ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 263-269

Self-Organizing Maps Based on
Differential Equations

Andreas Kanstein and Karl Goser

Universitit Dortmund, Fakultit fiir Elektrotechnik,
D-44221 Dortmund, Germany.
E-mail: kanst@luzi.e-technik.uni-dortmund.de

Abstract. As an example of real parallel processing in self-organizing
maps this paper presents an adaptation algorithm based on a differential
equation. This new model of self-organizing maps uses an equation of
the type of the Schridinger wave equation to compute the activation of
the map neurons. The amplitude function gives both a fuzzy activation
and the interaction of the processing elements. The interaction thereby
is not fixed to an invariant shape. The new features of this model are
demonstrated in relation to Kohonen maps. In a map enhanced with
output units the fuzzy activation offers the possibility of an interpolative
computation of the system’s output value. The ordering properties of
this enhanced network are tested with a well known classification task.

1 Introduction

Self-organizing maps are types of artificial neural networks characterized by
competitive learning of the processing elements (neurons) [1]. Therefore they can
be used for pattern analysis of complex input signals. Kohonen first introduced
self-organizing maps as a model of brain mapping of sensory inputs [2]. Later
the physical model was formulated in a more abstract manner, relating the
learning mechanism to vector quantisation algorithms (e.g., [3]). In comparison
to the physical model, this formulation has a major drawback. Only the best
matching element gives the active response of the net, and the interaction of
the processing units is fixed to a constant shape. This makes the algorithm
mathematically more plausible, but inherits a quite artificial formulation of
self-organization. The computation of the best matching element is a process of
global interaction, and therefore a fundamental drawback in the fully parallel
neural network structure. Furthermore the convergence rate of this adaptation
process is slow.

An alternative is a self-organizing map where the activation of the map is
described by the solution of a differential equation. With a differential equation,
a global function is defined locally and can be calculated in a fully parallel
manner. Tryba and Goser [4, 5] first proposed an adaptation scheme which uses
a differential equation similar to the time-dependent Schrodinger equation. But
the iteration of the complex valued variables is very time consuming and the
control of the parameters is difficult. Here this idea becomes more practical by

263

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 263-269

the implementation of a time independent, real-valued differential equation, as
will be shown in the next section.

The solution of the differential equation is regarded as a fuzzy activation of
the map, which determines the adaptation of the weights. This increases the
convergence rate [6], as explained in Sect. 3. It is also used to. expand the map
by a projection layer for real-valued outputs, similar to the projection scheme
in the network model of Demartines and Hérault [7]. This will be demonstrated
in Sect. 4.

2 The Adaptation Process

Self-organizing maps consist of two neuron layers, the input layer and the map
layer. The input vector x € IR® is fed into the net through & input neurons. Ev-
ery input neuron is connected to all n neurons of the map layer, called processing
elements. The connections of the layers (the weights) are therefore described by
vectors w; e R*, i =1...n. ;

The processing elements are arranged in a linear or rectangular array. They
interact locally with their neighbours, competing for the representation of the
input vector. The competition depends on the distances

di=lx-wi , i=1...n. (1)

Learning takes place iteratively in cycles, in which all training vectors are fed
into the network in a random sequence. For simplicity the following consider-
ations refer to the linear case (a linear map), but can be generalized to two-
dimensional maps.

2.1 Original Algorithm

The original adaptation algorithm of Kohonen [3] is formulated as follows. For
every input x, the weight vectors are adapted as

Wi — Wi+ hei(t) (x—wi) , i=1...n. ()

Therein ¢ = argmin,{||x — w;(|} is the index of the best matching parameter
vector. The lateral interaction of the processing elements is given by the in-
teraction strength he;(t), which depends on time, i.e. the interaction strength
decreases with time, and on the distance of the weight vectors w; and w, within
the map. The lateral interaction is essential for the spatial order of the weight
vectors.

In respect to a fast parallel implementation, this algorithm has certain disad-
vantages. First, the time-invariant interaction shape is insensitive to the struc-
tural knowledge stored in the map. Therefore the topology of the neighbourhood
is often redefined, especially during the first learning cycles. Previously learned
structures are eliminated, or at least distorted. Second, the calculation of the
best matching element needs a global communication within the map. This is

264

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 263-269

uncommon to neural network algorithms, because neurons communicate directly
with each other. In addition, for effective parallel computation there should be
only local connections of neurons.

