ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 257-262

A non linear Kohonen algorithm

Jean-Claude FORT * Gilles PAGES 1

Introduction and background material

It is well known (see [5],[6]) that, wether the stimuli distribution p on R? is
continuous® or not, the d-dim Kohonen algorithm with 0 neighbour? and n
points (or units) is a stochastic gradient that derives from a potential defined

by Ve=(er,m) € R E2AG) = [ min leiolfutd) ()

provided that p has a compact support. In Neural Networks terminology z; is
for the weight of unit i and w is a generic stimulus. For obvious reasons, this
potential may be considered as a quadratic one. In [6] was introduced a non
quadratic generalization of this potential. For every a >0, the potential E#
was simply defined on the space (R%)" by

Vz:(:cl,---,zn)e(IRd)" E;’.”“(:vl,--',wn)==/11g?2n””*““’“a"(d“’)- (2)

The Kohonen potential corresponds to a=2. Actually, if 4 is continuous,
Er@) =Y [ lei—olou() ©
i=1 Ci(z)

where (Ci(z))1<i<n denotes the so-called Euclidean Voronoi tesselation of the
space R? related to z. In fact, this tesselation is only defined on Dy, :={z €

(RY)" [ 2; # zj <= i #j}, by
Ci(z) ={ue R/ |zi—u] < |zx—u]}, if k#£1}, 1<iln.
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1 A measure is continuous iff no hyperplan is weighed by u. All the distributions that have
a density are continuous.

2,ls0 known as a “space quantization algorithm”.
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Following decomposition (3), E5#(z) was called the “(c, yt)-magnitude of the
Vororioi tesselation at z=(z1, -+, 2, ) € (R%)"”.

When a € (0,2], the (o, p)-magnitude function E# was originally intro-
duced in [6] as an upper-bounding modulus in a new method for high dimen-
sional numerical integration of a-hélder® functions or functions havmg a (a—1)-
holder first derivative. This new numerical mtegratlon technique is based on
the Voronoi tesselation of any n-uplet z* that minimizes EX# (see [6]).

The proposed numerical method for the computation of z* is of course the
gradient descent algorithm related to the potential EX#

XM = X' — e HY(X W'Y, X% € D, (4)

where, for every £ € Dy, andwe€ C, HE (z,w):= (" Hl]a:l —w|*h1 (cﬂ) ,
Gtz 1<ikn

(€¢)e>1 is ]0, 1[-valued sequence of steps and w! is an i.i.d. sequence of random
variables with distribution p. This formula straightforwardly derives from the

integral representation on D, of VES*(z) =« / |2; —w]*? —azii,u(dw)
Cil=) i =l 1<ikn

1 Design of the non linear Kohonen algorithm

Let us consider now a general unit set I C Z? endowed with a topological
structure provided by a neigbourhood function ¢ defined on I x I. In most
practical cases o (3, j) := v( — j) with v(—z) = v(z) and we will often denote
o(i—j) instead of o(z, j). Then the algorithm displays as

(1) Computation of the winning unit #*+!:=i(w**!, X*) =argminy |jw!t! - X}||.
In case of conflict, one takes the lexicographic minimum,
g

( t+1

X w _
——WHIIX} -l (5)

@) Viel, Xjt' = X] — g0+ - J)th

where (g;):>1 is still a sequence of (0, 1)-valued real numbers.
Where does this extension come from? Assume for some time that y has a
discrete support, namely supp(p):={ws,---,wp, -} and set

Vo€ B BP0 = 3 oti=i) [ -l

t,J€l

Then, following [7] or [8], one checks that, whenever no w, lies in the borders
0C;(z) of the tessels C;() i.e. supp(pu)N(Uie10Ci(x)) =0, EP* 7 is differentiable
at £=(z;)ics with a gradient VE;"*“ given by

3f: E — Fis o-hdlder iff Vz,y € E, ||f(z)— f(¥)|lz < Cllz — y||3 where E and F are
normed vector space.
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a,i,0 . . Ti—Ww Q-
VEpP*(z) = | 3 o(i-J) e —wll*u(dw) | . (6)
jer Cj(z) ”zi - w” ier
A contrario when p has a density f i.e. p= f(w)dw, -5%;1(0.-(::)) is generally
not 0 whenever C;(z) N Cj(z)#0. Actually, following [4], it reads

s] 1. 1 z; + Tk :

3 MG =/ (—‘;"+ - )A;"dw

amk l‘l( ( )) —CT(z)n—C-:(z) f(w) 2"’ ”17,‘ —- l‘k"( 2 (d) ( )
ik, Tk T T

where 7, and X} denotes the (d-1)-dimensional Lebesgue measure

e = =il
on Ci(z)NC(z) (when not reduced to a (d~2)-dimensional affine subspace). So,
in this case VE7"* is still differentiable at any point of D,,, but has no longer
any integral representation with respect to p. More generally, the equation (6)
holds as soon as p(Ci(z + h))—p(Ci(z))=o0(h) as h—0.

2 Application to the accelereted self-organization

Rather unexpectedly, this generalization of the algorithm turned out to have
some interesting self-organizing feature. Actually, this observation is the main
motivation for writing this contribution. Many 2-dimensional simulations im-
plemented with various distributions showed that self-organization is carried
much faster with « less than 2, at least when ¢ is small. For instance with a
unit set I:={1,---,7}x{1,--+,7}, an 8-neighbour ¢ function?, p:=U ([0, 1]?) and
€:=0.1, we observed an obvious self-organization after 2000 trials with «=1.7
instead of 4400 trials with the usual o =2 parameter. Fig. 1 below shows the
main self-organizing steps with these two values of a.

a=17 I 3
T 3 ]
R VN

Nevertheless, if definitely “obvious” on simulations, self-organization is not

*o(i = 1) =1{i; =511} Llia-sal<1} Where i=(i,d2), 3= (i1, 2)-

259



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 257-262

a rigorously defined notion in multi-dimensional settings so far. So, in order
to carry out a relevant study of the self-organization time as a function of
the parameter @, we had to restrict to the one dimensional setting where self-
organization amounts to monotonicity of the ¢+ z;. We based our comparison
on a former empirical study mentionned in [2] and recalled below in a few words.

