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Abstract: Three algorithms for searching the minimum distance in self-organizing maps are
presented and analysed in regard to global communication of cells and necessity of
threshold functions. A new algorithm for searching the minimum distance without threshold
function is presented.

1. Introduction

The principle of the self-organizing map was discovered by Kohonen [1] and has
been used for many applications (see overview in [2,3]). Fig. 1la shows a one-
dimensional self-organizing map which is a regular array of cells that are located at
the discrete positions x (1 <= x <=1, x € A(). Each cell stores a weight vector
Wy=(Wg1,Wx2s - » Wk - WxK) Of K components with wxk € K. The map learns
aset 5=(51,59, .. .S}, .. ,51) of L input vectors € #K. After a random initialization
of all weight vectors Wx(tg) at the beginning tg of the training time ty, (t) <= t;,
<= tend)> the following steps are executed for each input-vector:

(1) Search the most similar weight-vector to the input-vector.

(2) Adapt the most similar weight-vector and the weight-vectors in a neighbour area
around it.

The adaptation area is large at the beginning of the learning and decreases slowly
during the training time until only one cell adapts. Various modified algorithms
have been published, but in all cases the algorithms consist of these two major
steps. The similarity of a weight-vector and the input-vector is often measured by
the Euclidian distance. It is then necessary to search the absolute minimum of the
distance in the map. In this paper, we will focus on the searching process, because
it is a key question for the process of self-organization.
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2. Algorithms for searching minimum distance

The basic problem can be seen from Fig. 2 : After the calculation of the distances
dy , the position of the absolute minimum in the distance landscape must be found.

2.1 Minimum detection by direct comparison of all cells

Trying to calculate the result of the learning mathematically meets the problem that
there is no explicit formula for the result of the searching process. To write an
explicit formula

Xmin = fmin(dx) 1)

that calculates the position X;; from the known distance values dy, we will use
threshold functions and compare all pairs of cells with each other. Let o(y) be a
threshold function, that is 1 for y >= 0, and else 0, and let dx be the distance of a
given cell that we compare with all other distances dg in the map by calculating
c(dg - dy) for all pairs (&, x) in the map. The product

Py=TIs(dg-dy) . E#x @
§
is 1, if dy is smaller than all dg , else 0. If there is only one absolute minimum, then
*min = ZX Py 3)
x

indicates the position of the absolute minimum as an explicit formula. It happens
occasionally that there are several cells with the same and minimum distance. It is
usually suggested to make a random choice of the most similar cell. Simulations
show that it is not important how the center of the adaptation function is chosen as
long as only one cell is selected. It is possible to choose the average of their
coordinates. It may also be argued that the discontinuity of the treshold function
o(y) makes the algorithm sensitive to random effects and unpredictable. It is
therefore important to state that the threshold function 6(y) may be replaced by a
smoother threshold function, e.g. the fermi-function. Simulations show that steep
threshold functions are only necessary at the end of the training process and that the
threshold function can be smooth at the beginning of the learning. The steepness of
the function is then gradually increased during the training. With (2) and (3), it
becomes clear that the process of searching the absolute minimum needs a large
number of threshold functions, and global communication of all the distance values
to all other cells. The direct hardware implementation of this mathematical
formula would require a large hardware effort, because each operation in a
mathematical formula and the transfer of information consumes time and energy in
any physical or biological realization.
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2.2 PID-Controller for minimum detection

Fig. 3 presents a different approach to find the absolute minimum that is more
economic in regard to global communication and the number of threshold
functions. It is supposed that D; is a global distance value that is broadcasted to all
cells and that each cell compares its local distance value dy with Dg according to

ag= oDg-dy). @)

All values ay of all cells are summed in one large adder for the map with A = X a, .
The value of A can be understood as the number of firing cells. The minimum can
be detected if D¢ is changed such that A becomes 1. This can be achieved by one
PI or PID-controller for the map. The time for the minimum detection mainly
depends on the quality of the designed controller and is almost independant of the
number of cells. The type of information that is exchanged between the cells is
quite different from the searching process of 2.1 : The global value D that must be
broadcasted to all cells, and the sum A of the number of firing cells that must be
known to the controller.

