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Abstract. A modified trajectory reversing method is presented to con-
struct regions of asymptotic stability for a class of nonlinear autonomous
systems. This class includes neural networks as a special case. First the
systems under consideration are shown to be nonoscillatory, relying on a
suitable Liapunov function. This Liapunov function can subsequently be
used to compute regions of asymptotic stability of all stable equilibria.
The resulting estimates can be small compared to the exact regions of
attraction. Therefore the results of the Liapunov analysis are combined
with a trajectory reversing method which requires the backward numer-
ical integration of a limited number of trajectories. This method results
in estimates of the regions of attraction which are very close to the exact
regions of attraction. The method is explained for second order systems.

1 Introduction

Neural networks can be used as parallel computing devices for solving classifica-
tion and optimization problems [3]. For the proper operation of the network
it is very important that every trajectory converges to a stable equilibrium
point.Therefore the network must be nonoscillatory, i.e. no closed trajectories
are allowed. Furthermore it is essential that the regions of attraction of the sta-
ble equilibria can be estimated as precisely as possible. The construction of a
region of attraction using a direct method such as the direct method of Liapunov
often results in a conservative estimate which is much smaller than the exact re-
gion of attraction (RAS). To overcome this drawback, an indirect method, the
trajectory reversing method, has been introduced in [2] : A number of trajecto-
ries starting at initial points in the neighbourhood of a stable equilibrium must
be computed by backward numerical integration of the system. These trajecto-
ries converge to the boundary of the RAS as time decreases. In this paper the
backward integration technique is used in combination with the direct method
of Liapunov. The initial states for backward numerical integration are carefully
chosen, using the results of a preceding Liapunov analysis, in which the system’s
nonoscillatory behaviour is proved.

The considered neural networks belong to a class of nonlinear autonomous sys-
tems of the form :

t=Az—-Bf(o)~h ; o=C'z, (1)
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where z € R"¥! represents the state. A € R**™,B € R**™, C € R"*™ and
h € R™*! are constant. f = [f1(01);---, fm(om)] is a nonlinear vector function
of ¢ = [01,...,0m]). The stability analysis of system (1) based on a suitable
Liapunov function has been reported before [7]. The results are summarized in
section 2. Section 3 discusses some properties of the exact region of attraction
of a stable equilibrium. These are needed for the development of the modified
trajectory reversing method presented in section 4 . The paper concludes with
an example.

2 The Nonoscillatory Behaviour of Neural Networks

For the simplicity of the analysis it will be assumed that all equilibrium points
of system (1) are isolated and hyperbolic. This means that there exists a neigh-
bourhood of every equilibrium point which is free of other equilibrium points and
that the linearized system in each equilibrium point has no characteristic values
that are zero or pure imaginary. In the second order case all equilibrium points
are either stable or unstable nodes, stable or unstable foci or saddle points.

If a scalar function V(z) can be found such that along the solutions of system

(1):

V(z)<0 , Vz (2)
V(z)=0 ©2=0

then V(z) is a Liapunov function of the system and , according to LaSalle {5},
every trajectory which is bounded for ¢ > 0 converges to one of the equilibria as
t — 0o. A system which has this property will be called nonoscillatory.

In [7] the following theorem is proved, relying on a well constructed Liapunov
function :

Theorem 1: Assume the nonlinearities f(o) satisfy slope constraints of the form

< dfi(o:)

0< d(03) <k ; Vo ; i=1l...m (3)

Then system (1) is nonoscillatory if diagonal matrices ¥ > 0 and & can be found
such that

1. @C’'A~1B is symmetrical
2. He(y ~ ;5 &)[K 1 + C'(jwI - A)"'B]>0 , allrealw

where K £ diag(k;).

The equations of the considered neural networks have the form (1), where 4 =
diag(a;), C = I, m = n, [4]. The nonlinearities are saturating amplifier charac-
teristics satisfying (3). For these neural nets the Liapunov function is:

V(e) = [e— A~ Bf(z)— A"'hPle— A"'Bf(z)— A'h| - W' A"'PAT h+&(2)
(4)
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where ) -
2(z) £ 31/(=)B1(2) - #Af(e) + | f(u)Adu-+ W S(2)
0
P = P’ > 0 is the minimal solution of the algebraic Riccati equation :
AP+ PA+PA™'BKBA™'P+¢ADA =0

where eD = eD' > 0is an arbitrarily small positive definite matrix. If ¢ — 0 then
P — 0 [7]. For the choices of 4 = I and & = A4, the conditions of theorem 1 for
the nonoscillatory behaviour of a neural network are reduced to the symmetry
of the matrix B. This is a well known result [3],[1].

