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Abstract

The formation of chaotic behaviour in neural networks has been analyzed and
some principles have been established, which illustrate the effects accounting for
that behaviour. The use of networks which act in a chaotic manner will also be
discussed. Finally the applicability of methods used in chaos theory to the field of
connectionism will be examined.

1 Introduction

To generate sequences one often uses recurrent neural networks to get a distributed rep-
resentation and generalisation behaviour. This is for example important in control prob-
lems. In some cases a learning process can result in chaotic behaviour. There is then
no fault tolerance and no generalisation of the net. It is therefore desirable to widen the
understanding of principles causing chaos.

Chaotic behaviour has often been presented in Neural Networks. Articles have been
written on the topic of chaos in learning processes [7], [8] or chaos resulting from time-
delayed connections [3]. By using nets common in practice the number of units used to
produce chaos decreased from infinity [6] to 128 [2] and further to eight [5]. In 1991
Xin Wang presented an example of chaotic behaviour in a very simple neural network
consisting only of two units wich are fully connected to each other [9]. He also gave
a mathematical proof of the behaviour found being chaotical. The formation of this
behaviour has not been looked into by him.

In order to answer this question we first give a definition of chaos. Next some meth-
ods of chaos theory are examined. Then we introduce the neural model which we try to
describe. In section 3.2 we present a chaotic acting network examining the formation
of chaotic phenomena. Finally we try to evaluate the described principles.

2 Fundamentals of chaos theory

Different definitions of chaos is the major reason why there is confusion in the field
of research on chaotic phenomena. One major reason for confusions in the field of
research on chaotic phenomena is caused by the different definitions of chaos. This
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is the reason why the results of many papers can not be compared. Other difficulties
arise in complex n-dimensional systems, where phenomena which cannot be directly
described are interpreted as chaotical. Finally the use of techniques, developed for the
analysis one dimensional systems cannot be transferred in any case to n-dimensional
systems. For this reasons, some foundations of chaos theory are described below.

2.1 A definition of chaos

Although there are many other definitions of chaos a simple one concernes with sensi-
tive dependence of the initial conditions. Based on this, Devaney {1] defined chaos as
follows:

Definition (Chaos) Let f: M — M be a map, where M is a metric space. The map
f is said to be chaotic if

1. f has sensitive dependence on initial conditions, that is there exist § > 0 such
that, for any z € M and any neighborhood U of z, there exists y € U and

n > 0 such that [f"(z) — f* ()| > é.

2. f is topological transitive, that is for any pair U, V of open sets, there exists
k > 0 such that F¥U)NV #0.

3. Periodic points of f are dense in M.

One can prove that part (1) of this definition is superfluous, because (2) and (3) imply
(1). In the given form it has the advantage of being readily verified in many cases. In
the following subsection some methods on detecting this type of chaos are presented.

2.2 Techniques on handling chaos

One of the most used techniques to demonstrate chaotic behaviour, the principle of bi-
furcation (i.e. a qualitative change of the limit behaviour of a dynamical system) does
not depend on any dimensions. This is not the case when using bifurcation diagrams to
visualize such changes. Hence, bifurcation diagrams are in general not really meaning-
ful to use when describing the dynamics of a neural network.

Having a description of an attractor, one can make use of the belonging Hausdorff
dimension to detect chaotic behaviour. The attractor is called fractal (and the underlying
system is called chaotic), if the Hausdorff dimension is not an integer.

The principle of topological equivalence can be used to transform a given function
into another one, being easier to analyze or where the behaviour is known. Thereby two
functions f and g are called topological equivalent, if there is an injective function h
sothatg=h~"' f h.

Characteristic exponents (or Liapunov exponents) give a measure of the drifting of
two neighbouring points apart from each other. An n-dimensional system is character-
ized by n Liapunov exponents. The existence of a positive Liapunov exponent implies
chaotical behaviour.
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Figure 1: Bifurcation diagram of the Wang-attractor.

3 Chaos in neural networks

3.1 A simple neural network model

Models in technical use are the background for the model we analyse. It is simplified
as much as possible to make the conclusions clearer. The weighted inputs of a unit are
added and one applies a sigmoid activation function to the result in order to limit the
output. The units are fully connected to each other and update their output by using a
synchronous iteration mode. The outputs of the units can hence be combined in a state
vector. The function f realised by a net can be formalised as the transition from one
state vector to another, f(z) = f (W - ). z is here the actual state vector,

z tanh(z,)

.fakt

Ty tanh(z,)

is the n-dimensional expansion of the activation function foz¢(z) = tanh(z) and W is
the weight matrix, which is constructed by rows of weights belonging to one unit.