2.3 Searching the minimum distance by the time-dependant Schridinger
equation

It seems to be difficult to indicate a search algorithm without visible or hidden
threshold functions. A different strategy to find the absolute minimum is the use of
networks where the output of the cells are fed back to the input. Threshold function
here often have the task to avoid divergence of the output of the winning cells in
the network. We will now introduce an algorithm to search the absolute minimum
without non-linearity or threshold function that is stable by itself, Also, there is
only communication to direct neighbour cells. The basic idea is to look for a
process in physics that-tends to find the absolute minimum and use it as an analogy
for the map. Preliminary experiments with partial differential equations that are
derived from the equation for thermal diffusion processes had not been succesful,
because a diffusion process converges towards a constant function after a long time.
In quantum mechanics, however, there is an interesting process that tends to find
the absolute minimum: If an electron of mass m is localized in a local minimum of
an electric potential Wpot(x) (Fig 4 a), and there is a deeper minimum near by,
then a certain probability exists for the electron to tunnel trough the potential wall
and find the absolute minimum [4-6]. The behaviour of the electron is probabilistic
in principal and thus only a probability |\y(x,t) |2dx to find the electron in an
intervall dx around x can be assigned to the electron. Fig. 4 b and ¢ show the
probability density before and after the transition. A similar mechanism has already
been used by Rujan [7] to solve optimisation problems. He reports excellent results
for examples of the travelling salesman problem. The function y(x,t) can be
calculated from the Schrodinger equation
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(i imaginary number, h=1.0545 10-34 Ws2 as Planck constant). The complex
variable y denotes the wave-function and has no explicit physical meaning but is a
function that can be used to derive probability distributions of the real physical
values of the electron. Usually, one has to normalize y so that the total probability
is unity. The Schrodinger equation will conserve this probabilty over the time.
Depending on v, Wpot’ h and m, the transision from the local minimum to the
deeper minimum can be similar to a diffusion process, but it can also have wave-
like properties.

To use this principle for searching the minimum in the map, we assume that the
distance dy corresponds to the electric potential W, ot(X). At the beginning of the
searching process, W(x,t) is initialized by an arbitrary constant, and then the
Schrodinger equation (5) is solved numerically (refer to [5.,6] for numerical
techniques). The boundary conditions are y_1 = W, and Y1 = yp.1 for the cells
at x=1 and at x =I. To assure an easy transision through the potential walls, it is
useful to start with a large value for h at the beginning at the searching process and
decrease h gradually during the searching. This corresponds to a reduction of the
energy during the searching process. Also the lateral extension of |\|l(x,t) |2 should
contract during the training process (cf. Fig. 1 (b)). Fig. 4 d shows the function
which was chosen for h during the searching process of several input-vectors. With
this choice, the maximum of l\v(x,t) |2 usually settles in the deepest and widest
minimum. The maximum of |\|I(X,t) |2 indicates the approximate position of Xpin,
but for the adaptation of the map it is not necessary to search this position because
|\|l(x,t) |2 is taken directly as the adaption function. The learning algorithm for the
map becomes now for each input vector:

1) Calculate the distance dy for all cells.

2) itialize y(x,t) with an arbitrary constant and solve the time-dependant
Schrodinger equation numerically .

3) Adapt the weight vectors proportional to | y(x,b0 |2,

With this algorithm, self-organization similar to Kohonen maps can be achieved.
(18,9]). The interesting feature of this algorithm is that both the searching process
and the creation of the adaption function are done by solving a partial differential
equation that is known from physics. With this analogy, the Schrodinger equation
may be understood as a partial differential equation that describes information
transportation in the map. Various interesting new questions arise from this
analogy, e. g. if there are any similarities of biological information processing and
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quantum mechanics, and if the transport and localisation of information has any
similarities with the transportation of an electron that must be considered by
quantum mechanics.

3. Conclusion

We have presented three methods of searching the minimum distance in a self-
organizing map. Searching the minimum distance is a key question to self-
organization which deserves detailed investigation. With the algorithm in 2.3, it is
possible to give a searching algorithm without threshold functions and with
communication via direct neighbored cells only. The results suggest that the
interpretation of the adaptation function as a thermal diffusion process is perhaps
not appropiate. Simulated tunneling is a searching process that is different from
simulated annealing and deserves more interest for optimization problems. The
interpretation of the searching algorithm in chapter 2.3 may lead to fundamental
questions of information processing.
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Fig. 1 (a) Self-organizing map with cells that are arranged in one dimension,
(b) adaptation function during the training of the map.
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Fig 4. (a) Electric potential with a local and an absolute minimum , (b) probability density
for an electron in the local minimum and (c) in the absolute minimum, (d) function h(t) that
was used instead of h during the training of the map.
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