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Abstract. We revisit and extend the statistical physics based analysis of
layered neural networks trained by online gradient descent. We focus on
the influence of the hidden unit activation functions on the typical learning
behavior in model scenarios. Expanding activation functions in terms of
Hermite polynomials enables us to extend the formalism to the analysis
of soft committee machines with arbitrary activation in student-teacher
scenarios. This approach requires much lower computational effort than
naive numerical integration, which is practically infeasible. Moreover, it
now becomes possible to treat mismatched scenarios in which the student
activation function differs from the one used in the target rule definition.
This makes it possible to study realistic models of machine learning.

1 Introduction
The choice of activation function is an important element of specifying a

neural network architecture. Hence, knowing the influence this function has on
the learning behavior of the network is of practical relevance. We aim at gaining
insights into the impact of activation functions in layered neural networks by
using methods from the statistical mechanics theory of learning. For on-line
learning, i.e. stochastic gradient descent, where an update step is made after the
presentation of only one example at a time, the works of Biehl and Schwarze [1]
and Saad and Solla [2] derived ordinary differential equations (ODE) describing
the learning dynamics of soft committee machines with sigmoidal (erf) activation
function, see also [3] for recent extensions. The on-line dynamics for the popular
ReLU activation were analysed in [4] along the same lines.

We extend these previous works significantly by presenting a method for
studying the learning behavior of soft committee machines with arbitrary acti-
vation functions. This is achieved by expanding the activation function in terms
of Hermite polynomials. All relevant quantities can be expressed in this for-
malism and we show that practically feasible truncations of the resulting series
expansion achieve sufficient precision.

In the following, we introduce the theoretical framework, describe the dif-
ferential equations for on-line gradient descent, and outline their expression in
terms of Hermite polynomials. In Sec. 3 we show results comparing the previous

∗The code used for the analysis can be found in our GitHub repository.
†This work is funded by NWO M1 grant OCENW.M20.287 and CogniGron.
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analytical treatment for erf, ReLU and GELU activations with the correspond-
ing Hermite series expansion. Furthermore, we present learning curves obtained
with the new formalism for settings which cannot be analysed exactly. In par-
ticular, we treat cases of mismatched activation in student and target-defining
teacher networks. To the best of our knowledge, this is the first statistical physics
analysis of such settings. Previous studies were limited to possible mismatch in
the size of the hidden layer, but with the same activations in student and teacher.

2 Methods
The network architecture studied here is the so-called Soft Committee Ma-

chine (SCM) [2]. It is defined as a two–layer neural network where only the
input–to–hidden weights are adjusted during training. All hidden–to–output
weights are considered to be constant and equal to one. We denote by wi ∈ Rd

the weight vector connecting the input to the i-th hidden neuron and w =
{wi}Ki=1 the set of all learnable parameters. The output of the network for a
given input ξ ∈ Rd is

σ(ξ,w) =
∑K

i=1 g(xi), xi = wi · ξ,

where g is a nonlinear activation function.
The on-line learning training framework encompasses the presentation of a

novel, independent individual example of the form (ξµ, τµ) at each time step,
where τµ = τ(ξµ) ∈ R is the label of the input ξµ. We consider so-called student-
teacher scenarios, where we parameterize the rule that generates the target labels
by a set of M weight vectors w∗ = {w∗

n}Mn=1, w∗
n ∈ Rd that can be interpreted

as a teacher network with output τ(ξ) =
∑M

n=1 g(yn) and yn = w∗
n · ξ.

Training and evaluation of the student performance are based on an error
measure that corresponds to the quadratic deviation of the student output from
the target. The generalization error

ϵg(w) =
〈
ϵ(ξ,w)

〉
ξ

with error measure ϵ(ξ,w) = 1
2

[
σ(ξ,w)− τ

]2
is defined as the expected error over the input distribution. Note that the gen-
eralization error only depends on the input vector through xi = wi · ξ and
yn = w∗

n · ξ, and, for examples with i.i.d. components with zero mean, the
Central Limit Theorem (CLT) implies that, in the limit d → ∞, all quantities
{xi, yn} will be normally distributed with covariance matrix C,

C =

(
Q R
R⊤ T

)
, with Qik = wi ·wk, Rin = wi ·w∗

n and Tnm = w∗
n ·w∗

m.

