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Abstract. Natural Language Processing is a branch of artificial in-
telligence brimful of intricate, sophisticated, and challenging tasks, such
as machine translation, question answering, summarization, and so on.
Thanks to the recent advances of deep learning, NLP applications have
received an unprecedented boost in performance, generating growing in-
terest from the Machine Learning community. However, even if recent
techniques are starting to reach excellent performance on various tasks,
there are still several problems that need to be solved, such as the compu-
tational cost, the reproducibility of results, and the lack of interpretability.
In this contribution, we provide a high-level overview of recent advances
in NLP, the role of Machine Learning, and current research directions.

1 Introduction

The field of Natural Language Processing (NLP) involves the design and imple-
mentation of computational models and processes to solve practical problems
in understanding human languages. On the one hand, work in NLP addresses
fundamental problems such as language modeling, morphological analysis, syn-
tactic processing, or parsing, and semantic analysis. On the other hand, NLP
deals with applicative topics such as automatic extraction of relevant informa-
tion (e.g. named entities and relations between them) from texts, translation
of text between languages, summarization of documents, automatic answering
of questions, classification and clustering of documents. Currently, NLP is pri-
marily a data-driven field using statistical and probabilistic computations along
with Machine Learning (ML). In the past, machine learning approaches such as
naive Bayes, k-nearest neighbors, Hidden Markov Models (HMMs), Conditional
Random Fields (CRFs), decision trees, random forests, and Support Vector Ma-
chines (SVMs) were widely used. However, during the past several years, there
has been a wholesale transformation, and these approaches have been entirely
replaced, or at least enhanced, by neural models, discussed later.

The deep learning revolution has influenced and changed many fields of Arti-
ficial Intelligence (e.g., ML and computer vision) and has also affected all areas
related to human language technologies. Initial results have been obtained with
the adoption of deep neural networks in speech recognition, with a significant
boost of performance in automatic speech recognition systems [1]. In Machine
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Translation, starting from 2013, the phrase-based statistical approaches that
were at the state of the art have been gradually substituted with neural machine
translation, based on deep learning architectures, which obtained better perfor-
mance [2]. The main reason for this increase of performance is that, as more
training data are available both for speech recognition and machine translation,
large neural networks have demonstrated to be superior to traditional ML al-
gorithms, such as SVM. However, if we consider tasks related to the semantic
analysis of natural languages, the limited availability of semantically annotated
data, typically requiring specialized human effort, has slowed the diffusion of the
neural approaches. It is only in the last few years that deep learning approaches
have obtained very high performance across many different NLP tasks. Because
of the fact that these models can often be trained with a single end-to-end model
and do not require traditional, task-specific feature engineering, they not only
tend to perform better than traditional ML, but they do require less human
effort, making their adoption convenient.

Let us consider what has happened in the information extraction (IE) field.
The earliest work on IE addressed the template-filling task in the context of
the U.S. government-sponsored MUC conferences, where the standard evalua-
tion techniques were defined. The standard approaches were based on manually
written rules. Due to the difficulty of porting systems from one domain to an-
other, attention shifted to ML approaches. Early supervised learning approaches
to IE focused on automating the knowledge acquisition process, mainly for finite-
state rule-based systems. Their success, and the earlier success of HMM-based
speech recognition, led to the use of sequence labeling (HMMs, CRFs), and
wide exploration of features. Neural approaches to Named Entity Recognition
(NER) mainly follow from the pioneering results of [3], who applied a CRF
on top of a convolutional net. BiLSTMs with word and character-based embed-
dings as input followed shortly and became a standard neural algorithm for NER
[4, 5, 6]. Progress in this area continues to be stimulated by formal evaluations
with shared benchmark datasets, including the Automatic Content Extraction
(ACE) evaluations of 2000-2007 on named entity recognition, relation extraction,
and temporal expressions, the KBP (Knowledge Base Population) evaluations
[7, 8] of relation extraction tasks like slot filling (extracting attributes like age,
birthplace, and spouse for a given entity) and a series of SemEval workshops [9].

2 Tasks and applications

Due to the ubiquitous human-computer interaction, NLP techniques are cur-
rently used in several different tasks, covering multiple domains. Most of modern
NLP applications can be categorized in 3 classes1:

Sequence classification: Let S be a set of sequences, where each sequence
s ∈ S is a series of tokens s = 〈w1 . . . w|s|〉 and let C = {c1, c2 . . . } be a
set of possible classes. Similarly to common classification problems in ML,
the aim of sequence classification is to find a function f : S → C able to

1This classification is not exhaustive but covers most of the popular and relevant tasks.
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assign a class to each sequence. Some relevant examples are (i) sentiment
analysis, whose purpose is to classify a short text according to its polarity,
(ii) document categorization, that finds the topic of a document (e.g. sport,
finance. . . ), and (iii) answer sentence selection, where the goal is to select
the best sentence from a given paragraph/text to answer an input question.

