ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 165-170

The Filtered Associative Network

L.S. Smith and K. Swingler
Centre for Cognitive and Computational Neuroscience
Department of Computing Science and Psychology
University of Stirling Stirling FK9 4L A, Scotland.

Abstract. A simple sequence recognition network which learns quickly is
presented. This 2-layer network is modular, with the first layer being a new
type of network, replicated, and the second a form of bidirectional associative
memory. Some early results are presented.

1. Introduction,

Networks which process time-varying signals are divided into three types in [1],
namely sequence recognition networks, sequence reproduction networks, and
temporal association networks. The network described here is in the first of these
classes. Its input is a time-varying signal, and its output is the network’s classification
of that signal. This puts it in the same class as backpropagated networks which use a
tapped delay line for translating input at different times into input to different units (of
which there are many in the literature), and TDNN [2]. Both of these networks place
equal emphasis on the content of each element of the input sequence, and cannot come
to any conclusions about the sequence class until the whole sequence has been
received. Further, since both of these approaches are based on the backpropagated

delta rule, which is a gradient descent algorithm, they are slow to learn.

The approach presented here is different. In particular, learning is not a gradient
descent operation. Single-shot learning is possible. The filtered activation network
itself is a two layer network, made up of two types of network, a simple single layer
filter network (SLFN), and a network for combining the results of the SLFNs. There
are usually a number of the former networks making up the first layer of the whole
filtered activation network (FAN), but only one of the latter, making up the second
layer of the FAN. A detailed description of the whole network is given in [3]. All
adaptation takes place in the SLFNs: the second layer network (which is a simple
autoassociative form of BAM [4]) interprets the outputs of the first layer networks.

2. The simple single layer filter network (SLFN).

The SLFN recognises a sequence of values from a small vocabulary as being in one
of a number of classes. The network has a set of input nodes 1 ={IpIgs 0.1}, and a

set of output nodes, H = {Hy, Hy, .. .H,_;}. These are connected together by weights
whi, where O<h<n and 0<i<m, to form a single layer network. There are inhibitory
weights, Cy, between the output nodes,16here h=k. In addition there are synaptic
filters Py;, with values between 0 and 1, one per Wy,. The SLFN is illustrated in
figure 1. Local coding is used for both input and output, so that in both in training and

165

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 165-170

test, exactly one input unit at a time and one output unit will be on. The SLFN can
process input sequences of arbitrary length, with each element having one of m (=3 in
figure 1) possible values, and can classify such sequences into n (=2 in figure 1)
classes. ‘

Fig.1. A 3-input 2-output simple single layer filter network.
2.1 Simple Training.

For training, all the W}, are initialised to 0. We assume for now there is exactly one

training sequence for each class. For each sequence, the output unit is chosen at the
start, and the sequence presented. To learn to classify the sequence (2,1) as class h,
the first element is presented to unit 1,, and the weight between it and the output unit

selected, Wy 5, adjusted. The next element is presented to unit I;, and the weight
W1 adjusted. This is repeated for each sequence.

Weight adjustment takes the form of a Hebbian increment, but set up in such a way
that earlier elements have more influence. The actual change in weight is

AWy, = (1-Wp) Lt 1

where 0<t<1, and t indexes the position in the sequence (starting at 0). The (1-Wy;)

term may be omitted: its effect is to ensure that the weight stays between 0 and 1.
Note that the filters Py, are not used in this simple training method. The effect is that

input units corresponding to elements early in the sequence have large weights to their
classification output, and input units corresponding to elements later in the sequence
have smaller weights. On test, when a sequence is presented, the output unit which
receives the highest activation is the one whose training sequence most resembles the
test sequence, with more importance being given to earlier elements in the sequence.

2.2, Simple Recall.

On starting the recognition of a sequence, the weight values are copied into their

166

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 165-170

filters. The weights play no further part in the recognition process: they are only used
as filter initialisation values. The filters control the amount of activation that can pass
through them. This is controlled in two ways: firstly, the total amount of activation
that can pass through the filter is defined by the initial value of the filter, and
secondly, the amount of activation that can pass through the filter at time t is limited to
7. When a test pattern is presented, for input I; at time step t, the activity that will be
sent to an output unit Hh is the maximum of what is left in filter Phi (which will be

the original weight Wy,; if input I; has not been presented before in this pattern), and
Z. Py is decremented by this amount.

Thus (ignoring the factor of (1-W},)) in equation 1) the activity at unit Hj, for a test
pattern which is the same as the training pattern will be):ttt. For a test pattern which

differs from the training pattern, there will be a contribution of ¢ from the t'th
element in the test pattern if it is the same as an earlier element in the training pattern,

or a contribution of ¥ (for some j>t) if the test pattern has an element the same as a
later element in the training sequence, and no contribution at all when the element in
the test pattern does not occur in the training pattern, or when the allowance in the
filter has been used up. Thus, only the original training pattern, or a pattern which has
the initial training pattern as a subsequence at its start can achieve the maximum
amount of activation.

The weights Chx are used to emphasise the rather small differences between
activations at the units Hy which occut when sequences are similar, in the style of a

winner-take-all network. These have been found (empirically) to work well when set
to -1/n (n is the number of output units). The excitation from the inputs and the
inhibition from the other output units is combined in a nonlinear fashion, so that

Hp (1) = Hp(t-1) + (1-Hy (t-1)).Ex(h,t) + Hj (t-1).In(h,t) 2

where Ex(h,t) is the excitatory input to output unit h at time step t, and In(h,t) is the
inhibitory input to unit h at time step t. Equation 2 also forces the values of Hy (1) to be

between 0 and 1.
2.3. Training on multiple examples.

