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Abstract. We provide a radically elementary proof of the universal
approximation property of the 1-hidden layer perceptron based on the
Taylor Young formula and the Vandermonde determinant. It works for
both L? and uniform approximation on a compact set. This method
naturally yields some bounds for the design of the hidden layer and some
convergence results for the derivatives.

1. Introduction

In 1993, Hornik established in [1], using the Riesz representation theorem, that
a 1-hidden layer perceptron can uniformly approximate continuous functions
on compact sets. First, we show that any CP-function on R? can be locally
uniformly approximated with all its (partial) derivatives using a 1-hidden layer
perceptron. Some bounds for the design of the hidden layer are also proposed.
Our results differ from Barron one’s (who deals with mean square approxima-
tion see [2]), namely our bounds for the design of the hidden layer are dimension
dependent. This is no surprise as the uniform convergence on compact sets is
far more stringent.

Notations: ¢ C(X,R) will denote the
set of continuous real-valued functions
defined on the compact set K of R
or RY, and for f € C(K,R)
we set, ||fl|x := sup |(z)) .

€K

o for f; and g in C(K,R), fi 25 g will
denote the uniform convergence of fi

1-hidden layer perceptron
to g on a compact set K. - e - .

¢ C*(K,R) will denote the set of all real-valued functions defined on K, n
times continuously- differentiable, and for f; and g in C*(K,R) n > 1, we will
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(n)
write fi li’.‘.., g if f,gl) Ux, g for all £ € {0,---,n}, where g9 denotes the
£-th derivative of g.

Definition: We call “(n + 1, ¢)-perceptron” any function of the form: z ~—
n
E AiY(a;.z),where z€ R? and . denotes the canonical inner product on R4,

i=0

2. Approximation on a compact set of R

Assume first that ¢ is C™. For any polynomial P of degree p < n, we exhibit
a sequence of (p + 1, 9)- perceptrons that U I(}' )-converges to P.

Proposition 1: Let ¢ € C*(R,R) such that Vk, 0 <k <n, $¥)(0) # 0.
Let p € {0,---,n} and (ci)ocicn nonzero pairwise distinct real numbers, then
for every polynomial P such that d°P = p, there exist p + 1 rational functions

Ai(h) = Q;(-’l-;) where Q); are some polynomials of degree p, such that:
4 )
VK compact set of R, ZA;(h):/)(c;hx) = P(z) when h — 0.
=0
p 3
Proof: 1) Convergence of the perceptron: Let P(z) = E a;z', p < mn, be the

=0
polynomial we want to approximate. Let (a3, Ai)ig{o,..p} be 2(p+ 1) arbitrary
real numbers. The Taylor-Young formula applied to 4 at the p-th order yields:

(i) —$(0) — iz (0)—- fa—i?¢(’)(0) =(—f";’;’-f—)f'5e(a,-z), for0<i<p, (1)

P
with liII(l] e(z) = 0. Hence, setting Ax := sup Iz_'l and summing (1) over i:
T—r @EK H
» P p P
¥ (0
D div(asz) = $(0) Y Ny -—aP ———,,f )3 a|<Axd Inade(@in)l. ()
i=0 i=0 i=0 i=0
@o
A cen +A = —
0+ p ¢(0)
So we solve the system in Ag, -+, Ay : (Sp) = o
. p = OpP
doabt o +Hof = 5
The solution of (Sp) is given by:
ao
1 .- 1 — 1 R |
%(0) )
Ai(ao, -+, 0p)=] : ®

a,,..p! : : H(O‘i_aj)'

o ... b, 2P 11
’ Poylo) (PA1)x(p+1)
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The key of the proof is to show that A;j(ao,---,ap)af has a finite limit as
a = (@, -+, ap) — 0, as least for some subclass o, then inequality (2) yields
the announced result. Namely, we set «; := ¢;h, where ¢; > 0, ¢; # c;ifi#j
and b > 0. Then we develop the determinant of the numerator in (3) with

’ F o !
respect to the column 7, which gives, setting a; = 1;(;—)‘(70—)-:
-1
P
Xi(h) = h— 2B (H(c,' - c,-)) S (=) ajAj(co, -+, cp)hHE,
‘ i>j j=0

Then we can see that A;(h) = Q;(%) where @); is a polynomial function,
d°Q; = p. Hence ;in}) Ai(h)(c;h)P is finite for A;(h)(c;h)? is a polynomial in h.

