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Abstract

We investigate a neural network model designed as a system of the
central oscillator and peripheral oscillators interacting with a time delay
according to the phase-locking scheme. The delay corresponds to the fi-
nite velocity of signal propagation along the nervous fibers. We study the
synchronization under various values of delay. It is shown under some
conditions, that for a finite delay time there exists a multitude of syn-
chronization frequencies in contrast to the case without delay where the
system has at most one solution. The criteria for multiple solutions ex-
istence and their stability are found. The asymptotic behaviour under
increasing connection strengths is analyzed.

1. Introduction

Recent experimental observations show the significant role of oscillatory pro-
cesses in the functioning of the nervous system. There is a hypothesis that
information processing in the brain can be described in terms of synchroniza-
tion of activity of various neuron ensembles [1,2]. This causes a great number of
oscillatory neural network models of olfactory, visual and motor systems as well
as models of memory and attention [3]. The investigation of these models is also
stimulated by the fact, that a system of interacting oscillators exhibits complex
dynamics, which is suitable for mathematical analysis. The architecture of the
oscillator network model considered here was developed by V.I.Kryukov for at-
tention modeling [4]. The network consists of the central oscillator (CO) and
N peripheral oscillators (PO). The CO has forward and backward connections
with all POs. The POs are not coupled with each other and interact via the
CO. An oscillator behaviour is described by one variable, phase of oscillations.
The CO interacts with all the POs according to the phase-locking scheme. It
is supposed that the septo-hippocampal region can play the role of the CO and
cortex columns can play the role of POs. Synchronization of the CO with all
POs or with some part of them is considered as synchronization of oscillations
between septo-hippocampal region and some parts of the cortex. Attention has
been interpreted as the result of such synchronization. The finite velocity of
signal propagation along the nervous fibers causes a finite delay in transmission
of information between neurons. Therefore the time delay should be taken into
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account when one models biological neural networks. The network dynamlcs is
described by the following system of equations:

%‘1 = wp + Kz:,-=1 sin(zi(t — 7) — zo(t)),

(1)
& = w; + Ksin(zo(t — ) — zi(2)),
i=1,2,....N
where zo and wp are the phase and the natural frequency of the CO, respectively;
z; and wi, i =1,2,..., N, are the phases and the natural frequencies of POs;

K is the strength of coupling between oscillators; 7 is the time delay.

Our aim is to derive the criteria for all the oscillators synchronization at a
common constant frequency  and to analyse the asymptotic behaviour of the
network when connection strengths are increasing. To study the synchronization
mode we consider the solutions of system (1) in the form:

zo(t) = U, zi(t) = Qt + ¢, (2

where ¢; := z;i(t) — zo(t), i=1,2,..., N, are constants.

Note, that for 7 = 0 and |w; — QI <K, i=1,2,...,N, system (1) has the
single stable solution (2) with Q = E, —oWi/(N+1) a.nd é: = arcsin(w; — Q)/K
[5].

We will show that the nonzero delay significantly changes the behavior of
system (1). In this case the system admits several stable solutions of the form
(2) for the fixed values of the system parameters and, hence, the neural network
model admits several synchronization frequencies. Investigating the model of
N oscillators interacting via the central oscillator as a model of attention, we
have got the following new results concerning collective synchronization in large
assemblies of coupled neural oscillators interacting with a time delay:
1.For any values of N and 7 we derive the necessary and sufficient conditions of
the existence of solutions of system (1) in the case of full synchronization.
2.We formulate a simple criterion of stability of solutions.
3.We also derive rigorous results concerning the asymptotic behaviour of the
network when K is inicreasing. The results allow us to obtain some estimates of
the network behaviour for finite values of K.

Thus, we can compute the number of the synchronization frequencies as
a function of K and 7 and the values of frequencies and phase differences of
synchronized oscillators.

2. Synchronization of oscillators at a common constant frequency.
Substituting the solution (2) into (1), we obtain the function f(2) to de-

termine the values of the synchronization frequency Q and the formulas for the
values ¢;:

N
Q) =Q-wy— K Zsin(arcsin((—-fl)/K) -2Qr)=0 3)

=1
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and
¢; = arcsin(w; — Q)/K - Qr, i=1,2,...,N.

This allows us to determine all the solutions of (1). The necessary condition
of the existence of the solutions K > K, = Aw/2, where Aw := max; w; —
min; w;, is given by (3). The sufficient condition is formulated in the following
statement.

Statement 1. For fixed wp and w; there exists a value K*, K* > K.,
such that (3) has a solution for any values 7 if and only if K > K* For any fixed
K,K. < K < K*, there exists px (pr < 00) intervals I, = (1(s), 72(s+ 1)) with
0 < s < px — 1 of values 7 such, that (3) has no solution for all + € |J I,.

In the Figure 1. the solid line separates the region of the existence of solutions
from the region of the values K and 7, for which the system has no solution.