Word labeling: In word labeling applications a label is output from each token
wi ∈ s. Examples of word labeling tasks are (i) NER, where relevant
entities (e.g. names, locations) are identified from the input sequence, (ii)
classical question answering, where a probability distribution issued by an
input paragraph is used to select a span containing the answer, or (iii)
Part-of-Speech (PoS) tagging, that is the process of marking up a word in
a text as corresponding to a particular part of speech (verb, adjective. . . ).

sequence2sequence In seq2seq problems the input sequence is used to gener-
ate an output sequence. Differently from word labeling applications, the
input and output sequences are not directly aligned, and the model needs
to generate a new sentence. The canonical example is machine translation.

Fig. 1: Examples of NLP tasks applied to the same input sentence, including
PoS tagging, NER (focusing on species), sentiment analysis, and translation.

3 Recent advances in NLP

One of the main problems in the last decade was the definition of a suitable
and effective representation of tokens, sentences, and documents. Early ap-
proaches described a word wi from a given dictionary D as one-hot encoding
hwi ∈ {0, 1}|D|. This solution has two main drawbacks. Firstly, input words
are described by huge vectors whose dimension depends on the dictionary size.
Secondly, different words have orthogonal representations hwi

⊥hwj
, with a con-

sequent drop of any possible semantic relations between words. This aspect
strongly limited the capability of NLP systems, unable for instance to catch the
similarities between apple, kiwi, table, peach words and to find the unrelated one.

Recently, Mikolov et al. [10] proposed an efficient and effective method to
learn distributed low-dimensional word-level representations, known as word vec-
tors or word embeddings, for which words with similar meaning have a similar
representation. The method, named Word2vec, consists of a shallow neural
network with an encoder-decoder structure pre-trained on unlabeled corpora.
Similarly to an autoencoder, the network tries to reconstruct a neighbor word

(context) wj given an input target word wi, that is hwi

enc−−→ vwi

dec−−→ hwj ,
where vwi

∈ Rd is the word embedding of wi. Two different models, CBOW and
Skip-gram, have been proposed. The former is trained to reconstruct a target
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word given its context as input, whereas the latter tries to predict context words
given the target word. Word2vec has also shown its capability to capture a large
number of precise syntactic and semantic word relationships. For example, the
analogy “king is to queen as man is to woman” is encoded in the resulting vector
space as the equation vking − vqueen = vman − vwoman.

Due to its effectiveness on several tasks, such as NER [11, 12], sentiment
analysis [13], recommendation [14], and synonym recognition [15], Word2vec
received considerable attention in the literature, and several improved solutions
have subsequently been proposed. Some relevant examples are (i) Global-Vector
(GloVe) [16], that exploits statistical information computed on the whole corpus,
and (ii) fastText [17], that injects sub-words (character n-grams) information to
describe the inner structure of a word. This inner structure can be extremely
useful in several applications, such as Biomedical text mining [18, 12], where for
instance affixes of biomedical terms have a specific structure.

However, despite the impressive results of word vectors, the definition of a
suitable representation for sentences and texts is still challenging. One of the
main approaches commonly used for this purpose predates the explosion of deep
learning is known as Bag-of-Words (BOW) [19]. BOW represents a document
d as its (countable) set of words that compose it, and it can be computed as
the sum of one-hot word vectors that compose the document

∑
wi∈d hwi

. This
approach is really intuitive and the resulting feature vector is able to describe
the content of a document. However, the dimension of the feature vector quickly
increases with the dictionary size, and the semantic of the text is not taken into
account. BOW representations have been widely used in the literature, such as
in spam filtering [20] and document classification [21, 22]. With the advent of
word vectors, new methods to develop meaningful document and sentence level
representations have been proposed. These methods can be categorized into two
classes, i.e. unsupervised document embedding techniques, typically inspired by
Word2vec, and supervised approaches. Unsupervised word/sentence vectors aim
at extracting general representations that can be placed in various tasks. These
methods can be trained on large scale unlabeled corpora through a language
model objective function, which is a probability distribution over sequences of
words. On the other hand, supervised methods use explicit labels to develop
meaningful representations used in downstream tasks.

As a primer attempt of unsupervised method, the simple average pooling
of word vectors has been explored to derive sentence vectors [23]. Consecu-
tively, different methods that directly extend Word2vec have been released, as
is the case of Doc2Vec (also known as ParagraphVector) [24]. A further rele-
vant solution was Skip-thought vectors [25] that is based on the same structure
of skip-gram, but it replaces the atomic units from words to sentences. Given
a target sentence, Skip-thought tries to reconstruct a context sentence. An
encoder-decoder structure based on RNN with GRU units has been used. Other
newsworthy approaches are fastSent [26], which extends Skip-thought vectors,
and [27], that uses a combination of CNN (encoder) and RNN (decoder).