3.2 The'Wang attractor

The chaotic behaviour found by Xin Wang occurs in a net with only two units and the
activation function fy;g(z) = (1 +¢° )~!. The weight matrix is

-5 5
W““'( -25 25 )
The parameter a is used to vary the dynamical properties of the net. The bifurcation
diagram in figure 1 demonstrates the period doubling to chaos for increasing values of

a.
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Wang described his attractor as aspecial case of a net with the matrix

z kx
W=a-(y Icy)'

He theoretically proved the existence of chaos by transforming this family of functions
into a topologically equivalent family of one-dimensional functions with chaotic mem-
bers. By using this method however, there is no way to find out why these special
members act in a chaotic manner.

By using f,: qualitatively the same properties can be observed. To compensate the
bigger gradient of f,;; one can use the weight matrix

_ -1 1
W=a-: ( _5 5 ) .
3.3 Analysis of the behaviour

The main intention here is to give an insight into the principles leading to chaotic be-
haviour. We therefore take a closer look at the state transition function f composed of
a linear mapping and a locally defined activation function being limited and increas-
ing monotonously. The two of them can not cause chaotic behaviour separately. This
behaviour must hence result from the interaction of the two components. The linear
mapping can be analysed by determining the eigenvalues and eigenvectors. The activa-
tion function retains the ordering, only disorting the output of the linear mapping.

The weight matrix
-1 1
W—a~< -5 5 )

has eigenvalues A; = 0 and A, = —4a with corresponding eigenvectors e; = (1, 1) and
e =(1,57.

Any starting point is therefore mapped in one calculation step directly onto the line
G = {z € R?|5z; = z,}, while its distance at G from the origin is scaled by a factor
—4a as shown in figure 2. The following application of the sigmoid activation function
fax: curves G in the direction of the main diagonal, which is reached at the points
(=1, 1) and (1, 1) for the distant point of G.

After having demonstrated a case of formation of chaotic behaviour, one can easily
formulate a suitably sufficient criterion on the bases of the knowledge acquired above.
Firstly, at least one of the eigenvalues must be equal to zero to get a convergence inde-
pendent of the parameter a in the direction of the origin.

Further, the curving caused by f ., acts only in direction of the diagonals, so the
space covered by eigenvectors with vanishing eigenvalues must include a diagonal, i.e.
a vector with components contained in the set {—1, 0, 1}. Finally, a linear combination
of the eigenvectors with non-vanishing eigenvalues must be in the same quadrant as the
diagonal. This must be so, to guarantee the curving of this linear combination towards
the right diagonal.

If we define the term - to be zero if z = 0, we can then summarize the above
considerations by the theorem below.
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Figure 2: Demonstration of the effect of multiplying different starting points with W.

Theorem 1 (chaos criterion) A net with activation function f ., and weight matrix
W so that the eigenvectors ey, ..., €m,€m41, ..., €n have corresponding eigenvalues
M, ..., Am With absolute value greater than zero and Ama1, - - - s An €qual to zero, can
act chaotically if a linear combination of ey, . . . , em reaches a quadrant whose diagonal
is described by a linear combination of €ma1, ..., en. Hence, if one can find suitable
values zy, ... 2y to define

zie 1+ +ITmem

N Q@
|

Tm+1€m+1 + -+ In€n

one can prove, that

z= : => net acts chaotically (N

4 Conclusions

In this article we have demonstrated, under which circumstances chaotic behaviour can
occur in neural networks. A sufficient criterion was formulated. Further investigations
[4] have shown the general advantages of analysing weight matrices to get new insight
into the behaviour of neural nets,
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There are several articles postulating the practical use of neural nets acting in a
chaotic manner. These articles are trying to put this effect into practice. But by consid-
ering the sensitive dependence of initial conditions characterising chaotic behaviour, we
can see that in principle it may be possible to describe a given chaotic acting system by
such a net. On the other hand it is obviously impossible to approximate the behaviour
of a chaotic system by learning processes. The reason being that a tiny deviation from
the optimal parameter setting can cause the net to act in an extremely different chaotic
way.
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