The Liapunov function (4) can be used to construct regions of attraction of the
network’s stable equilibria [7]. The method relies on the following properties:
Suppose z,, is a locally stable equilibrium point. Then by (2) V(z) reaches
a relative minimum in z,,. Let C be a constant slightly larger than V(z,,).
Then the bounded simply connected subset Sy of § = {z; V(z) < C}, that
contains z,, and no other equilibrium point, is a region of attraction of z,,.
S1 grows monotonically as C grows. Assuming that S; remains bounded for
increasing C, the largest obtainable region of attraction of z,, is reached when
the boundary 85; of S; meets the boundary 8S; of another simply connected
subset S; of S,i # 1, in one or more points z.. It can be shown that z. is an
unstable equilibrium point [6]. Furthermore z. has the property that at least
one characteristic value of the linearized system in z, lies in {Re s < 0}. In the
second order case z. is a saddle point. This becomes clear with the following
remarks: If z, is a stable equilibrium point V' (z) reaches a relative minimum in
z.. If 2. is an unstable equilibrium point with all characteristic values of the
linearized system in z. lying in {Re s > 0}, V(z) reaches a relative maximum in
€., as in this case z. is a stable equilibrium point of the inverse system (obtained
by reversing the positive sense of the time axis). Both cases contradict the fact
that V(z) is constant in the neighbourhood of z, on the boundary 85;. So in
the definition of Sy let C = V(z.), where among all unstable equilibria z, is
such that V(z.) assumes the smallest value for which still V(z.) > V(z,,) and
z. € 85;. If S; is bounded or if S; is unbounded and all trajectories of the
network are bounded, then S; is the largest region of attraction of z,, which
can be obtained within the scope of this method. In [7] it is shown that all
trajectories of the considered neural networks are bounded.

3 Properties of the RAS

In analogy with [2], the present version of the trajectory reversing method will be
developed for second order systems, although in principle it can also be applied
to systems of order higher than two. Let z,, be a locally stable equilibrium state
and {2 its exact RAS. By theorem 1 in [2] and by the assumptions made in section
2, the boundary curve 32 of the RAS is formed by complete trajectories of the
system, z(t) , —oo < t < 00, and of unstable equilibrium points. If §2 is bounded
then 2 is a polygon of complete trajectories with unstable equilibrium points at

.
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the corners. If £2 is unbounded, some of these trajectories tend to infinity. Let Sy
be the region of attraction of z,, and z, the saddle point on the boundary 85, as
defined in the previous section. S; and §2 are open sets. Since S; C 2, z. € 85,
and z, ¢ 12 it follows that z, € 352. So 812 contains at least one saddle point.
On 822, V(z) reaches an absolute minimum in z. . As V(z) reaches a relative
maximum in the system’s unstable nodes or foci and V(z) decreases along the
solutions of the system, two neighbouring equilibrium points on 32 can never
be both unstable nodes, both unstable foci or an unstable node and an unstable
focus. For the same reason, every point where V(z) reaches a relative minimum
on 812 is a saddle point.

4 The Trajectory Reversing Method

In this section a region of attraction G of z,, will be constructed which is a
better approximation of £2 than S;. The method will be explained for a neural
network with two neurons :

(2)=("_) @)+ ER GGy o

Consider two points ; and z; on 85;; chosen on both sides of z. at a small
distance € > 0 from z, (see Fig. 1). As the following holds :

1. S, CQ
2. z, € 85; and V(z) is constant on 85;
3. On 892, V(z) reaches an absolute minimum in z. ,

it follows that :
21 €2 andz; € N (6)

As 2 is the exact RAS of z,,, (6) implies that the half trajectories, z(2, z:,0),
-0 < t < 0, i=1,2, obtained by backward numerical integration of (5) lie
completely in £2.The curve formed by the half trajectories =(¢, 2, 0),—c0<t<
0,i=1,2 and the segments z;z,, 2.3 of 35; tends to a segment of 32 ase — 0,
because of the continuous dependence of (2, 2o, 0) on zo.

For each of the half trajectories the following cases may occur:

— case 1 (trajectory 1 on Fig. 1)
[2(t, ©2,0)| — oo as t — —oc. In this case {2 is unbounded.

