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Voronoi tesselation, space quantization
algorithms and numerical integration

Gilles PAGES *

Abstract

We propose a new method to integrate smooth functions defined on
a convex compact set C C R? using a n-uplet z* = (z§,...,53) € C"
and its Voroni tesselation. z* is obtained as the minima of a potential
function defined on C™ and generalizing the potential of the quantization
algorithm (Kohonen with 0 neigbour). We numerically compute z* and
the weights of its tesselation using a stochastic gradient. When specified
to the quadratic case, our work provides new results on the Kohonen
algorithm with 0 neighbour. Some numerical tests display the asymptotic
shape of the equilibrium of the 0-neighbour Kohonen algorithm as the
number of units n goes to infinity.

1 Introduction, definitions and notations

High dimensional numerical integration is a major problem of Computational
Mathematics and Physics (Financial ingeneering, Neutronics, Boltzmann equa-
tion, etc). Usual implemented methods rely on as various fields as Numerical
Analysis, Linear Algebra, Number or Ergodic Theory. However, mainly because
of the Monte Carlo method, this topic is strongly related with Numerical Prob-
ability as well. The aim of this work is to provide a new method for numerical
integration derived from a famous stochastic quantization method, the so-called
Kohonen algorithm (xith 0 neighbour).

Roughly speaking, two main approaches are actually challenging to integrate
a real valued function defined on a high dimensional space, usually [0, 1}¢ or, in
a more general setting, a (convex) compact subset CC RY.

The first one, relying either on the Strong Law of Large Numbers for (pseudo-
)random numbers or on (deterministic) uniformly distributed sequences (cf.[7],[9]),
consists in making up infinite [0,1]%-valued sequences £ = (£, )n>1 having the
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property that
fE)+. 1)

j(u‘,...,u")dul ...du? asn— 400
n [0'114

When £ is a sequence of (pseudo-)random numbers — usually obtained on a
computer by a random or rand instruction ~ the method is known as the Monte
Carlo method and the mean asymptotic error goes to 0 as ‘n. When £ i8 2
deterministic uniformly distributed sequence, the algorithm is called a quasi-
Monte Carlo method. Most often such deterministic sequences are obtained
as some orbits (T*(z))i>0 of an ergodic transform T on [0,1]%. An ergodic
transform (on [0, 1)¢) T:[0,1)¢ — [0,1)% is a mapping satisfying :

(a) V f continuous on [0, l]d,f[o'u. J(T(z))dz = f(o,n‘ f(z)dz
(8) V A (Borel set) in [0,1]¢, T(A)=A => A=0 o [0,1] a.s.

The most famous T”s are (cf.[4]) :

e the rotations of the multidimensional torus [0,1[¢ : T(z)={z + a} where
a=(ay,...,eq) makes up with 1 a family of d+1 linearly independant
vectors in IR viewed as vector space on Q@ ({z} denotes the fractional part
of z).

o the p-adic rotations defined by T(z) = (2 ®p; ai)1<ica Where the p;’s
are successive prime numbers, the a;’s are some p-adic rationals and @,
denotes the addition from the left to the right with carrying over of
regular p;-adic expansions.

For some of these sequences, called sequences with low discrepancy, the integra-

tion error vanishes at a O('ﬂ:nml) rate when f has finite variation. Unfortunately,
in dimension d> 2, the notion of finite variation is rather technical and uneasy
to handle. However, we can say that, roughly speaking, such functions are very
smooth in the sense that they have d order partial derivatives on [0, 1]¢. On the
other hand, when dealing with some functions only satisfying a usual Lipschitz

condition, a far less interesting rate O(('—“—}'ﬁ)rh) holds whenever d>2.

When the function f is naturally defined on [0, 1}¢, the power of both quasi-
and true Monte Carlo methods lies in their simple implementation on a computer
once the sequence £ is specified.

