A non linear Kohonen algorithm

Jean-Claude FORT * Gilles PAGÈS †

Introduction and background material

It is well known (see [5],[6]) that, wether the stimuli distribution μ on \mathbb{R}^d is continuous¹ or not, the *d-dim* Kohonen algorithm with 0 neighbour² and *n* points (or *units*) is a stochastic gradient that derives from a potential defined

by
$$\forall x = (x_1, \dots, x_n) \in (\mathbb{R}^d)^n$$
 $E_n^{2,\mu}(x) := \int \min_{1 \le i \le n} ||x_i - \omega||^2 \mu(d\omega)$ (1)

provided that μ has a compact support. In Neural Networks terminology x_i is for the weight of unit i and ω is a generic stimulus. For obvious reasons, this potential may be considered as a quadratic one. In [6] was introduced a non quadratic generalization of this potential. For every $\alpha > 0$, the potential $E_n^{\alpha,\mu}$ was simply defined on the space $(\mathbb{R}^d)^n$ by

$$\forall x = (x_1, \dots, x_n) \in (\mathbb{R}^d)^n \quad E_n^{\alpha, \mu}(x_1, \dots, x_n) := \int \min_{1 \le i \le n} ||x_i - \omega||^{\alpha} \mu(d\omega). \quad (2)$$

The Kohonen potential corresponds to $\alpha = 2$. Actually, if μ is continuous,

$$E_n^{\alpha,\mu}(x) = \sum_{i=1}^n \int_{C_i(x)} \|x_i - \omega\|^{\alpha} \mu(d\omega)$$
(3)

where $(C_i(x))_{1 \leq i \leq n}$ denotes the so-called Euclidean Voronoï tesselation of the space \mathbb{R}^d related to x. In fact, this tesselation is only defined on $D_n := \{x \in (\mathbb{R}^d)^n \mid x_i \neq x_j \iff i \neq j\}$, by

$$C_i(x) := \{u \in \mathbb{R}^d / \|x_i - u\| < \|x_k - u\|\}, \text{ if } k \neq i\}, 1 \leq i \leq n.$$

^{*}Univ. Nancy I, Fac. Sciences, Dpt de Math., B.P. 239, F-54506 Vandœuvre-Lès-Nancy Cedex & SAMOS, Univ. Paris I, 75634 Paris Cedex 13. Mail: fortjc@iecn.u-nancy.fr.

[†]Labo. de Probabilités, URA 224, Univ. P. & M. Curie, Tour 56, F-75252 Paris Cedex 05 & Univ. Paris 12, UFR Sciences et Technologie, Dpt Math. 61, av. du Gal de Gaulle, F-94010 Crteil Cedex. Mail: gpa@ccr.jussieu.fr.

¹A measure is continuous iff no hyperplan is weighed by μ . All the distributions that have a density are continuous.

² also known as a "space quantization algorithm".

Following decomposition (3), $E_n^{\alpha,\mu}(x)$ was called the " (α,μ) -magnitude of the Voronoï tesselation at $x = (x_1, \dots, x_n) \in (\mathbb{R}^d)^n$ ".

When $\alpha \in (0,2]$, the (α,μ) -magnitude function $E_n^{\alpha,\mu}$ was originally introduced in [6] as an upper-bounding modulus in a new method for high dimensional numerical integration of α -hölder³ functions or functions having a $(\alpha-1)$ -hölder first derivative. This new numerical integration technique is based on the Voronoï tesselation of any n-uplet x^* that minimizes $E_n^{\alpha,\mu}$ (see [6]).

The proposed numerical method for the computation of x^* is of course the gradient descent algorithm related to the potential $E_n^{\alpha,\mu}$

$$X^{t+1} = X^{t} - \varepsilon_{t+1} H_n^{\alpha}(X^{t}, \omega^{t+1}), \ X^0 \in D_n$$
 (4)

where, for every $x \in D_n$ and $\omega \in C$, $H_n^{\alpha}(x,\omega) := \left(\frac{x_i - \omega}{\|x_i - \omega\|} \|x_i - \omega\|^{\alpha - 1} \mathbf{1}_{C_i(x)}(\omega)\right)_{1 \le i \le n}$,

 $(\varepsilon_t)_{t\geq 1}$ is]0, 1[-valued sequence of steps and ω^t is an i.i.d. sequence of random variables with distribution μ . This formula straightforwardly derives from the

variables with distribution
$$\mu$$
. This formula straightforwardly derives from the integral representation on D_n of $\nabla E_n^{\alpha,\mu}(x) = \alpha \left(\int_{C_i(x)} \|x_i - \omega\|^{\alpha-1} \frac{x_i - \omega}{\|x_i - \omega\|} \mu(d\omega) \right)_{1 \le i \le n}$.

