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Abstract

The question of self-organization for the Kohonen algorithm is in-
vestigated. First the notions of organized states, weak and strong self-
organizations are defined. Then we prove that the Kohonen string has not
the strong self-organization property at least in two well-known cases: the
string and the grid in [0,1)2.

Introduction

The Kohonen algorithm in the early 80’s is wellknown as a Self-Organizing Pro-
cess. The very definition of what self-organizing exactly is turns out to be still
unclear. It involves two different notions: “what is an organized state?” and
“how to get it?”

So, we first have to properly define what an organized state is. So far, the
only really satisfactory example was provided by the standard 1-dimensional
Kohonen algorithm for which the organized states are the weight vectors having
monotoneous components. In [3] is developed both a general definition of a
“topology preserving map” and a measure of organization level with respect to
such a topology for a given state. By somewhat weakening this definition we
will introduce the concept of “organized state”.

The second point to be discussed is what is as a sell-organizing process. Once
again, the only known example of a both rigourous, satisfactory — and possibly
fulfilled — definition is the 1-dimensional standard Kohonen algorithm provides.
Following this, it is most natural to claim that self-organization occurs whenever
the set O of organized states satisfies
e O is an absorbing set (i.e. when the process reaches O it stays in it forever),
o the hitting time of O is almost surely finite for every starting weight vector.
These features will make up the strong self-organization property.

Some way round is to study the associated ODFE that describes the mean
behaviour of the algorithm. Self-organization occurs when the algorithm is con-
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verging and all the possible attracting equilibrium points of the ODE lie in the
organized state set. We may call this behaviuor weak self-organization. Unfor-
tunately, it is usually not possible to prove that such a convergence holds.

Our aim is to show that, unlike the 1-dim case, the nearest neighbour multi-
dim Kohonen algorithm has not the strong self-organization property.

1 About the notion of organized state

1.1 The topology

The general definition of organization involves two ingredients: a weight or
stimuli space 2 C IR? whose elements are denoted by w, a unit set identified to
a finite non empty set 1C Z*, endowed with a “topology”.

Definition 1 Let I be a unit set i.e. a (nonempty) subset of Z*. A family
N = {N(3),i € I} of subsets of I is a topology on 1 if it satisfies the following
(a) VielLieN(i) and N(i) #]1,

(b) Vi, jel, jeN(i) < ie N(j).

N (i) is called the neighbourhood of unit i.

two assumptions:

Of course the standard “r-nearest neighbourhoods” satisfies this definition. One
easily derives from the above definition that, if A and M are two topologies on
I, then their intersection MNN :={N (i) N M(i), i€ 1} is a topology too.

1.2 A definition for the ogganized states

Our first task is to clearly define what everybody calls the dimension of the unit
set I C Z* (which may be not k). Let-L; be the lattice (or Z-modulus) spanned
by I : this is the smallest Z-linear subset of Z* containing {i — i, i € I} (where
ip is any fixed element of 1). We recall the well-known result:

Theorem(-Definition) 2 L has at least one Z-basis and every basis of Ly is
finite (with at most k elements). All Z-basis have the same number of elements
called the Z-dimension of Ly. The dimension of I is the Z-dimension of L.

At this stage, we cannot distinguish the basis of £;. However, in Z? a 4-nearest
neighbour topology related to the basis {(1,0), (0, 1)} is obviously not the same
as that related to {(1,0), (1,5)}. So I must be endowed by a metric to take into
account the intuitive notion of organization induced by a topology on I.

Definition 8 Let|.| be a norm on IR*. A basis (e, -, ex) of Ly is | . |-minimal
if it achieves: min { max;<eck leel, (€1, -+ ,6x) Z-basis of Ly}

Examples: e In the 1-dimensional case, whenever 1+ {ip}, £ =Z and there
are only 2 minimal basis (with respect to any norm): {1} and {~1}.

o It becomes more intricated in higher dimension e.g., if |zf, := (Ef__, l|z¢|”)%, pe
[1,400], lxloo := Jax |z¢|, then the ] . | oo-minimal basis of Z? are {(0, £1), (£1,0)}

and {(0, 1), (£1,£1)} while the | . |,-minimal, p€ [1, +oo[, are {(0, +1), (+1,0)}.
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Now, we make a connection betwecn topologies and metric properties.

Definition 4 Assume that dimgl = k. A topology is a | |-(admissible) topology
if for any i€ I and any | [-minimal basis (ey,--+,ex) of Ly,
{i4+e 1 <E<k}nICN(G).

Thus, in the 1-dimensional case a topology N is a norm-topology (for any norm)
ifl, for every ie I, {i — 1,1,i + 1} NI C N ().