2.2 Algorithm with Differential Equation

Differential equations fulfil the requirement of parallel computation in an ideal
way, because they describe functions by the relationship of every function value
to its infinitesimal surrounding. The aim of the new adaptation algorithm is
to describe the activation shape with a differential equation. It follows from
the original algorithm that the activation should be highest where the distance
value is lowest. Furthermore it should decrease slowly with the lateral distance
of processing elements, thereby describing the interaction.

In simulations model equations like the diffusion and the wave equation
did not show these properties. Only equations derived from the Schrodinger
wave equation proved to be successful, because of the phenomena of tunneling
of quantum mechanical particles. Quantum mechanical particles will always
find the location with lowest potential because they “tunnel” through higher
energy barriers [8]. Of the solutions of the Schrédinger wave equation here only
the solution with lowest energy value is interesting. This amplitude function is
bounded and does not have nodes, i.e. it has only positive values. Its maximal
value is located at or near the absolute minimum of the potential.

Because of this property the amplitude function is suitable to describe the
activation of the processing elements. Tryba and Goser [4] presented an adapta-
tion algorithm which is based on the time dependent Schrodinger equation. But
simulations of that algorithm are computationally very expensive because of
the complex-valued wave function and the iteration of the time variable. With
a differential equation similar to the time independent Schrédinger equation the
algorithm becomes quite faster. In

- %%wm +d(2)Y(z) = e9(z) (3)

the distance function d(z) replaces the potential function. The interpretation
of the distance function as a potential is common for physical models of neural
networks.

Because the distance is known only at single locations, at the processing
elements, (3) is used in the discrete form (approximation by Taylor series ex-
pansion)

—a(Pi-1 = 29 +Yita) +dihi = € (4)

with o := 1/9%4,.

To solve (4) for all 2 = 1...n, boundary conditions for ¢ have to be chosen.
There are mainly two possibilities, either 1o = %2 and Yn41 = Pn-1 [4], or
Wo = ¥n and Pny1 = Y1. Here the second possibility is selected, because the
map is then circular and mathematically ¥ and d are periodically continued.

265

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 263-269

As mentioned before, only the solution with lowest eigenvalue € has the
properties of the activation being sought. With this amplitude function, the

adaptation of the new algorithm takes the form
w; —-»wi+1/1,;(t)(x—-w7;) , t=1...

The activation function 4(t) depends on time, because the parameter « in (4)
will change with time. The selection of the parameter values is discussed in the

n . (5)

next section.

3 Influence of the Adaptation Parameters

The activation function ¥ here also describes the lateral interaction of the pro-
cessing elements. During training, the interaction should vary in the following
way: In the beginning the aim of adaptation is the topological order, therefore
the interaction (activation) is wide. Later, close to the end of learning, the aim
is to improve the matching of the input and weight vectors. The activation is
concentrated at the absolute minimum of the distance.

The width of the activation is controlled by the parameter o in (4). On
the left hand side of the equation there are two summands. The first one gives
the influence of the curvature of 1, the second the influence of the distance d.
The parameter a determines the ratio of these two portions. If the curvature
is predominant (large «), then ¢ will be wide. If « gets smaller, 9 becomes
more concentrated around low values d (Fig. 1). Obviously the adaptation ;

S

0.8

0.6

0.4

0.2

psi(alpha=0.|1) \
0 10 . 20 30
i

Fig. 1. Examples of solutions ; (psi) of (4) for arbitrary d; (pot) and two values of
a, 1.0 and 0.1. The value of ¢ is 0.70 for @ = 1.0 and 0.18 for o = 0.1.

266

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 263-269

strongly depends on the values d;. Therefore previously learnt weights are taken
into consideration and the convergence speed increases [6].

To control adaptation during training, a will be large in the beginning and
getting smaller to the end. In addition 4 is scaled down after every training
cycle, so max(¢)) and the training strength will decrease. The weight vectors
are initialized either randomly or linearly at the beginning of training.

4 Fuzzy Activation

The activation 1 can be interpreted as a fuzzy activation. Unlike in Kohonen’s
self-organizing map the activation of the map layer spreads over some of the
processing elements. This feature is used to implement a nonlinear mapping
IR* — IR in a projection network that consists of the new self-organizing map
expanded by an output layer (Fig. 2). The adaptation of the output weight
vectors Xouy € IR! is similar to that of the input vectors. During training, a
vector Xij, and a corresponding output Xou: are fed into the network. After
calculation of the distances d; = ||Xin — Wixni|| and the activation % both x;, and
Xout are adapted according to (5).