However they also have some noticeable drawback for the user. Thus, lengthy
enough sequences of true random numbers are not available and the statistical
properties of the finite sequences of pseudo-random numbers are always subject
to discussion. On the other hand, deterministic uniformly distributed sequence
suffers from the lack of accurate numerical bound of the integration error :
the theoretical bounds, if asymptotically optimal, are numerically meaningless
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with respect to the current implemented the number n of trials. Furthermore,
such methods do not fully take into account the smoothness of the integrated
functions : in fact, the classical Monte Carlo method is mostly famous for its
efficiency when dealing with with erratic functions !

The second class of methods, usually less related with Probability Theory,
can be defined in a slightly more general setting : let C be a (convex) compact
set in R? and 7@’ ...dw?) a (finite) non negative measure on C. One usually

fw!y...,whp(dw! ... dw?) by E 7(2;)f(zi) where z =
o 1<i<n
(z1,...,2a)". Usually, there exists, for a given n, an optimal n-uplet z* that
minimizes the error integration bound E,(z*) among all n-uplets in C" for
a whole class of functions with a given smoothness. The problem is then to
compute this optimal z* - its related weights (7(2}))1<i<n if necessary — and
an efficient numerical bound for the integration error.

The most famous example of such points is the family of Gauss points on [0, 1]
that integrate polynomials and analytic functions (one variable) with a remark-
able accuracy (cf. [11]).

In the forthcoming sections, we provide a new method to compute high
dimensional integrals of functions defined on a convex set that takes into account
the regularity of the function in the “Holder” scale. Let us recall that f:C — R
is a-hdlder, 0<a <], iff ‘

Vz,y R |f(z) - f(¥)| < flalz - o]

where Jz}:= (¥, 22)} denotes the Euclidian norm. [f], will denote the hélder
coefficient (or ratio) of f. 0-hdlder will simply mean continuous and we set
(flo:=2|fl., :

Let p€ N and a € [p, p+ 1[. The set of a-smooth functions on C is defined
by €*(C) := {f € C(C)NCP(C) such that f® is (a—p)-hilder } .

The method is based on the study, for every €0, 2], of a potential function
defined for every z € C, using the Voronoi tesselation of . The minimum of this
potential function will provide the best n-uplet z*, the related weights being
the hyper-volume of the elements of the tesselation. We will show that all these
parameters can be obtained using a stochastic gradient.

Whenever a=2, this stochastic gradient is but the Kohonen algorithm with
0 neighbour. Of course this apparently side remark was actually at the very
origin of the initial idea. subsequently, all the below results, read with a =2,
actually provide some converging property of the multi-dimensional Kohonen
algorithm with 0 neighbour.

approximates

We consider

e A convex, compact non empty set C C RY. Most often C will be taken
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as the convex hull of the support supp(u) of a probability measure y (see
next item). C is the set on which the integrated functions wil be defined.

o A probability measure p on C that can be practically simulated on a com-
puter. Furthermore we will assume that u is strongly dif fuse (u(H)=0
for every hyperplan H). For the sake of simplicity one may simply assume
that

pldw)=1¢cW!,. .. whgw!, ... ,whdw' ... dwl.

o A n-uplet z = (z3,...,2,) € C" and Ci(x), 1<i< n, its Voronoi tessela-
tion defined by

Ci(z)= {ueC/z; #zi=fri—u|<|zj—u|} ifi:=min{k/z;=2;}
Ci(z) = @ if there is some j<i with z; =z;.

Finally, the question is : “How to optimally approximate /fdp using n

C
values f(z,),...,f(zn) of f, but without knowing the possible derivatives
fE(z)of £ 77

Of course, the answer will be in our setting

/C @) = 3 w(Cil2) (i) (1)
i=1

the problem being to yield an accurate error bound and to find the best n-uplet
z*. To this end, we define the u-magnitude with a >0 order at z€ C" by

o, 1 -— M R o
E3 (z)—lel%l" |zi — wl®p(dw).

These moduli are obviously continuous as functions of € C™ and so reach their
minimum. n — minzecn ES#(x) is decreasing and go to 0 as n goes to infinity
(see [10] for further details).

When a=2, E2# is the potential function of the Kohonen algorithm with 0
neighbour and stimuli distribution p.

