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Abstract

The aim of this paper is to present some results on NL, theory, a new
theory that originated from the study of stability criteria for neural state
space control systems. NLgs represent a large class of nonlinear dynam-
ical systems in state space form and contain a number of ¢ layers of an
alternating sequence of linear and nonlinear operators that satisfy a sector
condition. NLgs have many special cases in neural networks, systems and
control. Among the examples are e.g. the Hopfield network, Generalized
Cellular Neural Networks, Locally Recurrent Globally Feedforward neural
networks, Neural state space control systems, Linear Fractional Trans-
formations with real diagonal uncertainty block, the Lur’e problem and
digital filters with overflow characteristic. Within NL, theory sufficient
conditions for global asymptotic stability, input-output stability and dis-
sipativity are available. Certain results for ¢ = 1 reduce to well-known
results in modern control theory (Ho, theory and p theory).

Keywords. NLgs, Recurrent neural networks, Neural control, Lyapunov function,
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1. Introduction

Although stability criteria are already available for recurrent neural network
architectures such as the Hopfield net or cellular neural networks, most results
up till now are limited to architectures that contain a single layer of neurons. On
the other hand, for many applications the benefits of artificial neural networks
in e.g. system identification and control, originates in the fact that neural net-
works have ‘multiple’ layers. Indeed, considering feedforward architectures with

1This research work was carried out at the ESAT laboratory and the Interdisciplinary Cen-
ter of Neural Networks ICNN of the Katholieke Universiteit Leuven, in the framework of a
Concerted Action Project of the Flemish Community, entitled Applicable Neural Networks and
within the framework of the Belgian programme on interuniversity attraction poles (IUAP-17,
IUAP-50) initiated by the Belgian State - Prime Minister's Office - Science Policy Program-
ming. The scientific responsibility is assumed by its authors.
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one hidden layer makes them universal approximators and powerful architec-
tures in order to parametrize static or dynamic nonlinear mappings. Although
such ANNs are potentially capable of solving highly complicated problems, their
mathematical analysis is difficult and the enthusiasm is tempered by the lack of
general stability results for such dynamical systems. Recently we have proposed
a framework (NL, theory) for the analysis of nonlinear dynamical systems that
contain multilayer neural network architectures [9]. Within this framework suf-
ficient conditions for global asymptotic stability and input-output stability are
available. This paper is organized as follows: in Section 2 the concept of NLgs is
explained, together with special cases in Section 3. In Section 4 some stability
criteria for NL,s are presented.

2. What are NL,s ?

NL, systems (or shortly NL,s) is a class of nonlinear system in discrete time
of the form (see [9])

{ DPk+1 = 1‘1( V1 Fz( 1/2 I‘q( %pk + Bq'U)k) + Bq_llUk) + ) + Blwk)

ey = Al(WlAg(Wz...Aq(quk + quk) + Dq_lwk) ~+ ) -+ Dlwk)( )

1

with state vector pr € R™», input vector wy € R™v and output vector e; € R™e.

Here Ty, A; (1 = 1,..., q) are diagonal matrices with diagonal elements ¥; (pr, wk),

Aj(pr,wr) € {0, 1] for all values of p, wk, depending continuously on the variables

Pk, Wg. The matrices V;, W;, B;, D; are constant with compatible dimensions.
An equivalent representation for (1) is

[ i’%::l ] = (;zf[l--ﬂi-(Pk,ka)Ri) [ Z’; ] (2

with Q; = diag{li¢, Ase,0} (1 =1,...,¢) and R; = blockdiag{M;, N;,0}, R, =

[My;Ng; 0] (i =1,...,g= 1) where I'y . =Ty, T; . = diag{L;, I}, M1 = [V} By],

M; = [Vi Bi;0 1), Aye = Ay, Aj e = diag{A, I}, N1 = [Wy Di1], N; = [W; D;;0 I)
(i =2,...,q). Furthermore e{** corresponds to e; augmented with a number of
zero elements in order to make []?_; R; square. Note that ||Q|| < 1 because