1 Design of the non linear Kohonen algorithm

Let us consider now a general unit set $I \subset \mathbb{Z}^d$ endowed with a topological structure provided by a neighbourhood function σ defined on $I \times I$. In most practical cases $\sigma(i,j) := v(i-j)$ with v(-x) = v(x) and we will often denote $\sigma(i-j)$ instead of $\sigma(i,j)$. Then the algorithm displays as

(i) Computation of the winning unit $i^{t+1} := i(\omega^{t+1}, X^t) = \operatorname{argmin}_k ||\omega^{t+1} - X_k^t||$. In case of conflict, one takes the lexicographic minimum,

$$(ii) \ \forall j \in I, \ X_j^{t+1} = X_j^t - \varepsilon_{t+1} \sigma(i^{t+1} - j) \frac{(X_j^t - \omega^{t+1})}{\|X_i^t - \omega^{t+1}\|} \|X_j^t - \omega^{t+1}\|^{\alpha - 1},$$
 (5)

where $(\varepsilon_t)_{t\geq 1}$ is still a sequence of (0,1)-valued real numbers.

Where does this extension come from? Assume for some time that μ has a discrete support, namely $supp(\mu) := \{\omega_1, \dots, \omega_p, \dots\}$ and set

$$\forall x \in (\mathbb{R}^d)^n \quad E_I^{\alpha,\mu,\sigma}(x) := \sum_{i,j \in I} \sigma(i-j) \int_{C_j(x)} ||x_i - \omega||^{\alpha} \mu(d\omega).$$

Then, following [7] or [8], one checks that, whenever no ω_p lies in the borders $\partial C_i(x)$ of the tessels $C_i(x)$ i.e. $supp(\mu) \cap (\bigcup_{i \in I} \partial C_i(x)) = \emptyset$, $E_I^{\alpha,\mu,\sigma}$ is differentiable at $x = (x_i)_{i \in I}$ with a gradient $\nabla E_I^{\alpha,\mu,\sigma}$ given by

 $³f: E \mapsto F \text{ is } \alpha\text{-h\"older iff } \forall x, y \in E, \ ||f(x) - f(y)||_E < C||x - y||_F^{\alpha} \text{ where } E \text{ and } F \text{ are normed vector space.}$

$$\nabla E_I^{\alpha,\mu,\sigma}(x) = \left(\sum_{j \in I} \sigma(i-j) \int_{C_j(x)} \frac{x_i - \omega}{\|x_i - \omega\|} \|x_i - \omega\|^{\alpha - 1} \mu(d\omega)\right)_{i \in I}.$$
 (6)

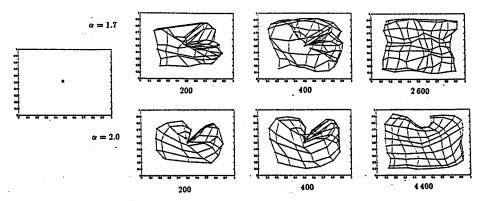
A contrario when μ has a density f i.e. $\mu = f(\omega)d\omega$, $\frac{\partial}{\partial x_k}\mu(C_i(x))$ is generally not 0 whenever $\overline{C_i}(x) \cap \overline{C_j}(x) \neq \emptyset$. Actually, following [4], it reads

$$\frac{\partial}{\partial x_k}\mu(C_i(x)) = \int_{\overline{C_i(x)}\cap\overline{C_k}(x)} f(\omega) \left(\frac{1}{2}\overrightarrow{n}_x^{ik} + \frac{1}{||x_i - x_k||} (\frac{x_i + x_k}{2} - \omega)\right) \lambda_x^{ik}(d\omega)$$

where $\vec{n}_x^{ik} := \frac{x_k - x_i}{\|x_k - x_i\|}$ and λ_x^{ik} denotes the (d-1)-dimensional Lebesgue measure on $\overline{C_i}(x) \cap \overline{C_k}(x)$ (when not reduced to a (d-2)-dimensional affine subspace). So, in this case $\nabla E_I^{\alpha,\mu,\sigma}$ is still differentiable at any point of D_n , but has no longer any integral representation with respect to μ . More generally, the equation (6) holds as soon as $\mu(C_i(x+h)) - \mu(C_i(x)) = o(h)$ as $h \to 0$.