The Rin and Qik play the role of order parameters in the sense that they describe
macroscopic properties of the student network, while the Tnm are fixed model
parameters which specify the teacher network configuration.

438

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



2.1 Stochastic Gradient Descent and Differential Equation

We consider a stochastic gradient descent rule as the learning algorithm for
the SCM, where the student weights are updated at time step µ as:

wµ+1
i = wµ

i − η
d∇wi

ϵ(ξµ,wµ) = wµ
i + η

dδ
µ
i ξ

µ,

where δµi = g′(xµ
i )
(∑

n g(y
µ
n)−

∑
k g(x

µ
k)
)

and η is the learning rate. We assume
that at each time step, a novel data example is presented to the learning system.

Taking the dot product of the above with w∗
n and wµ+1

k , yields, respectively

Rµ+1
in −Rµ

in

1/d = ηδµi y
µ
n,

Qµ+1
ik −Qµ

ik

1/d = η
(
δµi x

µ
k + δµkx

µ
i

)
+ η2δµi δ

µ
k

and, by defining the normalized example number ᾱ = µ/d and taking the limit
d → ∞ the l.h.s. become derivatives of Rin and Qik with respect to ᾱ. Using the
CLT, we conclude that the r.h.s. are equal to their averages, which corresponds
to the self-averaging property of the order parameters:

dRin

dᾱ = η
〈
δµi y

µ
n

〉
, dQik

dᾱ = η
〈
δµi x

µ
k + δµkx

µ
i

〉
+O(η2). (1)

Here we neglect terms of order η2 and derive results valid for the regime of
small learning rates. This also allows us to rescale the example number with the
learning rate as α = ᾱη. According to [2], the ODE can then be written as

dRin

dα =
∑M

m=1 I3(Ci,K+n,K+m)−
∑K

j=1 I3(Ci,K+n,j)

dQik

dα =
∑M

m=1

[
I3(Ci,k,K+m) + I3(Ck,i,K+m)

]
−
∑K

j=1

[
I3(Ci,k,j) + I3(Ck,i,j)

]
,

where I3 are averages defined as I3(A) =
∫
g′(z1) z2 g(z3)P (z|A) dz1dz2dz3 with

z =
(
z1 z2 z3

)⊤ and P (z|A) a three-dimensional Gaussian distribution with a
general covariance matrix A and zero mean. Ca,b,c represents a 3×3 correlation
matrix obtained from C by selecting the rows and columns corresponding to the
elements a, b and c.

2.2 Hermite Polynomial Representation

For a 3× 3 correlation matrix Σ with elements Σij = δi,j + ρij(1− δi,j), the
Kibble-Slepian formula [5, 6] (a generalization of Mehler’s kernel [7] for higher
dimensions) allows us to represent the Gaussian distribution as a product of an
uncorrelated Gaussian and a series:

P (z|Σ) = P (z|I)
∑∞

a=0

∑∞
b=0

∑∞
c=0

ρa
12

a!
ρb
13

b!
ρc
23

c! Ha+b(z1)Ha+c(z2)Hb+c(z3), (2)

where I is the identity matrix and Hn is the n-th (probabilist’s) Hermite poly-
nomial. Substituting the above in the expression for I3 yields

I3(Σ) =
∑∞

a=0

∑∞
b=0

∑∞
c=0

ρa
12

a!
ρb
13

b!
ρc
23

c! ⟨Ha+b, g
′⟩ ⟨Ha+c, H1⟩ ⟨Hb+c, g⟩ ,

where ⟨·, ·⟩ denotes the inner product ⟨f, g⟩ = 1√
2π

∫
f(z)g(z)e−

1
2 z

2

dz.
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(a) (b)

Figure 1: (a) The error EN (α) = ∥C(α)−CN (α)∥F / ∥C(α)∥F is shown for
N = 10, where CN (α) is the covariance matrix using the Hermite approximation
with N terms and C(α) is the analytical covariance matrix, at example number
α. (b) Compares the maximum of EN (α) over α for different values of N .

Note that we can always obtain a correlation matrix with unitary diagonal
from our covariance matrix C, by taking ρij = Cij/

√
CiiCjj and scaling the

arguments of the functions g′(z) → g′(z
√
C11), H1(z) → H1(z

√
C22) and g(z) →

g(z
√
C33). Furthermore, using the orthogonality of the polynomials with respect

to the above defined inner product, I3(Σ) can be simplified to a single series

I3(Σ) =
∑∞

n=0
ρn
13

n!