P
On the other hand, lim sup |e(c;hz)| = 0, so AKZ[/\;(h)(c;h)"||e(c,-ha:)| Ix, o.
h=0 ek

=0

P
But (2) implies: < Agx Z |Xi(R)(esh)P|le(cihz)).

» ’ =0
Finally, VK compact set, Z Ai(h)Y(c;ihz) 5 P(z).
t=0
2) Uk-convergence of the derivatives with order k € {0,---,n}: for k < p, the
Taylor-young formula with order p — k applied to ¥(¥) yields:

} 4
D" Xi(h)d(cihz) — P(x)

1=0

(c;h)P~%yp®)(0) __
1/)(k)(c,'h:c)—¢(k)(0)—~--—Wx” k

lim €x(y) = 0, and A% := sup Iz‘p——kl-
y—0 zek (p—k)!
> (fp.: A'(h)(c'h)‘) OO E = Ptk y kg = PO()
t=k \i=0 , ' - (=B (@-k” e .
Thus, multiplying each equation (4) by A;(h)(c;h)* and summing over i, it
gives :

<Ak l(cih)P~Fer(cihz)], (4)

1t .is straightforward to.check that:

i Xi(h)(c:h)¥®)(c;ha) — P*)(z)

i=0

14
< Ak Y- N(h)(eih)llex(eiha),

$=0

which gives the result for k£ < p as the right member goes to 0 as h — 0.
If p = n it is over, if p < n — 1, the result holds for 0 < k < p.

Considering now k € {p+1,---,n}, and h satisfying h < min -él—
i

sup
zeK

zp:/\,-(h)(c;h)kzl)(")(c,-h:c)

< [|#®|, Zj; ()eh)]. )
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Xi(R)(c;h)* is polynomial with valuation > k—p > 1, thus ’l‘irx}) Xi(h)(e:h)* = 0.

P
Hence: Z,\,-(h)(c,-h)k¢(k)(c,-hz) I 0= P®)(z) when h — 0. g

i=0

It is now possible to give the approximation theorem on R.

Theorem 1: Let ¥ € C®(R,R) such that Yk € N, v(*)(0) # 0. Then forv
every 11 > 0, for every compact set K of R and for every n €N, the space
m

T — Z Aiv(a;z), o €)0,9[, meN, A\ € ]R} is dense in (C™(K,R), Ug)).
1:=0

Proof: Following proposition 1, it amounts to show that any function f €

c*0,1]is a U[(O'g]—limit of polynomials. Now, this result simply follows by con-

j
sidering the Bernstein polynomials: B;( f):=ZC}° f(-;g):c" (1—-zY~F see [3]. n
k=0
Remarks: e The Bernstein polynomials are not an optimal choice as far as
rate of convergence is concerning (see part 4).
o If 9 is analytic and nonpolynomial, D := {6/ 3k € N, ¢(*)(§) = 0} is at most
countable. So we can apply theorem 1 with any ¢4(z) := ¢(z —6), for 6 € D°.

3. Approximation on a compact set of R¢

Proposition 2: Let ¢ € C*(R,R) such that Yk, 0 <k <n, ¥*)(0) #0. Let
p€{0,---,n} and P € Rp[X1,- -+, X4]. Let denote N: = dimg Rp[X;, - - -, X4).
Then there exist N;,’ R9-valued veclors (ci)lsiSN: and N;f rational functions

1
Ai(h) :=Q,-(-E), where Q1,- -, Qng € R,[X] s.t.:
(n)
VK compact set of RY, - Z Ai(R)¢(he;.x) i, P(z1,---,z4) when h — 0.
1<iSNE
Proof: see [AP1] for a detailed proof. g

Theorem 2: Let ¥ € C®(R,R) such that Yk € N y(*)(0) # 0.
Then for every n > 0 and for every compact set K of R, the space

{x = Xm:A“p(ai'x)’ RS Rd’ o 1= (a}, o "a:'i) € (]0177[)da me N, Ai € R}

=0

is dense in (C"(K,R), U}}')) for every n € N.