Notice that for any basis B of £; there exists a norm |.]g for which B is
minimal: any |. |, 8 p-norm related to the B-coordinates will work.
Example: Any standard r-nearest neighbour topology, r > 8, on Z2 is an ¢°-
topology, p €1, +00], while the standard 4-nearest neighbour only is for p <+o0.

Similarly, we can extend such.a definition to neighbourhood functions:

Definition 5 (a) o : I x I = (0,1} is a |.|-neighbourhood function if o(i,j) =
o(4,1) and o(i,7)=1 and
N@):={jel/o(i,.)>a},i€l, is a].|-topology.

The notion of organization itself relies once again on the Voronoi tessellation.

Definition 6 (a) Let z := {x;, i € I} be a set of pairwise distinct points in

R?, endowed with the Euclidean norm denoted |.|,. The Voronoi tessellation

(of R?) induced by z is the family {C(i), i€ 1} of open sets in R? given by:
C(i) = {‘U.G ]R'd / 'u’ - .’L“l, < lu' - zjlai .7 # 7'}

(b) Two units i, j € 1 are Voronoi-neighbour if C(1)NC(j)# ¢ where C(i) denotes

the closure of C(i). Let V(i) denote the Voronoi-neighbourhood of 1. :

Proposition 1 {V(i), ie I} makes up a topology on 1.
Definition 7 (a) A state (z;)«g is | . |-organized if the associated Voronoi topol-
ogy i3 an | |-(admissible) topology.

(b) Let O be the set of the | . |-organized states for at least one norm. O is called
the set of organized states.

2 The Kohonen algorithm

We exclusively deal here with the constant gain parameter — say € — version of
the algorithm and an i.i.d sequence of 2-valued stimuli with distribution p. Let
{Xi(t),i € I} denote the set of the weight vectors at time ¢t € IN, i.e the state of
the process at time t. Then the algorithm is recursively defined by:

[ i@t = argmin {lt*! — X,(0)],, j €1},

{ Xj(t +1) = Xj(t) + ea(io(w“"’),j)(w‘“ - Xj(l)), jel

Definition 8 Assume that I is endowed with a | . }|-topology. The sequence of
weights (X (t);, 1 € I)en i3 said to have the strong self-organizing property if
there exists some tg € IN s.t., for every t > tg, the state (X(t):, i€ I) is organized
Jor some norm |.['. If].]=1.] the organization is said to be optimal.
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Generally speaking, an optimal organization in the [EEITE}
above sense cannot be obtained using the Kohonen
algorithm. When p=co and I is a rectangle of Z?, fig.1
it has been previously noticed in [3] (see fig.1).

A contrario, if a rectangle of Z? is endowed
with one of the r-nearest neighbour topology, organization occurs as soon as the
Voronoi neigbourhoods V(i) contains the 4-nearest neighbours (if in I).

From now on we will restrict to the standard r-nearest neighbour setting i.e.
I is an (hyper-)rectangle and N(%) is a standard (hyper-)rectangle surrounding

. So L£;=122. We consider the “continuous case” when the stimuli space is a
non empty (d-dim) compact domain Q of R?. So K(e; n; d, k, 7) will denote
a Kohonen algorithm with gain parameter €, n units, some d-dimensional i.i.d.
stimuli, a k-dimensional unit set endowed with a r-nearest neighbour topology.

The result sketched by Kohonen and then proved in [2] and [1} is that the
algorithm K (e; n; 1, 1, 2) reaches the absorbing set of monotoneous weight vec-
tors at an almost surely finite time. This result holds as soon as the stimuli
distribution p locally has a continuous density (see [1] for improvements).

For more than ten years it has been an open question to find out such a non
trivial absorbing set when d is greater than 1. Here we investigate this question
for the Kohonen string in R? K(g; n; 1, 2, 2), and the Kohonen grid with 8
neighbours in IR? K(e; n; 2, 2, 8). These results can easily be generalized to
higher dimensional settings.

We close this section by the following important remark on the distribution
. Any event related to the Kohonen algorithm which is true with a positive
IP,-probability for every z € [0,1]¢ when p is uniformly distributed over the
hypercube [0, 1)¢ still has positive probablhty for any stimuli measure u (locally)
having a continuous density on R¢. Following this result, we may restrict our
computations and experiments to 2:=[0,1]¢ and p:=U ([0 1)9) in the proofs.

3 A mathematical result on the Kohonen string

Theorem 1 The set O of organized states is not an absorbing set for the Ko-
honen string K(e; n; 1, 2, 2) as soon as n>6: the Kohonen string has not the
strong self-organizing property.

Recall that I:={1,---,n} and - forcedly - N(i) = {i—1, ¢, i+1} N {1,---,n}.
Proof of the theorem: Let IP, denote the probability distribution of the
algorithm starting from z. What we have to prove is that there exists some
state z € O and a finite time ¢ such that: P.(X(t)¢ O)>0.