The algorithm for training described in section 2.1 can perform only single shot
training. However, it is often the case that there are a number of examples of a class,
and the network is required to find a suitable internal representation for the class in the
absence of an ideal case. The algorithm described here reduces to that of section 2.1
when there is only one example for each class; otherwise, it is a gradual learning rule
(though still not gradient descent), one which uses the filters to record differences
between different example patterns. The algorithm is as follows:

167

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 165-170

Set all weights to 0. i
For each class to be learned

Choose the output unit to be asserted Hy)
For each sequence in this class

{
Initialise the filter values for this class (Pci = wci for all i)

For t := 0 to (length of sequence - 1)
{

Select t’th element in this example
/* assume t’th element activates unit Ir */

If (Pcr = () then

AW = 0.2 (1-W,) ii
else if (wcr < ‘ct) then
P, =P -1 i
elseP =P, -W.; iv
if (P, < 0) then
{ AW, = nal P (1-W) v
Pcr =0}

} /* single sequence loop */
For each input unit i
If P> 0) then AW :=-1. Wi P vi
} /* single class loop */
} /* class loop */

Steps i and ii are very much the same as in section 2.1: however, a learning rate
parameter, 1, has been-introduced. Steps iii and iv reduce the filter by an amount
equal to the maximal amount of activation that the filter could let through at time step
t. Then, if this would leave the filter negative, the filter is reset to 0, and the weight
increased (step v). Lastly, if the filter is left at the end with some positive value (that
is, if the filter has not been entirely used up in the processing of a sequence), the
weight is reduced (step vi). Note that increments in weight have a multiplier of (1-W)
and decrements a multiplier of W, so that weights stay between 0 and 1.

The effect of the leaming algorithm is that the SLFN is responsive to a range of
similar sequences for each class. The choice of i} (values of around 0.5 have been
found useful) will depend on the similarity of the sequences in each class.

3. The full filtered activation network (FAN).

The complete FAN network consists of a number of SLFNs followed by a
nonadaptive network whose function is to select the majority output of the SLFNs.
Note that training of the FAN net is simply the same as training of each SLFN. The

168

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 165-170

only difference is in recall.

locally coded input

input vector (3-dimensional)

Fig. 2.A complete FAN network. It has three SLFN components as the first layer, each with
three classifications. The number of input units may be different in different SLENSs, but the
number of final output units must be the same as the number of output units on each SLFN.

The top layer network has weights Fy @) which are set so that each unit H; J (i.e. the

j’th unit in the i’th SLFN) excites unit Tj and either has no effect or inhibits units Ty

(k#j), and weights B(i j).x Setso that final output unit x excites units H(i X) (for all i),
and inhibits units H(i,y) for y#x. The outputs of the units T come to reflect those of

the units H. The updating of the output units takes place concurrently with the
updating of the units H, so that each SLFN can affect other SLFNs during recall.

4. Results.

The network has been tested both on some synthetic examples, and on a real dataset
generated from speech data. The synthetic data set consisted of sequences of length 20
of random integers between 0 and 15, on 8 input channels (i.e. 8 SLFNs were used in
the first layer). Even with 98% replacement of numbers by 0’s, all the sequences were
correctly identified. With replacement of numbers by random different numbers,
100% correct identification took place with 78% noise. This performance is due to the

169

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 165-170

large differences between sequences, and to the use of 8 channels, each trying to
identify the same sequence. Using only one channel, 100% performance was obtained
with 68% replacement of numbers by 0’s, or with 20% replacement of numbers by
random other numbers.

The system was also tested with synthetic noisy training data. Sequences were
generated as before, but each sequence was degraded with random noise to produce 6
noisy training examples. At up to 30% noise in the training samples, the net succeeded
in correctly identifying all the original (undegraded) training sequences.

The net was tested on digitised bandpassed speech signals. These came from the
following vowel sounds (separated by hand from their enclosing consonants), as
pronounced by a native speaker of English: heed, hid, head, hod, who’d, hud, heard,
hoard, hood, had, and hard. These were bandpassed using 8 overlapping filters, and
then the values compressed into the range 0-19, and sequences of up to 20 elements
long produced. There were 10 examples of each vowel. This was not a proper
experiment in speech recognition, but an experiment in using real data from
equipment which was to hand. The results were that the system succeeded in
recognising 95.5 of the vowels it was trained with. Splitting the data set into two parts
(of 5 examples each), and training on the one set, and looking for generalisation on the
other, the net scored 52%. In both cases, 6 epochs were used. Using backpropagation
(using a 160:10:11 network for 700 epochs), a network succeeded in recognising 92%
when the whole dataset was used for training. This fell to 62% (using a 160:8:11
network for 200 epochs) when the data set was split.

5. Conclusions.

The network has been shown to work. Its precise behaviour has not yet been
thoroughly characterised, particularly for large numbers of input units, and this is an
area needing further research. Clearly, the network can only deal with sequences of
limited length, and the exact limitation depends on the accuracy with which weights
and filters store their values. From a software viewpoint, this presents few problems,
although a true hardware implementation would need to consider these issues. The
network needs to know the start of each sequence, and this could be a problem.
Nonetheless, this is a simple modular network, and one which can learn quickly.

Acknowledgements: British Telecom funded K. Swingler on this work under their
CONNEX 2 research programme.

References

[1] Hertz J., Krogh A., Palmer R.G., Introduction to the theory of neural computation,
Addison Wesley, 1991,

{2] Waibel A., Hanazawa T., Hinton G., Shikano K., Lang K., Phoneme recognition
using time-delay neural networks, IEEE Trans ASSP, 37, 328-339, 1989.

[3] Patent Application, Filtered Activation Network, filed by British Telecom, 16 July
1992.

[4] Kosko B., Bidirectional Associative Memories, IEEE Trans SMC, SMC-18, 42-
60.

170

