests–is an iterative application
of knowledge distillation. The procedure is in Algorithm 1. We note that any

Algorithm 1: IKD used for experiments. KD is an abstraction of a
function that performs a knowledge-transfer from a “teacher” model
to a “student” model. In this formulation, the teacher model on an
iteration i can be any of the models M0, . . . ,Mi−1.

Given: Model M0, number of iterations k, data D, loss function L;
i := 0;
while i < k do

increment i;
j := argmin

t=0,...,(i−1)

L(Mt|D) where L(Mt|D) = L(KD(Mt, i− t)|D);

Mi = KD(Mj , (j − i));

return Mk;

modelM is in fact a pair (σ, π), consisting of a structure σ and a set of parameters
π. With this in mind, our implementation of the knowledge-distillation function
KD is a generalisation of the description in [1]. In that paper, givenMi = (σi, πi)
and σj , KD is a function that finds πj s.t. KD((σi, πi), ·) = (σj , πj). Here, we
assume a refinement operator ρ and given Mi = (σi, πi) and k > 0, KD(Mi, k)

= (σj , πj) where σj = (ρk(σi)). Here ρn(x) =
n
◦
1
ρ(x).

Given a structure, an application of the refinement operator ρ results in a
new (usually simpler) structure. In this paper, we use a ρ that implements block
reduction. By a block, we mean the basic computational unit, repetitions of
which make up the complete architecture (an example is the filter in a convolu-
tional layer); block reducing the number of features within each block. In our
implementation, each application of ρ reduces block size by 0.5 by reducing the
number of filters by half.

3 Empirical Evaluation

3.1 Aims

Our aims in this section are two-fold. Using Algorithm 1:

1. We intend to examine the trade-off between decreased performance and
increased compression for increasing iterations of IKD; and

2. We intend to investigate whether a student model benefits from being
taught by models other than the model obtained most recently.

For simplicity, we will refer to teaching using the most recent model as parental-
training and the more general case of using any of the models from previous

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

218

iterations as ancestral-training. In all experiments, the predictive performance
of a model will mean accuracy on a test-set and compression will mean the
reduction in parameters of the student model over the initial model. In addition,
it is well known that pruning can result in substantial model compression [5].
An immediate practical question of interest is whether the use of pruning after
IKD results in greater compression than pruning without IKD. We also present
empirical results relevant to this.

3.2 Materials

We conduct all our experiments on two popular image datasets: CIFAR-101 and
MNIST2. We compress three different deep models: DenseNet-121, VGGNet-19
and ResNet-152. All three of these models are trained with Adam optimiser [6].
The training hyper-parameters for the algorithm and the models are as follows:
the batch size is set to 64, the learning rate is 10−4, momentum factor is β =
(0.9, 0.999). All the experiments are conducted in Python environment in a
machine with 64GB main memory, 16-core Intel processor and 8GB NVIDIA
P4000 graphics processor.

3.3 Method

Our method is straightforward:

For each dataset:

1. Split the data into a training set Dtrain and a test set Dtest

2. Construct a model M0 using Dtrain.
3. For k = 1, 2, . . . , n

(a) Construct a model Mk using the IKD procedure with iterative bound
k and training data Dtrain

4. For k = 0, . . . , n

(a) Let Ek be the error of Mk on Dtest and Sk be the size of Mk

(b) Let M ′

k = Prune(Mk)

(c) Let E′

k be the error of M ′

k on Dtest and let S′

k be the size of M ′

k

5. For k = 1, . . . , n

(a) Compare (E0, S0) against (Ek, Sk)

(b) Compare (E′

0, S
′

0) against (E
′

k, S
′

k)

The following details are relevant:

• We repeat the experimental procedure above for three separate structures:
DenseNet-121, VGGNet-19 and ResNet-152.