Step 1: We begin with a simple and general lemma which states that we only
need to find a deterministic path from z to O¢ (the outside of O).

Lemma 2 (Local continuity lemma) Set C:=U;eiC; where C; := {(w,z) /=i -
wl, <|zj—wly, § #i},,i€ 1. Letze Q! be a starting weight vector and w!,- - -, w
be an Q-valued finite sequence satisfying

t
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(¥} = (w*th, X(s))eC, 0<s<t-1
where X(s) denote the state of the Kohonen algorithm al lime s starting from
z, with stimuli sequence w!, .-, w* _Then, for any X(t)-centered open ball B,
there exists an x-centered open ball B and a sequence of w?®-centered open balls
B®, s =1,--,t such that, for any £ € B and any & € B®, s =1,--,t, the
con'esponding vector X (t) of the Kohonen algorithm at time ¢ belongs to B .

A straightforward consequence of this lemma is that: IP-(X(t)e B)>0.

Step 2: it remains to build a path going from € O into the interior of O°. It
will be provided by an ad hoc sequence (w!, -, wt) satisfying assumption (x),.
Lemma 2 will complete the proof. So, let z€ O
e (] 2
defined by (see fig.2.1): { (::;1, ' ’x")' o= (lx,-,:c,.),
z2:=1 zl<czl<.. <z5<3 <4a<:cs< <z}

Now we consider 3 geometric values for the stimuli: wj := (0, y 5 — a), wy =
(a,3 —a), wa: _(2+p,2a+p) (see fig.2.1). Now put w!=+. . =wh :=w;, whtl=
---—w“““’ = wy, whtttatl . yhittatla . 3 We set p, £, to, t3 in such a
way that at time ¢y + &3 + t3, X (¢, + ¢t + t3) belongs to the interior of O°.

Notice that while w®=w; the value of ip(w*) is 1. So, let >0 (small). Set t;
so that, picking up w*=w; until time ¢,, one has |z;(¢;) — w;|, and |z2(t;) — wi], <.
This is possible since 1—e > 0 and the only modified components of = are
z, and z3. From now on, one may assume w.l.g. that n < aJL While
te {t1+1, -+, t1+t2}, one sets wt:=wy and, since the previous homothetles have
left unchanged the original direction of the mediatrix of [z}, z2], the value of
ip(wt) is always 2. Carrying the process until time ¢, + ¢y yields:

IX1(t1 + t2) — wal, <, |Xo(t1 +£2) —wal, <7, lxs(tl +t2) — wal, <.

Now set w':=ws,t € [t1+t2+1 t1+t2+t3] Ifn<mm(p, 2 \/(2”,,):1:-;42:})_\/62“2)

—and p<av/2 so that w; stays closer to x3 ‘than to z¢ — we check that ig(wt)=3.

[X1(t1 + b2 + £3) — wal, <m, | X2(ts +82 +t3) —wal, <n,
[ Xa(ty +ta + t3) —wal, <n, |Xq(t:1 +t2+t3) —w3|, <7

Again we notice that the mediatrix of [zq,x3] and [z3, z4] and [z, z4] keep the
same direction during the “dragging” between times ¢y +¢3 + 1 and ¢y + t3 + t3.
Thus we reach the final state showed in fig.2.2

So, for large enough t3:

fig.2.1 fig.2.2

This state obviously does belong to the interior of ¢O. g
The result still holds starting from other weights (see below).
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4 Some simulation results

The Kohonen string: in fig.3 below we present 4 states of a K(g; n; 1, 2, 2).
The black square indicates (approximately) the subset of [0, 1)? in which the
stimuli are drawn to obtain the next state. We took £:=0.01 and n:=30.

VIRV

o s s 2 ®

fig.3
The 8 ncighbour Kohonen grid: the mathematical approach exposed in
section 2 can be extended to the simulation of much more general cases, namely
the K(e; n; 2, 2, 8): the idea is to first transform an initial organized state (e.g.
a grid) in a string-like state (probably still organized) and then to apply the
previous method. In fact this is very critical to realize. We display (see fig.4) a
sequence of states obtained by such a techniaue. .

l

. ap a1 P
¢ =HH=—7 — = @/ N

Starting from a regular square grid .we slowly. make._this.grid thinner and
thinner by drawing some stimuli in a thinner and thinner horizontal stripe cen-
tered on the line y =1/2. Then, still working within a thin stripe around the
line y =1/2, we strech the pseudo-string obtained. To this end, we alternately
pick up the stimuli at the right and left part of this small stripe. Now we make a
“loop” with this streched pseudo-string, using a similar method to that described
section 2. The final state is obviously not organized.
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