Proof: As in theorem 1 using the d-dim. Berstein polynomials on [0, 1]%
FUF(E o ke )ghr . gke(1 _ gy oo gy Rk
Bi(f) =y L lg,_k " (see [3]). o
0<ky+ka<j 1 a:\J 1 d)!
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4. Design of the hidden layer

4.1. 1-dimensional case

We give here two error bounds, depending if we want only to approximate the
function or if we want to approximate together the function and its derivatives.

If K is a compact set of R?%, we denote Mk = sup ||z]| and 6x = sup ||z—y]|.
zeK (z,y)EK?

Theorem 3: Let ¥ € C®(R,R) such that Yk € N v*)(0) # 0. Let f €
CP(K,R) such that fP) is p-Lipschitz. Let e, be a sequence of positive real
numbers such that lim e, = 0. Then:

n-—00
i) There ezists a sequence (¢n)n>0 of (n+1,v)-perceptrons functions such that:

(1+sn)-

1
If = éallx < pAp MEF =T

ii) There ezists a sequence (®p)n>0 of (n + 1,9)-perceptrons functions such
that: Vk € {0, -, p}, || FON <1>$,’°>”K < pAcMy max (1, (65 )?) Q:—E”)

Proof: a) For every n € N the polynomial of best approximation of degree n,
Pn(f) satisfies:

1
Uf = Pa(F)ll < pAp MET! —T where A, depends only on p (see [4] p. 75).
The result follows from proposition 1 as we can choose ¢, such that:
3
VneEN, [i6n = Pa(Allx < pAp ME™ 2
b) There exists a sequence of polynomials Q,(f) such that:

VEE {0, -,8h, [£0 - @D < phoMic max(1, (557 =

So we have the result using again proposition 1.

Remarks: o The P,(f) are generally not explicit. But the Tchebychev ones
Ta(f) are and satisfy: |ITo(f) — fllx < (3+ In(n)) [Pa(f) = Fllxc (see [4]).

So we can explicitly construct a sequence ¢, of (n + 1,4)-perceptrons with:

3+In(n))1+e¢,
1F = dullic < pdp gt GHEENA+en),

o The Qn(f) are not explicit but there exist some explicit polynomials R, (f)
with d°n s.t.:

vke {0, % - RO < pAaMx max(1, (6x)P)

So, it is possible to construct a sequence ®,, such that:

b

(3 + In(n))
n

n))(1+€n)

n

Ve Ol |10~ 8] < pobtiemax(r, ax) B
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4.2. Multidimensional case ,

Theorem 4: Let ¥ € C®(R,R) such that Vk € N ¢*¥)(0) # 0. Let f €
C?(K,R) such that for alli, 1 < i < d, -6—’:::? is p-Lipschilz. Let ¢, be a
sequence of positive real numbers such that lim e, = 0. Then:

Nn—00

i) there ezists a sequence (¢n)nen of (n+1,4)-perceptrons functions such that:

pAa, MEF gr+l (1+en)
I1f = n(Mlxc < P42 -

7 d

ii) there exists a sequence (Pp)nen of (n+1,v)-perceptrons functions such that:

f 8.
3:’:1"1 ...azdkd azlkl ...azdkd

1

Ve=Fki+- -+ka<p,

1
< pad,pM}’;}’
K

Rl

n

Proof: a) The result is given by considering the polynomials of best approxi-
mation (see [4] page 89).
b) The result is given by considering the Bernstein polynomials (see {3]). o

5. Conclusion

Our results contain the LP-approximations results as the polynomial functions
are also LP-dense. However, our bounds for the design of the hidden layer
strongly depend on the convergence mode. So they cannot be compared with
results obtained in LP-settings in {2].

References

[1] K. Hornik, Some New Results on Neural Network Approximation Neural
Networks, 6, 1993, p.1069-1072.

[2] A.R. Barron, Universal Approximation Bounds for Superpositions of a
Sigmoidal Function, Information Theory, vol. 39 n. 3, 1993, p.930-945.

[3] G.G. Lorentz, Approzimation of Functions, Chelsea Publishing Company,
New-York, 1966, 188p.

" [4] G.G. Lorentz, Berstein Polynomials, Chelsea Publishing Company, New-
York, 1986, 134p.

[AP1] J.G. Attali, G. Pagés, Approximation of functions by perceptrons: a
new approach, preprint of SAMOS (Paris, France).

320