IITs]l < 1 and [|As]] < 1. A typical feature of NL;s are the g ’layers’ in the

state equation and the output equation. The NL, is related to static nonlinear

operators that satisfy a sector condition [0,1]. This can be understood from the

following simple example. A nonlinear system zz+; = f(Wz;) with f(.) a static

nonlinearity belonging to sector [0,1] can be written as zx4+1 = I'(zx)Wz; with

T = diag{v;} and v; = f(w7 zx)/(wf z) € [0,1]. Hence this reduces to an NL;

system (see also [8]).

3. Examples on NLs

We will explain now how neural state space control systems are related to NLs.
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In [9] several neural state space models and neural state space controllers are
considered. In order to model a general nonlinear dynamical systems, corrupted
by process noise and measurement noise, e.g. the neural state space model

Zr41 = Waptanh(Vazy + Vaur + Bas) + Kex ()
v = Weptanh(Vedx + Vpour + Bep) + €k

is taken. Within the framework nonlinear dynamic output feedback controllers
are considered, e.g. of the form

{ zke1 = Wgrtanh(Vezx + Vryr + Ve, di + BeF) @)
ur = Wggtanh(Vozr + Vaye + Va,de + Bew)

The signals &g, zx, uk, Yr, di, € are respectively the internal state of the model
and controller, the input and output of the plant, the reference input and a
white noise innovations input in order to model the influence of process noise and
measurement noise. W,, V. are the interconnection matrices, 8, the bias vectors
and K a Kalman gain. After applying a state augmentation & = tanh(Vc#y)
and 7y = tanh(Vsz;) and assuming that Vp =0, Vg = 0, Vi, = 0, Bcp = 0,
Bea = 0 it is straightforward calculation to show then that the closed loop
system

Zry1 = Waptanh(Vadr + VeWan + BaB) + Kex

241 = Wertanh(Vezr + VEWeér + Vrer + Vi, di + Ber)

&k+1 = tanh(VoeWyptanh(Vagr + VaWem + Bas) + Vo Ker)

Me+1 = tanh(VoWgrtanh(Vezx + VPWepér + Vrer + Ve, di + BeF))

can be written as an NL, with ¢ = 2 with state pr = [&x; 2x; &; 7] and exoge-
nous input wg = [di; €x; 1]. Other problems in. control theory such as the Lur’e
problem or a linear control system with saturation of the control signal ([1]) can
also be written as NL,s in a similar way [9].

As a second example we consider here Locally Recurrent Globally Feedforward
neural nets (LRGF), a network architecture introduced by Tsoi & Back [13].
This architecture is in itself already a unification of other ones. The general
LRGF includes the local synapse feedback architecture as well as the local out-
put feedback architecture and can be described in state space form as

£9 = AOD 4 piyP, i=1,.,n—1
z{) = Cc® f(i
€0, = AW 4 BT, o)
Z;Sn) = ¢ &(ﬂ)
e = f(z 2 (.1) _
Using the trick of state augmentation by defining n; = f(zn_1 z(j )) an NL; sys-
tem is obtained with py = [E(l) @, f(" D, (") ;) and wy = ("' 1,

assuming f(.) is a static nonhnearlty that belongs to the sector [0 1]
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Also generalized cellular neural networks [3], which is an extension of the CNN
by considering many CNNs that are interconnected in a feedforward, cascade
or recurrent way in order to obtain highly powerful architectures, can be repre-
sented as NLgs [12]. An overview of examples on NL,s, arising in the theory of
neural networks, systems and control is given in Table 1.