Figure 1. The region 1 is the region of the existence of solutions.
The region 2 is the region, where the system (1) has no solution.
N =9, wg = 1, and w; are uniformly distributed on [1,2].
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Thus, if the coupling strength K between the oscillators is sufficiently small,
the synchronization of all the oscillators at a common frequency is possible for
some values of the delay only. The following statement determine the number

of zeros of the function f(2) depending on the influence of the parameters
K, 7, w;.

Statement 2. Suppose, that Q,, is the n-th solution of (3) (2, are arranged
in the increasing order in n) and D, = Q, — Q,. Then for any n > 1

lim D, = x/2r.
K00
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Thus all the solutions of the equation (3) are spaced asymptotically (for
K — o0) at the same distance. Consequently, when K — oo, the number of
solutions (g) of (3) over the whole region of the existence of the function f(£)
can be determined as:

g~ [2(2K - Aw)r/], (4)

where [] denotes the rounding down a real number. It follows from (4) that
the number of solutions of equations (3) increases with K and 7. A decrease in
the scatter of natural frequencies Aw also increases q. Thus, we conclude that
the important feature of system (1) for 7 # 0 and fixed K, 7,w; is the existence
of multiple solutions and, consequently, of multiple synchronization frequencies

QK, 1,w;).
3. Stability of solutions.

Criterion. A solution of system (1) in form (2) is stable iff

N
Zcos(qb,- - Qr) >0,

i=1

where

éi = arcsin(w; ~ Q)/K)-Qr, i=1,2,...,N.

To derive this statement we apply the amplitude-phase method [6] to a
quastpolynomial of the linear system, obtained by the linearization of (1) near
the solution.

Figure 2 shows the behavior of all the solutions (2) of system (1) for K = 2.

Figure 2. The solid lines correspond to the stable solutions,
and the dotted lines correspond to the unstable ones.
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4. Asymptotic behavior of phase differences

Numerical experiments have shown that either ¢; &~ 0(mod27) or ¢; = 7(mod2r)
for all stable solutions, and either ¢; ~ w/2(mod2%) or ¢; ~ 3v/2(mod2x)
(i=1,2,...,,N) for unstable solutions.

Figure 3. The average phase difference (K = 2).
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Fig.3 shows the average phase difference ¢ = Ef_’__l é:i/N versus 7 for all
solutions of system (1) for K = 2. The solid lines indicate the stable solutions
and the dotted lines indicate the unstable ones. It is clear that all POs are syn-
chronized with the CO either in phase or in antiphase. Moreover the following
statement is valid:

Statement 3.

limg .0 ¢; = 0(mod27) or limg .o ¢; = 7(mod2)

for stable solutions;

limg oo ¢i = 7/2(mod27) or  limg oo ¢i = 37/2(mod27)

for unstable solutions;
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5. Summary

The oscillator network behaviour described by system (1) with time delay cou-
pling differs significantly from the one without delay. The main features of this
behaviour are the following. For fixed values of the parameters several stable
solutions of the system (and consequently, multiple synchronization frequen-
cies) exist. The number of frequencies increases if the strength of coupling and
the delay increase and the scatter of the oscillator natural frequencies decreases.
Introduction of a delay T into system (1) change substantially the existence con-
ditions of its solutions: for small values of the coupling strength K the solutions
exist for certain intervals of values 7 only. Consequently, for small values of the
coupling strength there are intervals of r where the synchronization is impos-
sible. At the same time, for 7 lying out of these intervals the synchronization
occurs at one or more frequencies.

The oscillator network exhibits two types of stable synchronous regimes: the
first one takes place when all POs and the CO are synchronized in phase, and
the second one occurs when the synchronization takes place in antiphase.

References

{1] A.Atiya, P.Baldi. Oscillations and synchronization in neural networks: an
exploration of the labelling hypothesis. International Journal of Neural Sys-
tems, 1 (1989) 103.

(2] C.M.Gray, P.Konig, A.K.Engel, and W Singer. Oscillatory responses in cat
visual cortex exhibit inter-columnar synchronization which reflects global
stimulus properties. Nature, 338 (1989) 334.

[3] G.N.Borisyuk, R.M.Borisyuk, Ya.B.Kazanovich, T.B.Luzyanina, T.S. Tur-
ova, and G.S.Cymbalyuk, Oscillatory neural networks. Mathematics and
applications. Mathematical Modelling, 1 (1992) 3 (in Russian).

[4] V.L Kryukov. Short-term memory as a metastable state. 5.” Neurolocator”,
a model of attention. In Cybernetics and Systems (Trappl B., ed.), 1988,
p-999-1006.

[5] Ya.B.Kazanovich, V.I.Kryukov and T.B.Luzyanina. In Neurocomputers
and Attention 1: Neurobiology, Synchronisation and chaos (A.V.Holden,
V.LKryukov,eds), 1991, p.269-284.

{6] L.E.EI’sgol’ts, S.B.Norkin. Introduction to the theory of differential equa-
tions with deviating argument, Moscow, 1971 (in Russian).

134