• The loss for the student model Ms given the training data D is defined as:

L(Ms|D) =
1

m

m
∑

j=1

{

2T 2αDKL(P
(j), Q(j))− (1− α)

c
∑

i=1

y
(j)
i log(1− ŷ

(j)
i)

}

(1)

1https://www.cs.toronto.edu/~kriz/cifar.html
2http://yann.lecun.com/exdb/mnist/

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

219

where, DKL denotes the KL-divergence, m denotes the batch size, c de-
notes the number of classes, T is the temperature to soften probability
distributions; α is the relative importance of teacher’s guidance w.r.t. hard
targets from data [1]. P (j) and Q(j) are the T -softened class probability
distributions from the student and teacher model respectively for the jth

data instance; Y = {y1, . . . , yc} is the one-hot encoded ground truth, and
Ŷ = {ŷ1, . . . , ŷc} is the prediction from the student model. In our work,
we set T = 20 and α = 0.7.

• In experiments reported here, n (the maximum number of iterations) is 4.

• Each model Mi is a pair (σi, πi). We take model size Si = |πi|.

• When comparing model errors (E’s) and sizes (S’s), we say the modelMi is
an acceptable compression of model Mj iff Ei ≈ Ej and Si < Sj . We take
the errors to be approximately equal if they are within some pre-defined
tolerance (0.1 in our case). If Mi is an acceptable compression of Mj , then
the compression of Mi is Sj/Si.

3.4 Results

Results from experiments are tabulated in Table 1. The principal findings in the
tabulation are these: (a) For both datasets (CIFAR-10 and MNIST) and the
three architectures (VGGNet, DenseNet, and ResNet), increasing the number of
iterations in IKD results in an increase in model-error and a decrease in model-
size. These results are as expected; (b) It is possible to achieve acceptable com-
pression with IKD (that is, decrease in size, with error being approximately the
same). The amount of compression are both architecture- and data-dependent.
For example, while increasing iterations of IKD result in acceptable compres-
sions on both datasets with DenseNets, this is not the case with VGGNet on
CIFAR, where error increases significantly after the third iteration; (c) For both
datasets and all three architectures, the best teacher is always the immediately
preceding model. Thus, it would appear that the more general ancestral-training
approach does not add any value over parental-training.

Why is compression architecture-dependent? This is due to the granular-
ity of the refinement operator for the architectures. VGGNet is a Convolutional
Neural Network, which uses shared parameters (filter blocks). Therefore, the a
block-reduction based refinement of structures is able to eliminate more param-
eters in VGGNet than it is for a DenseNet.

What about pruning? The IKD procedure is not intended to be alternative to
pruning. In practice, we would expect to act as a pre-processing step to pruning.
Table 2 tabulates results when it is used in this capacity.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

220

DenseNet-121 VGGNet-19 ResNet-152
CIFAR-10 MNIST CIFAR-10 MNIST CIFAR-10 MNIST

Model S T E C T E C T E C T E C T E C T E C
Base M0 – 0.16 1x – 0.02 1x – 0.12 1x – 0.01 1x – 0.24 1x – 0.02 1x

IKD

M1 M0 0.18 2x M0 0.02 2x M0 0.17 4x M0 0.01 4x M0 0.20 2x M0 0.02 2x
M2 M1 0.17 2x M1 0.01 2x M1 0.20 16x M1 0.01 16x M1 0.20 3x M1 0.02 3x
M3 M2 0.19 5x M2 0.02 5x M2 0.28 64x M2 0.01 64x M2 0.20 4x M2 0.02 4x
M4 M3 0.19 9x M3 0.02 9x M3 0.44 254x M3 0.01 254x M3 0.19 7x M3 0.01 7x

Table 1: Results of using IKD without pruning. The “S” refers to student and
the “T” refers to chosen teacher. The baseline model for comparisons is the
initial model M0. IKD with An entry of S = Mj and T = Mi for IKD denotes
that the procedure returned the student model Mj after selecting Mi as the
teacher from M0, . . . ,Mi−1. “E” denotes the error of the student model on test
data. C is the model compression (that is the ratio of the size of M0 to the size
of the student model).