— case 2 (trajectory 2 on Fig. 1)
z. has an unstable node z; as a neighbouring equilibrium point on 2. The
half trajectory z(t,z1,0), —oo < ¢ < 0 converges to z (same reasoning if z;
is an unstable focus).

— case 3 ( does not occur on Fig.1) . :
The saddle point z, has another saddle point @; as a neighbouring equi-
librium point on 82. The half trajectory z(t,;,0), —oo < t < 0, starting
at the point z; on 85; at a distance ¢ of z. converges to the first unstable
node or focus encountered on 812, or to infinity, when 82 is described in the
direction z, — .
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Suppose 042 has one or more saddle points such as z4 on Fig.1, that are no
neighbouring equilibrium points of z, when describing 842 in clockwise and in
counterclockwise sense. Among these saddle points let z4 be the one where V(z)
reaches its smallest value. Then the procedure of backward numerical integration
must be repeated from initial states z3 and z4 which are defined as follows : Let
Sa be the simply connected subsét of § = {z; V(z) < V(z4)} containing Zq,. As
V() reaches a relative minimum on 842 in z4 and V(z) is constant along 85y, the
trajectories that connect 4 with its neighbouring equilibrium points on 82 lie
outside S4. Hence z3 and z4 can be chosen on both sides of z4 at a small distance
¢ of 23 and inside §2. The half trajectories z(t, z;,0), —0o < t < 0, i=3,4 and the
segments £3z4, £4z4 on 05, tend to a segment of 812 as ¢ — 0. This procedure
must be continued until an estimate of the whole boundary 812 is obtained.
The ultimate result is a boundary G formed by the numerically computed half
trajectories, small segments of the Liapunov curves and the unstable equilibria on
the boundary 842. If £2 is bounded, two numerically integrated half trajectories
converge to each unstable node or focus. So the number of trajectories that must
be computed equals twice the number of unstable nodes and foci on 8£2. If £ is
unbounded the number of trajectories that must be computed is larger as some
of these trajectories tend to infinity.

5 Example

Fig. 1 represents the phase portrait a Hopfield network with two neurons. The
equations belong to the class (5) with nonlinearities f;(z:) = pi\/[zi[sgn(z;).
The equilibrium points are : four stable nodes z,,, i=1 ...4, four saddle points
Zc, &d, Tf, . and one unstable node z;. The Liapunov function (4) satisfies the
following inequalities :

V(za,) < V(2e) < V(24)

V(zq,) < V(ze) < V(zc)

V(za,) < V(ze) < V(zy)

V(za,) <V(za) < V(2y)

V(ze) < V(zc) < V(za) < V(zg) < V(2s)

The procedure described in section 4 has been applied for each of the stable
nodes. Each of the boundaries 8G; consists of four half trajectories, segments of
Liapunov curves, two saddle points and one unstable node. As ¢ — 0 the phase

plane is practically partitioned in four regions. Each of those regions is a region
of attraction of the stable node it contains.

6 Conclusion

A combination of the direct method of Liapunov and simulation has been pre-
sented to construct regions of asymptotic stability for the stable equilibria of
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neural networks. The method has been developed for second order systems and
consists of two steps.

The first step requires the explicit computation of a Liapunov function to prove
the system’s nonoscillatory behaviour and to construct a first estimate of the
region of attraction of a stable equilibrium point. The second step relies on the
results of the first step to choose a limited number of initial states for back-
ward numerical integration of the system’s equations. The ultimate result is the
boundary 8G of a region of attraction consisting of a number of half trajectories,
small segments of Liapunov curves and the unstable equilibria on the boundary
802. For decreasing € 2, 0, the boundary 8G approaches 812 to any desired ac-
curacy.

Compared to other trajectory reversing methods [2], this method has the advan-
tage to reduce the number of numerically integrated trajectories to an absolute
minimum.

A disadvantage of the method is that one must know which unstable nodes lie
on the boundary 842 of the RAS of a stable equilibrium point. This is a rather
simple task for second order systems but a complicated one for higher order
systems which possess many equilibria.

The main topic for further research is the extension of the method to higher
order systems without losing the advantage of a minimal computational effort.
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Fig. 1. Example : Stability regions of the four stable equilibria of a Hopfield network
with two neurons, for the following numerical values : a; = 8,02 = 10,0 = 7,02 =7, by =
0.5 hy =6,ha =18, p1 = 20°%,p2 =5
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