2 Application to the accelereted self-organization

Rather unexpectedly, this generalization of the algorithm turned out to have some interesting self-organizing feature. Actually, this observation is the main motivation for writing this contribution. Many 2-dimensional simulations implemented with various distributions showed that self-organization is carried much faster with α less than 2, at least when ε is small. For instance with a unit set $I:=\{1,\cdots,7\}\times\{1,\cdots,7\}$, an 8-neighbour σ function⁴, $\mu:=U([0,1]^2)$ and $\varepsilon:=0.1$, we observed an obvious self-organization after 2000 trials with $\alpha=1.7$ instead of 4400 trials with the usual $\alpha=2$ parameter. Fig. 1 below shows the main self-organizing steps with these two values of α .



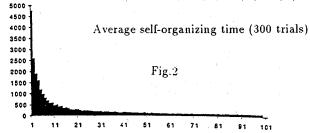
Nevertheless, if definitely "obvious" on simulations, self-organization is not $\frac{4\sigma(i-j):=1_{\{|i_1-j_1|\leq 1\}}1_{\{|i_2-j_2|\leq 1\}}}{1_{\{|i_2-j_2|\leq 1\}}}$ where $i=(i_1,i_2), j=(j_1,j_2)$.

a rigorously defined notion in multi-dimensional settings so far. So, in order to carry out a relevant study of the self-organization time as a function of the parameter α , we had to restrict to the one dimensional setting where self-organization amounts to monotonicity of the $i \mapsto x_i$. We based our comparison on a former empirical study mentionned in [2] and recalled below in a few words.

2.1 Self-organization of the linear 1-dim Kohonen with two neighbours

According to the theoretical results the self-organizing time of the 2 neighbour 1-dimensional Kohonen algorithm is a.s. finite and actually has an exponential moment ([3], [1]) for example when the stimuli distribution is locally continuous.

The simulations already discussed in [2] emphasize that the self-organizing time is quite "reasonnable" when ε is not too small. These simulations, implemented with n=10 points and $\mu=U([0,1])$, were carried out on 300 independant trials of (independant) stimuli for each of the 99 selected values of the step $\varepsilon \in \{k/100, 1 \le k \le 99\}$. The same initial value was chosen at random for all the simulations. It contains 7 breaks of monotonocity: x:=(0,102;0,901;0,49;0,700;0,049;0,895;0,251;0,884;0,875;0,692).



These results obviously show that the self-organization time, at least in the 1-dimensional setting, is a steep decreasing function of the step ε . If it looks natural for small values of ε ($\varepsilon \approx 0$), this is much more unexpected for the great values of ε ($\varepsilon \approx 1$). This phenomenon is strongly related to the number of neighbours, actually 2. Thus, if one considers a (linear) Kohonen with 4 or 6 neighbours, the self-organizing time has a minimum value and then increases again. If $\alpha < 2$ we will see below that the same phenomenon occurs.

2.2 Simulations with the non linear Kohonen algorithm

The most striking feature of the above study is that, at least with 2 neighbours, the closer to 1ε is, the faster self-organization occurs. However, $\varepsilon \approx 1$ is a totally irrealistic choice when taking into account the quantization phase of the process which requires to let ε go to 0. So, it seems quite valuable to cut down the self-organization time for some ε close to 0.

Notice that a contrario, whenever $\alpha < 2$, self-organization is no longer stable,

at least on a theoretical point of view ⁵. However, as far as actual simulations are concerned, self-organization is quite robust for small enough ε . Of course some important degradations is observed when ε increases. That is why we processed our testing bench only for small $\varepsilon \in (0, 0.45]$, namely $\varepsilon \in \{\frac{k}{100}, 1 \le k \le 10, 0.12, 0, 14, 0.16, 0.18, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45\}$.

The non linear Kohonen algorithm was tested with 4 values of the parameter α , namely $\alpha \in \{1.6, 1.7, 1.8, 1.9\}$, to which the linear case $\alpha = 2$ was added in the below tables. The initial value and the number of trials -300 – for each couple (α, ε) is the same as for $\alpha = 2$. The results are displayed in the below table (rounded up to the nearest integer) and frequency histograms.