2 Numerical integration: the main result

Theorem 1 Let f € C°(C), a€ [0,1] (resp. [1,2}), z* € argminEZ* (resp.
argminE2# ), then

S wCilz N (=) - | fdu| < laEqt(z)  (resp. [fla-1E3*(z%)). (2)
C

=1
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When a € {0, 1] (think to Lipschitz functions when a=1) the result is rather
natural and follows from a decomposition of C' with respect to the Voroni tesse-
lation. On the opposite, when a € [1,2] (think about C? functions) some addi-
tional terms involving the derivative f' at points z} could reasonnably have been
expected. Inequality (2) follows from a technical result that says that z* does
not lie on the boundary of C™ and has no clustered components. At such points,

Eg#(z) admits a derivative given by VE#(z)=a / lzi —wjo? —E'—_ip(dw)
Cit=) lzi ~wl 1<ign

Hence VE3#(z*) =0 since z* is then a local minimum of E>* as well. Some

extensions (when y is not strongly diffuse) the differentiability of E®:# bounded

by some counter-examples are studied in full details in [10).

The rather obvious corollary of the above theorem is that if z(")* denotes
an element of argmin ES** then for every continuous function f,

S MCE NI — [ [@u(d) ws - +oo
i=1 c

which means in less mathematical terms that for large enough n, any - if not
unique ~ element of argmin EJ# provides an excellent skeleton of the probability
distribution p.

The remaining problem, but crucial for any actual application, is then to
numerically compute, for a given n, the optimal n-uplets z* that achieves
mincs EZ#, the related weights (4(Ci(2°))1<i<n and mings EZ# itself. Fur-
thermore, in order to know if the method is performing for large values of n, we
need some theoretical bounds on mings E2* when C has a usual shape, say an
hypercube [0, 1]¢, and 4 is the d-dimensional Lebesgue measure dw!...dw? on
C.

3 Application to C=[0,1]Y and y=dz-case

Actually, we do have a theoretical upper-bound for the rate of convergence to 0
of minc» EJ where E denotes the magnitude with respect to the (Lebesgue)
measure dw! ... dw?. We guess it is optimal without knowing how to prove it in
dimensions d>2. In fact, we can compute the true value of mingg 1}~ £ when
d=1 (on the unit interval), and then we use the following resuit.

Proposition 2 Let p be a probability measure on [0,1)¢ and ;. its k** marginal
on [0,1] (i.e. such that f[ﬂ,l]‘ f(u®)p(du? "'d“d)zf[o,xl F(u¥)pi(du*)). Then
® Majorization : for every decomposition n=n, ...nq and every adapted “grid”
r=2'@..Qz¢:= ((z}‘)-..’z?‘))ls"lsnk»lsksd € ([0, 1]4)n

225



ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 221-228

d
EM(z)=)_ B3 ((2)igigm) - 3)
k=1
e Minorization : For every a€ [0,2] and z € ([0,1}%)", il vient
d
EZ#(z) 2 d¥1) E3# ((2h)igign) - (4)
k=1

1t follows that, in dimension d, if « € [0,2], for every n€ IN*,

-—dz:—l—-——}- < min Ef(z) < (—d—)'} ! =0 (—1—) (5)
(o +1)2% 0> = zeoa]o " T \12 W - nt)’

The inequality on the left holds as an equality whenever d=1.

4 How to reach the minimal tesselation : the
stochastic gradient

E2+# being differentiable and its gradient VEZ# having an integral representa-
tion, this strongly suggests to implement a stochastic gradient to get z°. Ona
numerical point of view notice that this requires to know how to simulate on a
computer the distribution p. The algorithm displays as

X = X' — e Ho(X W), X0 =z € lod

where H,(z,w) = ( e lc‘.(,)(w)) and (&)i<1 is a sequence of

lzi — wl*- 1<ign

non negatives steps satisfying the usual “decreasing step” assumption :

Y ei=+c0 and Y el < +co.
t t

When a=2 and ¢, € [0, 1], is but the Kohonen algorithm with 0 neighbour.