Several methods have also been proposed in supervised scenarios. Most of
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them are based on recursive [28], recurrent, or convolutional neural networks
[29, 30]. Usually, these methods build a neural network on the top of word
vectors, combining the properties of pre-trained word embeddings, the elasticity
of neural architectures, and the strength of the supervision.

One relevant application of such technologies is neural Machine Translation
(MT), where sequence2sequence neural networks have been proposed as encoder-
decoder (one for each language) architecture [31, 32]. Unlike the previous phrase-
based translation system [33] that consists of many small sub-components sep-
arately tuned, neural MT tries to build a single but larger neural network that
reads a sentence as input and returns the translation as output. The main issue
with this approach is that the information coming from long sentences cannot
be compressed in a fixed-length vector (see Fig. 2 left), named context vector,
with a consequent drop in performance. To this end, attention mechanisms [2]
have been introduced, where the context vector used to produce each output
state is defined as a linear combination of all internal encoding contexts (Fig. 2
right). The model showed remarkable results when dealing with long sentences.

Fig. 2: Left: classical sequence2sequence architecture based on recurrent neural
networks. The encoder (orange) produces a context vector to fed the decoder
(blue). Right - the attention mechanism allows to produce an output state by
means of a combination of intermediate context vectors.

Inspired by the recent success of bidirectional RNN [34, 35], ELMo [36] (Em-
beddings from Language Models) is probably one of the most interesting meth-
ods emerging from a plethora of works and previous attempts. In short, instead
of using a static word vector, ELMo looks at the entire sentence producing a
contextualized word embedding through a bidirectional language model. The
network is a multilayer LSTM pre-trained on unlabeled data. Most important,
authors showed mechanisms to use internal representations in downstream tasks
by fine-tuning the network, improving results on several benchmarks.

However, the last real boost in NLP after the advent of word vectors and
unsupervised pre-training is the Transformer model [37]. The Transformer is
the first architecture entirely based on attention to draw global dependencies
between input and output, replacing the recurrent layers most commonly used
in encoder-decoder architectures. The model showed a new state of the art in
translation quality, while it can be trained significantly faster than architectures
based on recurrent or convolutional layers. The evolution of language models pre-
trained on large unlabeled corpora and the surprisingly empirical effectiveness
of Transformer architectures are the two main pillars of modern NLP. One of
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the most popular pre-trained Transformer models is BERT [38] (Bidirectional
Encoder Representations from Transformers). BERT is designed to pre-train
deep bidirectional representations from unlabeled text by jointly conditioning
on both left and right contexts in all layers. The pre-training was driven by
two language model objectives, i.e. Masked Language Model (MLM) and Next
Sentence Prediction (NSP). In MLM, the network masks a small amount of words
of the input sequence and it tries to predict them, whereas in NSP the network
tries to understand the relations between sentences by means of a binary loss.
Specifically, the model has to select if two sentences are consecutive or not. After
a pre-training phase, the model can be easily used in downstream tasks by fine-
tuning the network on the target domain. BERT can be used in several different
tasks, such as sequence classification, word- labeling, sequence2sequence, and
so on. These methods rely on two main strengths, (i) the architecture strongly
based on self-attention mechanisms that allow to read and to keep track of the
whole input sequence, and (ii) the pre-training that allows the network to read
and to (at least apparently) understand a text, its semantic and the meaning.

Inspired by BERT, several pre-trained Transformers have been subsequently
proposed, as is the case of RoBERTa [39], ALBERT [40], and DistilBERT [41].
These extensions of BERT were based on the same Transformer architecture with
few small differences, without introducing additional features. For instance,
RoBERTa criticized the NSP loss arguing that NSP is a critical task also for
humans, and it does not improve the performance of the network. Other relevant
methods based on the same concepts are GPT [42] (Generative Pre-Training),
GPT-2 [43], Transformer-XL [44], and its extension XLNet [45].

Nowadays, these methods are continuously achieving excellent performance
on a plethora of NLP tasks, such as question answering [46, 38], text classifi-
cation [47], and sentiment analysis [48]. Surprisingly, these networks started to
overcome human performance on several tasks that were considered unsolvable
by AI, such as Question Answering [49] and verbal lie detection [50].