At the end of training every unit holds quantisation vectors of the inputs
and the corresponding outputs. For recall, an input vector xi, is fed into the
network and the distances d; and the fuzzy activation v are computed. The

output is
Toutj = > Yiwoutij ,
2%
This network can be used for a fuzzy classification of data sets, which is demon-
strated with the following example. -,

j=1..1. (6)

input

di = ||Xin — Winil|

Fig. 2. Structure of a projection network consisting of the new self-organizing map
enhanced by an output layer.

267

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 263-269

5 Example

A common example for classification algorithms, the classification of Anderson’s
Iris data [9], will illustrate the ordering properties of the net. The data set has
150 four-dimensional vectors (SL, SW, PL, PW), equally distributed among the
classes (subspecies) setosa, versicolor and virginica. The data values were nor-

4.5 T T I T T T
o setosa ©
4k ° N versicolor <
virginica o
weights -e—
a5 L o 00 o i
. o ol
SW o 00
3 - og o oo o
o o
2.5 g ‘ -
o <4 d q
a <
D) L & I L i l !
4 45 5 55 6 65 T 75 8
SL
2.5 v T T o o T°
0000 000 o
X 0
[e]
2 AR
000 O
1.5 | -
PwW
1F .
setosa ©
versicolor <
0.5 - virginica o
, weights -e—
o B2 L | ! !
1 2 3 4 5 6 7

Fig. 3. Location of the 30 weight vectors in respect to the input vectors (Iris-data).
The weight vectors try to mimic the distribution of the learning vectors under the
constraint of their spatial order. This result was obtained after 10 learning cycles
(1500 adaptations) with a decreasing from 1.0 to 0.05 and max(s) decreasing from
0.8 to 0.3.

268

ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 263-269

malized to have real values in [0, 1]. The output vectors are three-dimensional.
Every unit denotes the membership of the corresponding input vector to a spe-
cific class, e.g. Xout = (1,0,0) for input vectors belonging to setosa.

This data was used to train a map with 30 processing elements. The spread
of the weight vectors in respect to the input vectors is shown in Fig. 3. The
weight vectors try to mimic the distribution of the learning vectors. The more
concentrated a cluster of input vectors, the closer the weight vectors. With the
output calculation described in the preceding section, the reference data could
be classified with only 6 misclassifications.

This example has been calculated using a simulation program written in C
language. The solution of (4) is computed with Monte-Carlo methods, which
makes the simulation quite slow. The adaptation of this example took 7 minutes
on a sun sparcl0 workstation.

6 Conclusions

With a new kind of adaptation algorithm where a differential equation deter-
mines the activation of the processing elements real self-organization is achieved.
The new features are the really parallel computation and the fuzzy activation of
the processing elements, which increases the convergence rate. At the moment
the drawback is the large amount of computation effort, which will be overcome
by a new solving algorithm now under test. This new algorithm can easily be
implemented in an electronic network of real processing elements.

References

1. T. Kohonen. The self-organizing map. Proc. of the IEEE, 78:1464-1480, 1990.
. T. Kohonen. Automatic formation of topological maps of patterns in a self-
organizing system. In Proceedings of the 2nd Scandinavian Conference on Image
Analysis, pages 1-7, Helsinki, 1981.
3. T. Kohonen. Self-organizing maps: Optimization approaches. In Artificial Neural
Networks, pages 981-990. Elsevier, 1991.

4. V. Tryba and K. Goser. A modified algorithm for self-organizing maps based on
the Schrédinger equation. In Proceedings of IWANN 91, Granada, 1991.

5. V. Tryba and K. Goser. Three algorithms for searching the minimum distance in
kohonen maps. In Digest of ESANN ’93, Brussels, 1993.

6. H. Surmann, B. Méller, and K. Goser. A distributed self-organizing fuzzy rule-
based system. In Proceedings of Neuro-Nimes ’92, pages 187-194, Nimes, 1992.

7. P. Demartines and J. Hérault. Representation of nonlinear data structures through
fast VQP neural network. In Proceedings of N euro-Nimes ’93;, Nimes, 1993.

8. P. Rujan. Searching for optimal configurations by simulated tunneling. Z. Phys. B
— Condensed Matter, 73:391-416, 1988.

9. J. C. Bezdek. Numerical taxonomy with fuzzy sets. Journal of Mathematical Bi-
ology, 1:57-T1, 1974.

n

269