DenseNet-121 VGGNet-19 ResNet-152
CIFAR-10 MNIST CIFAR-10 MNIST CIFAR-10 MNIST

Model S T E C T E C T E C T E C T E C T E C
Base M ′

0
– 0.19 1x – 0.02 1x – 0.16 1x – 0.02 1x – 0.23 1x – 0.03 1x

IKD

M ′

1
M0 0.17 1x M0 0.04 2x M0 0.18 2x M0 0.09 2x M0 0.23 2x M0 0.03 2x

M ′

2
M1 0.17 1x M1 0.05 2x M1 0.29 6x M1 0.02 7x M1 0.25 3x M1 0.05 3x

M ′

3
M2 0.19 2x M2 0.04 5x M2 0.30 30x M2 0.02 32x M2 0.26 6x M2 0.05 6x

M ′

4
M3 0.20 2x M3 0.05 9x M3 0.43 60x M3 0.09 180x M3 0.22 10x M3 0.03 11x

Table 2: IKD with pruning. Assuming a prune function Prune, here M ′

i =
Prune(Mi). It suggests that pruning with IKD gives 2 to 180 fold increase in
compression over pruning without IKD depending on the architecture and the
dataset. This gain is equivalent to |Prune(IKD(M0))|/|Prune(M0)|.

When do we stop? The proce-
dure in Algorithm 1 allows us to ex-
amine changes in error and compres-
sion with increasing number of it-
erations. However, in practice, we
would expect to use a validation set
to decide when to stop. That is,
we would call the procedure with in-
creasing values of depth, stopping
when validation error increases be-
yond an acceptable amount.
The apparent sufficiency of
parental-training allows us to sim-
plify the procedure in Algorithm 1.
Incorporating a validation-based
check results in the procedure
in Algorithm 2. The procedure
terminates when performance of a
student on the validation set drops
beyond an acceptable tolerance.

Algorithm 2: Practical IKD. A
student is taught only by the
model obtained on the previous it-
eration (parental-training).

Given: Model M0, an iteration
bound k, validation data Dv, a
performance measure A, a tolerance
ǫ, and a prune function Prune;

i := 0;
M∗ := M0;
done := false;
while i < k and ¬done do

increment i;
Mi := KD(Mi−1, 1);
if (|A(Mi|Dv)−A(M∗|Dv)| ≤ ǫ)
then

M∗ := Mi;
else

done := true;

return Prune(M∗);

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

221

4 Related Works

Koutini et al. [7] propose an iterative method for learning audio event detection.
This approach applies KD between the same teacher and student model in each
temporal instance of an input audio signal and, unlike our approach, does not
iteratively reduce the model size. Wang et al. [8] propose an iterative blockwise
pruning method in KD. Our empirical analysis is generic for such blockwise prun-
ing operations and additionally provides a holistic comparison between parental-

and ancestral- training.

5 Conclusion

In this paper, we introduced iterative variant of KD process described in [1]
for neural network compression. The results with two benchmark datasets, and
three different kinds of neural network architectures all provide evidence for the
following: (a) iterating knowledge distillation can increase compression. The
gains can be moderate to substantial, depending on the dataset and architec-
ture; and (b) Iterative knowledge distillation only requires parental-training.
The result in (b) is interesting in the context of knowledge-transfer, and useful
computationally. In fact, additional experiments we have performed (and not
reported here for reasons of space) suggest that parental-training is sufficient,
even if all ancestral models were used to teach the student.

Acknowledgement

This work is supported by “The DataLab” agreement between BITS Pilani, K.K.
Birla Goa Campus and TCS Research, India.

References

[1] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[2] Eva Garćıa-Mart́ın, Crefeda Faviola Rodrigues, Graham Riley, and H̊akan Grahn. Esti-
mation of energy consumption in machine learning. Journal of Parallel and Distributed

Computing, 134:75–88, 2019.

[3] Haipeng Jia, Xueshuang Xiang, Da Fan, Meiyu Huang, Changhao Sun, Qingliang
Meng, Yang He, and Chen Chen. Droppruning for model compression. arXiv preprint

arXiv:1812.02035, 2018.

[4] Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 535–541. ACM, 2006.
[5] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning

for model compression. arXiv preprint arXiv:1710.01878, 2017.
[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[7] Khaled Koutini, Hamid Eghbal-zadeh, and Gerhard Widmer. Iterative knowledge distilla-
tion in r-cnns for weakly-labeled semi-supervised sound event detection. Technical report,
Tech. Rep., DCASE2018 Challenge, 2018.

[8] Hui Wang, Hanbin Zhao, Xi Li, and Xu Tan. Progressive blockwise knowledge distillation
for neural network acceleration. In IJCAI, pages 2769–2775, 2018.

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.
Available from http://www.i6doc.com/en/.

222