-	εα	1.6	1.7	1.8	1.9	2.0	
	0.01	956*	1 589	2 132	2 756	4 791	
	0.02	530*	743	1 178	1 727	2 735	
	0.03	410*	552	882	1 215	1 764	
3000 mean selforcanizing time, alotawi. 2	0.04	320*	420	587	872	1 349	3000 mean selforgamining sime, alpha=).
2000	0.05	252*	377	474	781	1 134	2000
1000	0.06	252*	314	477	638	983	1000
السيداً ،	0.07	224*	286	394	547	908	
10 20 30	0.08	218*	280	330	486	724	10 20 30
	0.09	190*	216	293	486	601]
	0.10	193*	193	267	461	523	
	0.12	171*	175	240	378	499	
	0.14	173*	175	245	312	463	
	0.16	177	150*	199	286	385	}
3000 mean selforganizing time, alpha=1.	0.18	185	141*	170	240	349	3000 mean selforeanizing time, alpha=1.6
2000	0.20	209	142*	173	222	322	2000
1000	0.25	407	131*	149	211	284	1000
	0.30	719	216	134*	180	224	10 20 30
	0.35	2 610	369	132*	148	198]
	0.40	7 114	660	157	143*	178	<u>.</u>
	0.45	21 170	1 554	1 942	126*	174]

The * denotes the minimum self-organizing time observed for a given ε .

2.3 Conclusions

In our opinion, the following remarks are quite interesting for future simulations and tests:

- If ε <0.15 then the self-organizing time is always increasing with α .
- If $\varepsilon > 0.15$ then the self-organizing time goes through a minimum as a function of α . For example, if $\varepsilon = 0.16$, it is achieved at $\alpha = 1.7$; for $\varepsilon = 0.30$, it is achieved at $\alpha = 1.8$. We think that, for every $\varepsilon \in (0.15, 1)$, there is an optimal value $\alpha_{\min}(\varepsilon)$ of the parameter α that probably grows up with ε .

⁵It means that $i \mapsto X_i^t$ may loose its monotinicity after self-organization occurred which is impossible if $\alpha = 2$.

• Whatsoever, the most interesting feature of these simulations is that when ε is close to 0, the self-organization goes faster with smaller α . Thus, if $\varepsilon = 0.01$, the self-organization time is more than 5 times shorter with $\alpha = 1.6$ than with $\alpha = 2$. Consequently, using $\alpha = 1.6$ and small values of ε will both achieve an accelerated self-organization and a good space quantization.

Conclusion

In this paper, we give some evidences about the superiority of this "non linear" Kohonen algorithm to achieve both self-organization and space quantization, provided that one works with some small constant gain parameter ε . Although these first empirical results are quite promising, some further investigations must be carried out in two directions:

- A wide testing bench to confirm the efficiency of the method and to develop some "know how" concerning the optimal parameters (α, ε) .
- Some theoretical study in order to provide some analytic knowledge of the function $\varepsilon \mapsto \alpha_{\min}(\varepsilon)$.

References

- [1] C. Bouton, G. Pagès, Self-organization and convergence of the one-dimensional Kohonen algorithm with non uniformly distributed stimuli, Stochastic Processes and their Applications, 47, 1993, p.249-274.
- [2] C. Bouton, G. Pagès, Self-organization of the 1-dimensional Kohonen algorithm, Proceedings of Aspects théoriques des réseaux de neurones, Congrès satellite du Congrès Européen de Mathématiques, Paris, 2-3 Juillet 1993.
- [3] M. Cottrell, J.C. Fort, Etude d'un algorithme d'auto-organisation, Annales de l'Institut Henri Poincaré, 23, 1987, n°1, p.1-20.
- [4] J.C. Fort, G. Pagès, Sur la convergence p.s. de l'algorithme de Kohonen généralisé, note aux CRAS, série I, 1993, 317, p.389-394.
- [5] T. Kohonen, Self-organizing maps: optimization approaches, Artificial Neural Networks, T. Kohonen et al. ed., Elsevier Science Publishers B.V., 1991, p.981-990.
- [6] G. Pagès, Mosaïques de Voronoï, algorithmes de quantification de l'espace et intégration numérique, pré-publication n°138 du Labo. Proba. de l'Univ. Paris 6, 1992 (soumis). Version (anglaise) abrégée dans Proceedings of the ESANN 93, M. Verleysen éd., Editions Quorum (ISBN 2-9600049-0-6), Bruxelles, 1993, p.221-228.
- [7] H. Ritter, T. Martinetz, K. Schulten, Neural Computation and Self-organizing Maps, Addison-Wesley, 1992, New-York, 306p.
- [8] P. Ruzicka, On convergence of learning algorithm for topological maps, Neural Networks World, 4, 1993, p.413-424.