(
ρ12⟨Hn+1, g

′⟩⟨Hn, g⟩+ ρ23⟨Hn, g
′⟩⟨Hn+1, g⟩

)
, (3)

which, for non-pathological1 activation functions g, can be approximated by
truncating the series at sufficiently high order. The result obtained after inte-
grating the ODE using the series with N terms will be denoted by CN (α). To
calculate the generalization error we use a similar representation for the integrals,
details will be published elsewhere.

3 Results and Discussion
We first provide evidence for the validity and usefulness of the series approx-

imation by comparison with analytical solutions available for specific settings
[2, 4]. Complementing the results of [8], we also derived the analytical form of
I3 for the GELU activation.

We use the Frobenius norm to quantify the error EN (α) between the observed
covariance matrices (see fig. 1). All results presented here correspond to settings
with K =M = 2, a graded teacher [2] with Tnm = n δn,m and initial condition
Qik(0) = k10−1δi,k and Rin(0) = 10−3δi,n.

Furthermore, by using the Hermite polynomials method, we can also derive
learning curves for mismatched cases, where the student and teacher network
have a different activation function respectively.

Fig. 1 shows that a small number of terms N in the Hermite series expan-
sion suffices to achieve small error between the approximation and the analytical

1Here, by “non-pathological” we mean functions g ∈ L2(R) whose inner product with Her-
mite polynomials of order n > N , ⟨Hn, g⟩, is small when compared to

√
n!. For popular

activation functions in machine learning this is usually the case.
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Figure 2: The learning curves (left to right: Qik(α), Rin(α), ϵg(α)) for the mis-
matched case with the swish function as teacher activation and GELU as the stu-
dent activation function, obtained from the Hermite approximation with N = 10
terms.

expression. In fig. 1(a) the graph for the erf is stretched compared to the ones
for ReLU and GELU, because the transition happens for larger α. We also no-
tice that in fig. 1(b) the error is systematically larger for the ReLU, which we
attribute to the sharp edge in the ReLU, requiring high-order polynomial terms
to be closely approximated. Moreover, the GELU and ReLU curves decrease
their error when N changes from an odd to an even number, whereas erf be-
haves vice versa. This can be explained by the definite parity of each Hermite
polynomial, which produces larger or smaller contributions for every new term
in the expansion depending on the “parity” of the activation function.

Fig. 2 shows the learning curves for a student network with GELU activation
function learning from a graded teacher network with swish activation function.
Since the GELU and swish are very similar functions the student learns relatively
well from the teacher. However, we notice in Fig. 2 that, due to the mismatched
activation, the student overlaps do not adjust perfectly to the ones of the teacher,
i.e. Q22 < T11 and Q11 < T22, and the off-diagonal term Q12 converges to a small,
but non-zero value.

In Fig. 3 we present the behavior of student networks with various activation
functions learning from a teacher with ReLU activation function. We note that
the ones with activation similar to the teacher learn the rule with small error,
and the students with erf activation and Softplus plateau at a higher value of
the generalization error.

4 Conclusion
In this work we introduce a novel way to represent differential equations for

order parameters in on-line learning settings in terms of orthogonal polynomials.
This new representation allows us to efficiently integrate the dynamics and obtain
learning curves for SCMs with arbitrary activation functions. Most importantly,
this includes cases of mismatch between student and teacher networks, which
constitutes a significant novelty in the field.

One of the main advantages of the method introduced here is its computa-
tional efficiency when compared with standard numerical integration methods.

As can be seen from Fig. 1, very few terms in the series suffice to achieve very
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Figure 3: The generalization errors for students with different activation func-
tions learning from a ReLU teacher exhibiting different behaviours. The results
were obtained for the Hermite approximation using N = 10 terms.

small relative error. Another advantageous feature is that the method allows to
interpret the results in terms of properties of the activation function.

In addition, our approach can be extended to include the terms of order
η2 that were ignored in the differential equations (1). These terms include 4-
dimensional integrals similar to I3, which can also be represented as a power
series using an extension of Eq. (2) to four dimensions. However, in this case,
the simplifications that lead us to Eq. (3) do not apply and the calculation of
the six nested sums is computationally expensive.

In parallel, we are working on applying the Hermite polynomial represen-
tation for off-line learning, i.e. equilibrium analysis of batch learning processes.
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