ESANN'1995 proceedings - European Symposium on Artificial Neural Networks

Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 161-166

Knowledge and generalisation in simple
learning systems

David Barber, David Saad

Department of Physics,University of Edinburgh
Edinburgh EH9 3JZ, U.K.
D.BarberQed.ac.uk

Abstract. We examine the effect of an increase in knowledge/constraints
on the generalisation error of adaptive learning systems, specifically the
linear perceptron. For a constraint which is then tightened, the new
version space becomes a subset of the original, and we examine to what
extent it is necessarily true that the average generalisation error must de-
crease. We show that in the case of the linear perceptron, increasing the
knowledge such that the teacher space remains convex is not a sufficient
condition for a reduction in average generalisation error.

1. Introduction

In this paper we deal with the scenario of learning from examples (see e.g.,[1]),
in which knowledge about the problem we are trying to learn is contained in
both the presented examples and in additional a priori assumptions about the
form of the problem. We examine the effect an increase in such knowledge
has on the generalisation performance of simple learning systems, concentrat-
ing in particular on the linear perceptron. We assume that a training set of
input/output pairs is generated by some teacher function, and the task is to
find a student whose outputs match closely the outputs of the teacher func-
tion on the training set. It is well known that without any constraints on the
teacher function that generates the training set, it is an impossible task to find
a student that generalises to unseen examples [4]. A priori assumptions are
therefore made as to the form of the teacher, that is, restrictions are imposed
on the space of teacher functions. Throughout this paper, we assume that the
spaces of which both the teacher and student functions are members, are the
same. The learning problem is then realisable in the sense that amongst the
student space, there is a student that will match perfectly the output of the
teacher on all possible inputs. We denote the teacher/student space of func-
tions by F(¥), and a particular mapping as y = f(z,0) for f € F(¥) and
6 € ¥ where the output is denoted by y, and the input by z. A particular
mapping that a function performs is then represented by the point 8 in the
parameter space ¥. We assume that a single teacher 8° generates the set of
training data £ = {2, f(z?,6°)}. In the learning problem, one attempts to
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find a student f(z,6) that matches the teacher f(z,8°) on the training set.
To measure the extent to which the student has learnt the teacher, an error
measure €(0,60°,z) is defined. All the information the student has about the
teacher is then represented by the space ® C ¥, alternatively, the student is
constrained to lie within the space ©. In Section 2. we review the general
learning theory and introduce the concept of reducivity to deal with the issue
of constraint increases. In Section 3., we examine reducivity in higher dimen-
sions, using the linear perceptron as the function space F((¥). In Section 4. we
conclude with a summary and discussion of the main results of the paper.

2. General theory

2.1. The generalisation function

To measure how well the student performs on the training set, the training
energy is formed, By, &< Y0 _, €(6,6° z7). The student is found by minimising
the training error with respect to the parameter 4, whilst adhering also to
additional a priori constraints. This is typically achieved by stochastic gradient
descent, resulting in a post training Gibbs distribution of students, P(0|£)
PPri(@) exp(—E;, /T) where the temperature, T, controls the randomness of
the stochastic algorithm (see e.g.,[3]). PP (d) is the prior on the student,
expressing the a priori constraints on the students. In the limit of zero T, the
distribution of students becomes uniform over those that have zero training
error and satisfy the a priori constraints; this space of student functions is
known as the version space [3], which we denote by ©. For the rest of the
paper, zero T is implied. To find the expected error the student makes on
a random example input, termed the generalisation function, we average the
error over the input distribution, P(z), giving €;(6,0°) = [ dzP(z)e(9, 6%, z).
Hence, if we know the teacher, we can find the expected error for any student
from ©. If, however, all the knowledge we have about the student and teacher
is that contained in the training set and prior, we know only that the teacher
and student both lie in ©.

2.2. The generalisation error

The average performance of a random student selected from the version space
is termed the generalisation error, which one expects to improve as the num-
ber of training examples increases. In the scenario that we have so far been
considering, © expresses all the knowledge we have about the student, after
presentation of none, or many examples, and we assume that this is also all
the knowledge we have about the teacher, defining the generalisation error
accordingly,

€(0) = <€f(9, 00))05@,0069
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where (..)goce and (..)yco Tepresent averages over the version space ©. We
write €,(©) to emphasize that the generalisation error is a function of the
version space.

Intuitively, one expects that any further restrictions or a priori assumptions,
resulting in a smaller version space, must necessarily reduce the generalisation
error. To test this intuition, we make the following definition.

o F(©’) is an ‘error reduced’ function space of F() if €,(©’) < ¢,(©) for
©' C O, and we say that reducivity holds.

1In this paper we examine which subsets ©' of © are error reducing, according
to the preceding definition. We mention briefly that one can also consider the
generalisation error for a fixed teacher, €;(6°,0) = (¢;(6,6%)), co» and one
could also check reducivity in light of this. We show in a later section, however,
that the main results of this paper also hold for €,(6°,©), and concentrate
accordingly on ¢,(©).

3. The linear perceptron

For the noise free linear perceptron, the inputs are represented by n dimensional
real vectors, x € ®", and the output is a single valued real variable, y € R [1].
The inputs x are assumed drawn independently and identically, from a zero
mean, unit covariance matrix Gaussian distribution. The teacher outputs are
given by f(x,w®) = w®.x/\/n. Similarly, the student outputs are f(x,w) =
w-x/+/n. We also impose the additional a priori spherical constraint on both
the student and teacher parameters, w-w = w®-w® = n. The error measure
is taken to be proportional to the squared difference between the teacher and
student outputs, e(w, w? x) = (w-x — w®.x)2/2n.