{| NLg system | References | ¢ value []
Neural state space control systems 9] g>1
Generalized CNNs 3] g>1
LFTs with real diagonal A block 7] g=1
Lur'e problem 1] g=1
Linear control scheme with saturated input | [1] g=1
Digital filters with overflow characteristic 5] g=1
Hopfield network, CNN 3] g=1
LRGF networks 13] g=1

Table 1. Special cases of NLgs (introduced in [9)]), ar:szng in neural net-
works, systems and control.

4. Stability criteria for NLs

The following Theorem holds for the autonomous NL,:

Theorem 1 [Diagonal scaling]. A sufficient condition for global asymptotic sta-
bility of the autonomous NL, system (wj = 0) is to find diagonal matrices D;
such that

“DtOtWOtDtot“ =0p <1 (5)

where V; € R™ ™41 (ny,, = np,, = np) and Do = diag{Da, D3, ..., Dy, D1},
D; € R™:*"» are diagonal matrices with nonzero diagonal elements and

0 Voo - D
0 Vs
Viot =
- oV
A% 0

The following Theorem holds for input/output stability:
Theorem 2 [l theory - Diagonal scaling]. Given the representation (2), if there
exist matrices D; such that

||DtothotDzot“2 =fp <1, (6)

then there exist constants ¢, ¢ such that

c2(1 = BP)Ipl3 + llell3 < A3liwlf3 + eallpoll3 (7)

provided that {w};Z, € l;. Here R; € R™*"its (n,, = n,,, = n, + ny)
and Dy = diag{Da, D3, ..., Dy, Ds,}, Ds, = diag{D1,1,,}, D; € R"»*"s,
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D; € R™*i%%r; are diagonal matrices with nonzero diagonal elements and

4] Ry ]
0 R;
Riot =
0 R4
Ry 0

Proofs are given in [9], together with ’sharper’ stability criteria.
Remarks:

o Theorem 2 is closely related to results in modern control theory (Ho, con-
trol theory and u theory, see [9][10][11]): it can be proven that certain
results in these theories are special cases of NL, theory for ¢ = 1 ! There
is a close relationship between the internal stability criteria (autonomous
case) of Theorem 1 and the property of finite Ly-gain in Theorem 2. This
was already stated e.g. in [4] and becomes clear through the concept
of dissipativity. A dynamic system with input w; and output e; and
state vector py is called dissipative if there exists a nonnegative function
V(p) : R® — R with V(0) = 0, called the storage function, such that
Vw € R"v and Yk > 0:

V(pr+1) = V(or) < W(er, wi)

where W ey, wt) is called the supply rate. The NL, system is dissipative
under the condition of Theorem 2, with storage function V(p) = || D1p||3,
supply rate W(ex, wi) = Bp|jwill3 — |lex]|? and finite Ly-gain fp < 1.

e For a fixed matrix Vi, or R, conditions (5),(6) are convex feasibility
problems in the matrix D, , because the criteria can be written as Linear
Matrix Inequalities (see [2][7][9]). From a computational point of view this
is important, because these problems have a unique minimum and more-
over this minimum can be found in polynomial time. A general theory
of interior-point polynomial time methods for convex programming is pre-
sented in [6]. An excellent overview of LMI problems in system and control
problems can be found in [2].

¢ A modified version of Narendra’s dynamic backpropagation, a learning
rule for dynamical systems that contain ANNs, that takes into account a
sufficient stability condition for the NL, is proposed in [9]. Within neural
state space control theory this enables to assess global asymptotic stability
of the closed loop system (in case there exist a feasible point).

Conclusions

It turns out that many dynamical systems, arising in neural networks, systems
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and control, that contain one single layer or multiple layers together with static
nonlinearities that satisfy a sector condition [0, K] (KX > 0), can be written
as NLgs. Sufficient stability criteria are available within NL, theory, that are
closely related to modern control theory. These criteria can be written as Linear
Matrix Inequalities (LMIs), leading to convex (sub)problems. This is attractive
from a computational point of view. Hence NL, theory may serve as a tool
for the analysis and synthesis of nonlinear dynamical systems, containing neural
network architectures.
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