4 Current issues and future directions

Word and sentence/document embeddings are constantly evolving, and new rep-
resentations are continuously proposed. However, despite the capabilities of this
new generation of models, there are still problems in NLP that need to be solved.
E.g., popular Transformers are not able to encode whole documents as their in-
put sequences cannot exceed 512 tokens, that typically corresponds to a single
paragraph. Moreover, one of the main worrying aspects of these models is their
computational cost. Pre-trained transformers usually consist of 110-340 million
of learnable parameters, and they require specialized and expensive hardware.
Furthermore, the model selection covers several sensitive hyper-parameters, such
as the learning rate, batch size, and warm-up scheduler, making the approach
hardly practicable on large-scale datasets, as is the case of question answering
and text generation. To this end, a considerable branch of research is currently
exploring the development of efficient methods, including lighter Transformers
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[51, 40] and distillation approaches [41, 52].
Transformers and modern architectures are often used as blackbox tools, and

their outputs are hardly interpretable. Interpretability is a key aspect of NLP
applications in delicate domains like medicine for instance. Interpretability is
becoming a newsworthy aspect in the literature, and it has been the main topic
of several recent workshops2. Finally, further research directions in NLP include
(i) cyber-security, such as fake news detection, (ii) industrial applications, such
as virtual assistants (Alexa, Siri. . . ), and (iii) text generation based for instance
on recent variational autoencoders or Generative Adversarial Networks.

5 Contributions to ESANN 2020

The contributions in this special session cover several tasks and applications in
NLP. [53], Papers [54] and [55] investigated applications and extensions of word
vectors. LSTM language models are evaluated in [56] and [57] from different
points of view. Finally, authors in [58] analyzed adversarial attacks in speech
recognition. The s.s. received contribution from both, companies and academies,
showing that NLP is becoming an hot-topic also for industrial purposes.

In more detail, the work in [56] investigated how well LSTM language mod-
els can leverage on long-term contexts. This is made by extending the language
model inspired by the Word2vec CBOW model. Language modeling and speech
recognition experiments on English and Dutch data sets have been carried out,
showing that LSTM LMs are inherently capable of learning basic semantic infor-
mation of a limited history, i.e. the context. Authors in [53] explored word meta-
embeddings defined as combinations of two (and virtually more) pre-trained
word vectors from GloVe and fastText. Interestingly, the proposed approach
does not require the presence of the target word in both input embeddings. Au-
thors also proposed an autoencoder-like architecture to learn the meta embed-
ding, showing remarkable empirical results. A framework for controlling length
in sentence generation has been proposed in [57]. The framework is based on
a two-stage training. In the first stage a summarizer is trained without any
explicit control to the sentence length. The second stage fine-tunes the sum-
marized sentences by training a stylizer that adjusts the length. Experiments
show that the proposed approach achieves comparable results with respect to
the state of the art. Authors in [54] focused on NER and relation extraction,
i.e. the task of finding relations between entities, in the biomedical domain. To
this end, different approaches to learn entity and entity-pair embeddings have
been explored, showing new state of the art results on the CHEMPROT cor-
pus. Word embeddings have been analyzed also in [55]. Here, different word
vectors based on character-level representations have been compared, including
kernelized approaches. Furthermore, an extremely efficient ensemble based on
Extreme Learning Machines and spectrum kernels has been proposed. Finally,
authors in [58] described a methodology to detect adversarial attacks and to re-
store the original label for an attacked input in the context of speech recognition.

2E.g. BlackboxNLP, held at EMNLP 2018 and ACL 2019.
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The proposed method is inspired by a similar work by the same authors in the
context of image classification.
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[20] Gordon V Cormack, José Maŕıa Gómez Hidalgo, and Enrique Puertas Sánz. Spam fil-
tering for short messages. In Proc. of the sixteenth ACM conference on Conference on
information and knowledge management, 2007.

[21] Evgeniy Gabrilovich and Shaul Markovitch. Text categorization with many redundant
features: using aggressive feature selection to make SVMs competitive with C4.5. In Proc.
of ICML, 2004.

[22] Ron Bekkerman and James Allan. Using bigrams in text categorization. Technical report,
Technical Report IR-408, Center of Intelligent Information Retrieval, 2004.

[23] Rong Liu, Dong Wang, and Chao Xing. Document classification based on word vectors.
In Proc. of ISCSLP. 2014.

[24] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In Proc. of ICML, 2014.

[25] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Skip-thought vectors. In Proc. of NIPS, 2015.

[26] Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations of
sentences from unlabelled data. In Proc. of NAACL-HLT, 2016.

[27] Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He, and Lawrence Carin.
Learning generic sentence representations using convolutional neural networks. In Proc.
of EMNLP, 2016.

[28] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, An-
drew Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proc. of EMNLP, 2013.

[29] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural net-
work for modelling sentences. In Proc. of ACL, 2014.

[30] Yoon Kim. Convolutional neural networks for sentence classification. In Proc. of EMNLP,
2014.

[31] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Proc. of NIPS, 2014.
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