3.1. A two dimensional version space

We look now at the three dimensional linear perceptron. A point on the surface
of a three dimensional sphere of radius r = /3 is given by the ordered pair
(¢,6), which represents the usual spherical polar coordinate parameterisation.
We assume that the version space is given by: © = {(¢,0), ¢ € [q,}],6 € [¢, d]}.
A straightforward calculation gives

eg(Q) =1- -(-d—jT)z (A (cos(d) — cos(c))? + (sin(d) — sin(c))z) )

where A = 2 (1 — cos(b — a)) /(b—a)?. To violate reducivity we look for regions,
for example, such that d¢,(©)/dc > 0, and we plot one such region in figure(1a).
Indeed, there are infinitely many pairs (©, ©') that violate reducivity. At this
point, the reader may well conjecture that reducivity would be guaranteed for
convex regions © and © C ©. (In general, a region is convex if the geodesic
connecting any two points lies wholly within the region itself). Perhaps some-
what surprisingly, we demonstrate in the next section that convexity is not a
sufficient condition for reducivity.
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(b)

Figure 1: Version spaces that violate reducivity. (a) View from above the pole
of a sphere of radius v/3. The shaded region represents the version space, © =
{6 €[0.4,0.6], ¢ € [0,27]}. Making © smaller by pushing the inner boundary
towards the outer boundary does not result in a reduction in generalistion error.
(b) Counter example used to show that convexity is not a sufficient condition
for reducivity. We take the hypotenuse to have length 2.

3.2. Euclidean approximation to the version space

For simplicity, we now consider the approximation in which the version space is
small enough such that the region can be considered Euclidean. For the linear
perceptron described above, this corresponds to a region small enough such that
the curved surface of the hypersphere appears ‘flat’. By writing w = ¢ + W,
and w® = ¢+ WY, where c lies in the space ©, we write the generalisation error

(6) = 5 {7 =#)°)

where © is the approximately flat region on the sphere. Notice that this can
be written in the form,

e,((:)) = % ((ﬁ/2>v-ve@ - (‘i’)f'veé) .

We now consider an infinitesimal decrease in the space @ = & — A, For a
uniform distribution over the space, and ignoring terms in A2, we can write,
with a slight abuse of notation,

w,woed’

~ ~ A . .
()~ ¢(8) » = (%) ges — (#)wea) )
where A and © are the surface contents of A and © respectively. In eq.(1), we
have assumed w.l.o.g. that (W)wes = 0, i.e.,that the origin, ¢, is taken to be

the centroid of ©. Reducivity holds then for the condition

() aca > (") et - @)
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Note that this is a general condition, holding for any dimension. Using
this, we can show that convexity (for the linear perceptron at least) is not a
sufficient condition for reducivity to hold.

3.2.1. Convexity is not sufficient for reducivity

Eq.(2) will not be satisfied for regions, A, sufficiently close to the centroid.
This observation leads to the following two dimensional counter example. Let
the convex region © be the larger triangle as shown on figure(1b). By explicit
calculation, one finds ¢4(tri)=4/9 for the angle shown a right angle. We now
take €/, a convex subset of ©, to be the trapezium as shown, for which, in
the limit A — 0, ¢,(trap)=2/3. Hence ,(6’) > ¢,(8), demonstrating the
insufficiency of convexity as a condition for reducivity.

At this point we refer back to Section(2.2.) and note that we can read-
ily find an example of a fixed teacher for which an increase in the students
knowledge results in an increase in ¢,(6°, ©). In the above trapezium/triangle
example, consider a very flat triangle, for which the marked angle tends to .
We take the teacher to be positioned at the cross marked in figure(1b), for
which, €,(x,tri) = 1/6. Taking again, ®' to be the infinitely thin trapezium,
we have eg(x trap) = 1/3, which is larger than ¢,(x,tri).

The previous arguments have been aimed at infinitesimal, local alterations
to ©, and we consider briefly an example of global enlargement. We envisage
situations in which the boundary of © can be expressed in a spherical coordinate
system, r = r(¢, 0, ..), which is the case for convex regions. The enlarged version
space can then be defined by a new boundary, +' = A(¢,4,..)r(4,9, ..), for some
A(¢,0,..) > 1. Assuming we can bound A by some extremum values, Apin <
A(#,0,..) < Amag, it is straightforward to form an inequality such that the
generalisation error of the larger version space is greater than the generalisation
error of the smaller. For an enlargement which preserves the origin as the
centroid, the condition in two dimensions is A2;,, > Apnaz (sufficient, but by no
means necessary).

By examining eq.(1), we note that the greatest decrease in generalisation
error is to be found for a region A furthest away from the centroid of the set.
This is in line with the intuitive notion that we can improve generalisation most
by increasing our knowledge about the teacher in those regions that contribute
most to the generalisation error. One way to obtain this knowledge is to choose
an input z such that the reply from the teacher will give us information about
the teacher in the desired region; this is the concept of query learning (see e.g.,

[2]).
4. Summary and discussion
We have examined the effect of constraints on the generalisation error of simple

learning systems, concentrating in particular on the linear perceptron. Assum-
ing that both the student and teacher lie in the version space of constraints, we
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studied what effect increasing the constraint, by decreasing the version space,
has on the generalisation error. We gave a simple example of a two dimen-
sional version space for which decreasing the version space does not decrease
the generalisation error. Furthermore, convexity of the version spaces is not a
sufficient condition for the smaller version space to have lower generalisation
error. In general it is a non-trivial problem to predict whether reducing the
version space will reduce the generalisation error, and each case must be treated
explicitly.
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