2.1 Self-organization of the linear 1-dim Kohonen with
two neighbours

According to the theoretical results the self-organizing time of the 2 neighbour
1-dimensional Kohonen algorithm is a.s. finite and actually has an exponential
moment ([3], [1]) for example when the stimuli distribution is locally continuous.
The simulations already discussed in [2] emphasize that the self-organizing
time is quite “reasonnable” when ¢ is not too small. These simulations, im-
plemented with n = 10 points and p = U([0,1]), were carried out on 300 in-
dependant trials of (independant) stimuli for each of the 99 selected values
of the step ¢ € {k/100,1 < k < 99}. The same initial value was chosen
at random for all the simulations. It contains 7 breaks of monotonocity :
z:=(0,102;0,901;0,49;0, 700; 0, 049; 0, 895; 0, 251; 0, 884; 0, 875; 0, 692).

5000
4500
4000 Average self-organizing time (300 trials)
3500
3000
2500
2000 Fig.2
1500
1000
500

0 . . - - ——

1 1 21 31 a1 s 61 71 . 81 91 101

These results obviously show that the the self-organization time, at least
in the 1-dimensional setting, is a steep decreasing function of the step ¢. If it
looks natural for small values of ¢ (¢20), this is much more unexpected for the
great values of ¢ (¢~ 1). This phenomenon is strongly related to the number
of neighbours, actually 2. Thus, if one considers a (linear) Kohonen with 4 or
6 neighbours, the self-organizing time has a minimum value and then increases
again. If <2 we will see below that the same phenomenon occurs.

2.2 Simulations with the non linear Kohonen algorithm

The most striking feature of the above study is that, at least with 2 neighbours,
the closer to 1 ¢ is, the faster self-organization occurs. However, e~ 1 is a totally
irrealistic choice when taking into account the quantization phase of the process
which requires to let € go to 0. So, it seems quite valuable to cut down the
self-organization time for some ¢ close to 0.

Notice that a contrario, whenever a < 2, self-organization is no longer stable,
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at least on a theoretical point of view 3. However, as far as actual simulations
are concerned, self-organization is quite robust for small enough e. Of course
some important degradations is observed when ¢ increases. That is why we
processed our testing bench only for small ¢ € (0, 0.45], namely ¢ € {Tlé“o’ 1<
k<10, 0.12, 0,14, 0.16, 0.18, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45}.

The non linear Kohonen algorithm was tested with 4 values of the parameter
a, namely o€ {1.6, 1.7, 1.8, 1.9}, to which the linear case a=2 was added in
" the below tables. The initial value and the number of trials - 300 ~ for each
couple (a,¢) is the same as for o =2. The results are displayed in the below
table (rounded up to the nearest integer) and frequency histograms.

e 1.6 1.7 1.8 1.9 2.0

0.01 956* | 1589 | 2132|2756 | 4791
0.02 530* 743 1178 | 1727 | 2735
0.03 410* 552 882 (1215} 1764

wcuteiz (0,04 | 320* 420 587 872 | 1349 e
o 0.05 | 252% 377 474 781 [ 1134 |,
oo 0.06 | 252* 314 477 638 983 ML
——di| 0.07 | 224* 286 394 547 908
0.08 218* 280 330 486 724 ro»®

0.09 190* 216 293 486 601
0.10 193* 193 267 461 523
0.12 171* 175 240 378 499
0.14 173* 175 245 312 463
0.16 177 150* 199 286 385

et (918 | 185 | 141F | 170 | 240 | 349 |= s

- 020 | 209 | 142° | 173 | 222 | 322 |m
m‘\\__ 025 | 407 | 131" | 149 | 211 | 284 lwm . 4
~—— 1[50 | 719 | 216 | 134* | 180 | 224 —]

0.35 2610 369 132* 148 198
0.40 7114 660 157 143* 178
045 | 21170 | 1554 | 1942 | 126* 174

The * denotes the minimum self-organizing time observed for a given €.

2.3 Conclusions

In our opinion, the following remarks are quite interesting for future simulations
and tests:

e If £<0.15 then the self-organizing time is always increasing with o.

e If£>0.15 then the self-organizing time goes through a minimum as a function
of a. For example, if ¢ = 0.16, it is achieved at @ = 1.7 ; for € = 0.30, it is
achieved at o= 1.8. We think that, for every € € (0.15, 1), there is an optimal
value amin(€) of the parameter « that probably grows up with .

51t means that i+ X} may loose its monotinicity after self-organization occured which is
impossible if a=2.
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o Whatsoever, the most interesting feature of these simulations is that when €
1s close to 0, the self-organization goes faster with smaller o. Thus, if £=0.01,
the self-organization time is more than 5 times shorter with or=1.6 than with
o = 2. Consequently, using o = 1.6 and small values of ¢ will both achieve an
accelerated self-organization and a good space quantization.

Conclusion

In this paper, we give some evidences about the superiority of this “non linear”
Kohonen algorithm to achieve both self-organization and space quantization,
provided that one works with some small constant gain parameter . Although
these first empirical results are quite promising, some further investigations must
be carried out in two directions:

e A wide testing bench to confirm the efficiency of the method and to develop
some “kmow how” concerning the optimal parameters (a, €).

e Some theoretical study in order to provide some analytic knowledge of the
function € — apmin ().
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