Applying the O.D.E. method (see Kushner & Clark, cf.[8]), one obtains the
“conditional” a.s. convergence of the C™-valued vectors X* to z* as t — +oo.
Furthermore, the related weights (u(Ci(z*)))1<ign and E3+#(z*) can also be
reached by the mean of this stochastic algorithm which is crucial to be able to
process actual numerical integration with the n-uplet z*.

Theorem 3 Let z* € argminES* et a € [1,2].
(i) X* 2% z* on {X'€ K infinitly often} where K is a compact set contained
in the attracting area T'y. of z* for the autonomous differential system z=

—VEH(z).
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f] R s—1
(ii) Let, for every i€ {1,...,n}, pt:= card{l s St/w' € CUX")) the fre-

t
quency of the “stimuli” w* falling in the i*® “facet” of the moving lesselation
related to X*~. Then

pt s 4(Ci(z")) on Aco = {X' — 2* whent — fo0}1<i< n,

$
33 minfo? = X! 25 B34 on A
$

=1

Some additional remarks on the (non-)uniqueness of z*, the existence of non
global local minima and the problems it may cause can be found in {10].

Some numerical tests were processed in a 2-dimensional setting with a= 2
C=10,1)? and the usual (Lebesgue) measure dw'dw?. Our purpose was to com-
pute z("):* for n€ {1,...,100} and the related minimum E2 =mincw~ E2 by the
above stochastic gradient descent. Recall that, in this setting, this is the Koho-
nen algorithm with 0 neighbour! As a=d=2, we know that mincs EZ=0(3),
so we computed n X mincs E2 as well to get the optimal constant. For every
n, we first sampled in [0,1]* 10° uniformly distributed random 2-dim vectors,
the step ¢ being (essentially) constant (its starting value €, being chosen as a
decreasing function of the number n of points) z. It was the “searching phase.
Then, we processed a converging phase by sampling 2.10° additional indepen-
dant uniform vectors with a slowly decreasing step e,=e,o.ﬁﬁ§-2—,—o,.

We verified on these simulations that the optimal “uniform” quantization of
the unit square was performed as n increases by the regular hexagonal pavement,
except for the (predictable) edge effects near the boundary of the square. As
far as min(o,1)2)» E? is concerned we obtained the following results :

n 1 2 3 4 5 6 7 8 9
min E, 0,1667 | 0,1042 | 0,0662 | 0,0417 [ 0,0353 | 0,0278 | 0,0253 | 0,0214 | 0,0185
nmin E2 | 0,1667 | 0,2084 | 0,1986 | 0,1666 | 0,1765 | 0,1667 | 0,1771 | 0,1712 0,1667

10 il 12 13 14 15 16 ven 25
0,0170 | 0,0156 | 0,0142 | 0,01317 | 0,01207 | 0,01125 | 0,01034 | ... | 0,006626
0,1700 | 0,1716 | 0,1704 | 0,1712 | 0,1690 | 0,16875 | 0,16632 | ... | 0,165650 | .

29 36 49 64 8} 100

0,005758 | ... | 0,0045995 | ... | 0,003365 | ... | 0,002571 | ... | 0,002026 ;... | 0,00164]
0,166982 | ... | 0,165582 | ... | 0,164885 | ... | 0,1645444 | ... | 0,164106 | ... | 0,163900

Actually nmin E? is very slowly converging to ﬁ; ~ 0,1604... as n goes

to infinity. 5575 is the value of f; | —w|?dw'dw?, where H dnotes the regular

unit hexagon with center z.

As a first conclusion, let say that, on a strictly theoretical point of view, if
p(dw)= A(dw), the Voronoi method is asymptotically faster than, for example,
the Monte Carlo method as far as
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ie. d<2a, a€l0,2] (i.e. d<4 at the best).

[T

>
d—

However, these bounds must be considered very carefully: the above numer-
ical tests pointed out that the efficiency of the method remains great in much
higher dimensional settings especially for small value of n (n <100). One must
keep in mind that all the bounds that hold in Monte Carlo or quasi-Monte Carlo
method are asymptotic and, numerically speaking, usually do not hold before
n>1000 ...as we could check when processing the stochastic gradient. ..
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